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 It is observed that the system is stable for            
  and under the condition            

 , the 

system becomes unstable. 
 For the case of stationary convection, the couple-stress parameter and magnetic field are found to 

have stabilizing effects on the system whereas the medium permeability has a destabilizing effect 
on the system. 

 The case of overstability is also considered. The condition 

   [  (   )         
] 

is the sufficient condition for the non-existence of overstability, the violation of which does not 
necessarily imply the occurrence of overstability. 
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Abstract: The present study aims to generate the new flexible probability distribution from 
classical probability distribution by introducing one or more additional parameter (s). Recently, 
many methods (or techniques) have been proposed to develop and extend new univariate continuous 
probability models. The aim of this study is to explore the new univariate continuous Exponentiated 
Marshall –Olkin Exponential distribution to predict mortality rate of COVID-19 second wave in 
Nepal. To develop the proposed model, the exponential distribution is compounded with Marshall-
Olkin family of distribution. Explicit expressions of reliability/survival function, hazard rate 
function, revised hazard rate function, quintile function, asymptotic behavior, moments, residual life 
function, R`enyi entropy and q entropy, probability weighted moment and order statistics of 
proposed model. The data were collected from April 1 to May 14 from MOHP Nepal regarding the 
COVID-19 second wave. The parameters  ̂    ̂  and  ̂ are estimated by maximum likelihood methods 
and predict the mortality rate per day by COVID-19 second wave.  The COVID-19 second wave 
data set is used to validate the proposed model. This model is valid statistical tools  like as  P-P and 
Q-Q plots; KS, Anderson darling test and Cramer von miss test;  and value of log-likelihood, AIC, 
BIC and CAIC. Hence, proposed model is a satisfactory model to predict the events. From this 
model daily predicted mortality rate was quite high (94.61%). As a result, if the current situation 
persists, there is a high risk of up to 150 people dying per day in Nepal. 
 

Keywords: COVID-19, Exponentiated Marshall-Olkin exponential, Maximum likelihood estimation, 
Order statistics 

1. Introduction 

In the last few decades, numerous approaches (or techniques) have been proposed for the 
development and expansion of new family of distributions or probability distribution in different 
applied areas. In the literature, some familiar univariate family of distribution like as, muth generated 
family of distributions [1], Kumaraswamy type I half logistic family of distributions [11], the new 
Weibull-G family [32], bivariate odd Weibull-G family [9] and Generalized Odd Gamma-G family 
[15] and many others. After introducing the family of distribution, the new flexible probability model 
can be derived by adding one or more auxiliary parameters, so that it is better fitted to a huge amount 
of data in the different applied fields [20]. Likewise, inclusion of one or more additional shape 
parameter(s) to the baseline distribution, it makes the distribution more flexible, particularly when 
studying the tail properties [19, 31].  
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In literature, various probability distributions have been derived from different family of 
distributions in the last decade.  Risti' Miroslav M. et al. [29] introduced a three-parameter distribution 
of Marshall Olkin Generalized Exponential (MOGE). This distribution is very flexible because the 
shape of the hazard function increases, decreases, the bathtub or the inverted bathtub. This model has 
good statistical behavior and is satisfactory in the analysis of real data. Similarly, UL Haq, et al. [33] 
expanded the distribution of Length-biased exponential (LBE) and proposed a two-parameter 
distribution of Marshall-Olkin Length-Biased Exponential (MOLBE). This distribution is better fitted 
than a number of other competitive models and tested empirically using real life data. Likewise, the 
three-parameter and unimodal, Marshall-Olkin Logistic-Exponential (MOLE) was introduced by 
Mansoor M, et al. [22]. The characteristic of the hazard rate function is increased, decreased, bathtub 
and upside down, which indicates that the distribution is more applicable to the real data analysis. 
Similarly, other different distributions were also suggested by different authors, such as Marshall–
Olkin Extended Weibull by Ghitany et al. [12], Marshall-Olkin Exponential Weibull by Pogány et al. 
[26], Marshall–Olkin Gamma–Weibull by Saboor et al. [30], Marshall-Olkin Fréchet by Krishna et al. 
[17], a new Poisson Inverted Exponential distribution from the Poisson family of distribution 
Dhungana [8] and Exponentiated Rayleigh Poisson distribution by Joshi & Dhungana [16]. Hence, the 
concept of generating the new distribution is introducing the flexible distribution which has applicable 
in different fields like health, engineering, demography, survival analysis, and reliability analysis. 
  The COVID-19 pandemic has devastated the world and has accompanied economic, social 
and behavioral challenges and responses. More than 160 million cases have been confirmed 
worldwide as of now and the disease has claimed over 3.3 million lives [10]. Likewise, more than 
4,500 people have died in Nepal by 14th May, 2021 [13]. The situation seemed to be within control in 
Nepal in early March, at one point only 47 daily cases being reported in 6th March, 2021 [13]. But by 
mid-April, 14 districts, including the Kathmandu Valley, were declared as Covid-19 hotspots due to 
the second wave (The Times of India 2021, April 15). The total reported cases and total deaths due to 
Covid-19 from 1st April to 14th May account to almost 37% of total reported cases and 35% of total 
deaths since the first case was reported in Nepal back in January of 2020 [3]. 
Therefore, the aim of this study is to generate the more flexible probability distribution and data 
analysis of COVID-19 second wave of Nepal from this distribution.  
 

2. Material and Methods  
Initially, Marshall and Olkin (1997) suggested a new family of distribution having cumulative 
distribution functions (cdf); 

 
( )( ) ; 0, 0.

( ) 1 ( )
G xF x x

G x G x



  

 
       (1) 

The family of distribution has been expanded by introducing an auxiliary parameter, and then it 
becomes exponentiated or generalized distribution [7, 31]. Let, 0  , has an auxiliary parameter has 
been added in proposed model, called Exponentiated Marshall and Olkin family of distribution, which is 

 
( )( ) ; 0, 0, 0.

( ) 1 ( )
G xF x x

G x G x



 


 
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       (2) 

Where, is cdf of baseline distribution and   is a scale and   is shape parameter. In probability 

theory and statistics, exponential distribution plays a significant role in the study of survival results. 

This is the probability distribution of time between events in the Poisson point process, i.e., a process 

in which events occur continuously and independently at a constant average rate. This is a special case 

of the distribution of gamma. It's a continuous analog of geometric distribution, which has the main 

property of being memoryless. In addition to being used for the study of Poisson point systems, it can 

( )G x
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be found in a number of other ways. So, the exponential distribution is used as a base line probability 

distribution having cdf; 

( ) 1 ; 0, 0.xG x e x               (3) 
For proposed model, cdf of the equation (3) is compounded with equation (2), then cdf of 
Exponentiated Marshall –Olkin Exponential (EMOE) distribution is 
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Now, differentiation of equation (4) with respect to x , then pdf of proposed model is 
1
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The shape of the distribution depends upon the value of parameters. This distribution is positively 
skewed and unimodal (Fig.1, left panel). 
Similarly, the survival function of proposed model is 
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The hazard rate function is the conditional density given that the event has not yet occurred before 

time x . Mathematically, let x  be a survival time of a component or item and we want to calculate the 

probability that it will not survive for an additional time x , then hazard rate function is 

0
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Therefore, the hazard rate function is 
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The shape of hazard function is increasing, inverted bathtub in nature. This reflects the good statistical 
behavior in real data modeling (Fig. 1, right panel).  

 
Figure 1: Plot of probability density function (left panel), hazard rate function (right panel) with different value 
of parameters  and    when 4    

The reversed hazard function is;  
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Special case: 
When   =1, the proposed model becomes MOEE which was introduced by marshal and Olkin. 
(1997). The pdf of model is  
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3. Statistical Properties 

In this section major properties of EMOE distribution have been derived. 
3.1 Useful expansions 
Distribution is derived from the generalized binomial series. For, 1,  0z n  , we have;  
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Using the binomial theorem (10) and (11) in equation (5), the pdf of proposed model is 
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The expansion of cumulative function ( ) sF x , by used equation (10) and (11), then, 
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3.2 Asymptotic Behavior 
We investigate the behavior of the proposed model as given in equation (5), as
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These findings confirm that the proposed distribution has a unique mode value. The required 
necessary and sufficient condition for mode is;  
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0   x and as x  . Therefore, 
1 1

1 10

1 1
lim lim 0.

1 ( 1) 1 ( 1)

x x x x

x xx x

e e e e

e e

    

  

 

 

    

   

        
         

 

These findings confirm that the proposed distribution has a unique mode value. The required 
necessary and sufficient condition for mode is;  

2

2

( ) ( )0 and 0df x d f x
dx dx

  .   
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After applying necessary condition, we get 

 
 

 1 1 ( 1)
0.

( 1)1 xx ee 

    



  

   
    

                (15) 

The equation (15) is a non-linear equation. The solution of the equation (15) cannot be determined 
analytically. The value of the mode can be determined by numerically using the Newton-Raphson 
method (Table 1). 
 

3.3 Quantile Function 

The quantile function is defined as, 1( ) ( )Q u F u which as an alternative of pdf and cdf of any 
probability distribution. It is used to obtain statistical calculations such as mean, median, mode, 
skewness and kurtosis by generating random numbers. The corresponding quantile function for the 
proposed model is 

1

1
1 1( ) ln .

1 ( 1)

uQ u
u



 

       
     

                  (16) 

Where, u~U (0, 1) distribution. The 100 random samples are generated from the equation (16). It is 
observed that proposed distribution is unimodal, skewed and non-normal (Table 1, Figure 1, left 
panel). Therefore, the proposed distribution can be used in univariate data analysis either longitudinal 
or cross-sectional, in different areas such as engineering, actuarial, environmental, medical, 
biological, demographic, economics and many others applied fields. 
 

Table 1: The mean, median, mode, skewness, Kurtosis of proposed distribution with difference value 
of parameters 

Parameters 
Mean Median Mode Skewness Kurtosis          

0.1 0.7 1.0 0.12558 0.12990 0.13668 -2.06518 9.62200 
0.2 0.8 1.5 0.10537 0.11090 0.08399 -0.74273 2.48239 
0.3 0.9 2.0 0.08904 0.08580 0.04675 -0.02866 1.80272 
0.4 1.0 2.5 0.07865 0.06435 0.02512 -0.44559 1.99554 
0.5 1.1 3.0 0.07256 0.04907 0.01329 -0.80408 2.44920 
0.6 1.2 3.5 0.12478 0.03714 0.04371 1.07558 2.94762 
0.7 1.3 4.0 0.06841 0.02792 0.00366 1.27667 3.38691 
0.8 1.4 4.5 0.06841 0.02042 0.00192 1.42064 3.72947 
0.9 1.5 5.0 0.07058 0.01489 0.00101 1.52150 3.97769 
1.0 1.6 5.5 0.07310 0.01136 0.00053 1.59184 4.15378 

 

3.4 Moments 

Let X ~ EMOE (,,), the rth raw moment about the origin is defined as; 

 1

0 00 0

( ) ( ) .i j xr r r
r ij

i j
E X x f x dx x e dx 

  
  

 

              (17) 

After integration of (17), the rth raw moment about the origin of proposed model is 

1
0 0

( 1) .
[ (1 )]r ij r

i j

r
i j

 


 


 

  
   

When 1,r   mean of proposed model is  1 2
0 0

1
[ (1 )]ij

i j i j
 



 

 

 
  .  

Similarly, second raw moment about the origin is 2 3
0 0

2
[ (1 )]ij

i j i j
 



 

 

 
  . 
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Therefore, we can calculate the variance as the  relation  2
2 1( )V x      

The incomplete moments, say, ( )s t  , is given by; 
0

( ) ( ) .
t

s
s t x f x dx                      (18) 

Used the relation (12) in equation (18), and applied lower incomplete gamma function, 

1

0

( , )
t

s xs t x e dx      and after integration equation (18) then incomplete moment ( )s t is 

  
  1

0 0

1 , (1 )
( ) .

(1 )
s ij s

i j

s i j t
t

i j

 
 



 


 

  


 
  

Similarly, the conditional moment is defined as ( ) ( )s
s

t

t x f x dx


                      (19)  

Used the relation (12) in equation (19), and applied upper incomplete gamma function,

1( , ) s x

t

s t x e dx


      and after integration equation (19) then conditional moment is 

  
  1

0 0

1 , (1 )
( ) .

(1 )
s ij s

i j

s i j t
t

i j


 



 


 

   


 
  

 Likewise, Moment Generating Function (MGF) is  

0
( ) [ ] (X ).

!

r
tX r

X
r

tM t E e E
r





                    (20) 

Using result of the equation (17) in equation (20), then MGF is  

1
0 0 0

( 1)( ) .
![ (1 )]

r

X ij r
i j r

t rM t
r i j




  


  

 


   

3.5. Residual Life Function 

The nth moment of the residual life of X  is given by; 
1( ) ( ) ( ) .
( )

n
n

t

m t x t f x dx
R t



                     (21) 

Apply the binomial expansion of 
0

( ) ( 1)
n

n r n r r

r

n
x t x t

r




 
    

 
   into the equation (21) and 

substitute the value of ( )f x  from equation (12) then equation (21) can be express as;  

(1 i )

0 0 0

1( ) ( ) .
( )

n
r n r j x

n ij
i j r t

n
m t t x e dx

rR t


 
   

  

 
   

 
                  (22) 

Apply the upper incomplete gamma function 1( , ) s x

t

s t x e dx


    in equation (22), nth moment of  

the residual life of X  is 
 

 
  ( 1)

0 0 0

( 1), (1 )1( ) ( ) .
( ) 1

n
r

n ij n r
i j r

n n r i j t
m t t

rR t i j






 

 
  

     
   

     
  

3.6. R`enyi and q-entropies 

The entropy of a random variable X  is a measure of variation of uncertainty and has been used in many 
fields such as physics, engineering and economics among others. The R`enyi entropy is defined as; 
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Therefore, we can calculate the variance as the  relation  2
2 1( )V x      

The incomplete moments, say, ( )s t  , is given by; 
0

( ) ( ) .
t

s
s t x f x dx                      (18) 

Used the relation (12) in equation (18), and applied lower incomplete gamma function, 
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0

( , )
t

s xs t x e dx      and after integration equation (18) then incomplete moment ( )s t is 
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

 
  

Similarly, the conditional moment is defined as ( ) ( )s
s

t

t x f x dx


                      (19)  

Used the relation (12) in equation (19), and applied upper incomplete gamma function,

1( , ) s x
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

      and after integration equation (19) then conditional moment is 
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
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

 
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 Likewise, Moment Generating Function (MGF) is  

0
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



                    (20) 

Using result of the equation (17) in equation (20), then MGF is  

1
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


  


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3.5. Residual Life Function 

The nth moment of the residual life of X  is given by; 
1( ) ( ) ( ) .
( )

n
n

t

m t x t f x dx
R t



                     (21) 

Apply the binomial expansion of 
0

( ) ( 1)
n

n r n r r

r

n
x t x t

r




 
    

 
   into the equation (21) and 

substitute the value of ( )f x  from equation (12) then equation (21) can be express as;  

(1 i )

0 0 0

1( ) ( ) .
( )

n
r n r j x

n ij
i j r t

n
m t t x e dx

rR t


 
   

  

 
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 
                  (22) 

Apply the upper incomplete gamma function 1( , ) s x

t

s t x e dx


    in equation (22), nth moment of  

the residual life of X  is 
 

 
  ( 1)

0 0 0

( 1), (1 )1( ) ( ) .
( ) 1

n
r

n ij n r
i j r

n n r i j t
m t t

rR t i j






 

 
  

     
   

     
  

3.6. R`enyi and q-entropies 

The entropy of a random variable X  is a measure of variation of uncertainty and has been used in many 
fields such as physics, engineering and economics among others. The R`enyi entropy is defined as; 
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 1( ) log ( ) ,    0 & 1.
1

I X f x dx
  







  
                      (23) 

Used equation (13) in equation (23) and integration of this equation, R`enyi entropy is  

 
0 0

1 1(X) log .
1 ( )ij

i j
I

i j 
  

 

 

 
     

  

Similarly, q-entropy is defined as; 

 1( ) log 1 ( ) , 0 &  1.
1

q
qH x f x q q

q





 
      

                  (24) 

The q-entropy is obtained by substituting the result (23) into (24), where   is replaced by q;

0 0

1 1( ) log 1 .
1 ( )q ij

i j
H x

q i j

 

 

 

 
     

  

3.7 The Probability Weighted Moments (PWM) 

The probability weighted moments can be obtained from the following relation 

, ( ( ) ] ( ) ( ) .r s r s
r s E X F x x f x F x dx





                      (25) 

By substituting equations (12) and (13) into (25), then equation (25) becomes 

(1 )
,  ( )

0 0 0 0 0

.r i j k l x
r s ij k l s

i j k l
x e dx  

   
    

   

                       (26) 

After integration the equation (26), Hence, the PWM of proposed model is  

 ,  ( ) 1
0 0 0 0

( 1) .
(1 )

r s ij k l s r
i j k l

r
i j k l

  


   


   

 


   
  

3.8 Order Statistics 
Order statistics have been extensively applied in many fields of statistics, such as reliability and life 
testing. Let 1 2, ,...., nX X X  be independent and identically distributed random variables with their 
corresponding cumulative distribution function F(x). If these variable are arrange in ascending order 
of magnitude then can be written as (1) (2) ( )... nX X X  , we call ( )jX  as the thj order statistics,

1,2,...j n .The pdf of thj order statistic David (1981), is defined as; 

  ( ) 1
( ) ( ) ( )

0

( )
( ) ( 1) ( ) .

( , 1)

n j
j j

x j j

f x n j
f X x F x

B j n j
 

 


 



 
      

                (27) 

Where, (.,.)B  is the beta function. By substituting (12) the equation (27), and (13) in (27), where 

replacing s by +j-1.  *Again let, ( 1)
n j

 

   
 

, then, the pdf of proposed model in term of 

order statistics is 

  ( )(1 )*
( ) (j)  ( 1) ( )

0 0 0 0 0 0

1( ) .
(j, n 1)

j
n j

i j k l x
x ij k l j j

i j k l
f X x e dx

B j





  
   

    
 

    


               (28) 

The thr    raw moment of order statistics is defined as; 

    ( ) ( ) ( ) ( ) ( )
0

.r r
j j x j jE X x f X x dx



                   (29) 
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After integration of equation (29) after substitute the value of equation (28), then finding of thr raw 
moment is 

 
 

*
( ) ( 1) 1

0 0 0 0 0

11( ) .
( , 1) (1 )

n j
r
j ij kl j r

i j k l

r
E X

B j n j i j k l




  


   

  
    

 


     


 
 

4. Maximum Likelihood Estimation 
 

The maximum likelihood estimates (MLEs) of the unknown’s parameters of the distribution based on 
 1, , nx x x observed sample value with of set of parameters ( , , | )x   .The log likelihood 

function of the parameter ( , , )    is given by; 

   -

1 1 1
ln( ) ( 1) ln 1 ( 1) ln 1 ( -1) .i i

n n n
x x

i
i i i

n x e e     

  

   
          

   
          (30) 

MLE is a technique to determine the value of the parameters by differentiating w.r.t.to parameters and 

equating to zero, Let 
1 1 ; and 

(e 1) ( 1)i i
i ix xe 

 


 
    

 

1 1 1
( 1) ( 1)( 1) 0.

n n n

i i i i i
i i i

n x x x    
    


       

                    (31) 

1
( 1) 0.

n

i
i

n  
  


   

                     (32) 

1 1
(1 ) 1 ( 1) 0.i i

n n
x x

i i

n n e n e 
 

 

 

                                       (33) 

To estimate the unknown parameters ,   and       , we need to solve non-linear equation (31), (32) 
and (33). It is clear that, these equations cannot solve analytically. Therefore, we estimate the value of 
unknown parameters by applying the Newton-Raphson’s iterative technique in log-likelihood function 
of equation (30) directly, using optim () function in R software [3, 23].  
Let us denote the parameter vector by ( , , )     and corresponding MLE of ˆ ˆ ˆˆ as  ( , , )     , 

then asymptotic normality result is     1
3

ˆ 0, ( ) .N I     Where, ( )I   is fisher information 

matrix.  By applying the Newton-Raphson algorithm in equation (30), it produced the observed 
information matrix ˆ( )O  (elements given in Appendix-A), which is estimated matrix of fisher 
information matrix. Therefore, observed information matrix ˆ( )O   is used in the common procedure, 
which can be written as;  

2 2 2

2

2 2 2

ˆ2

2 2 2

2
ˆ ˆˆ( , , )

  

ˆ( ) ( ) .
  

  

O H
 

  

    

 
    

    



   
      
   

    
     

          

                    (34) 

Where, H is the hessian matrix,   = ( ,   , )T    as a parameter and ̂  = ˆ ˆˆ( ,   , )T   as estimated 
value of corresponding parameters. The inverse of hessian matrix is called variance –covariance 
matrix which can be expressed as;   
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After integration of equation (29) after substitute the value of equation (28), then finding of thr raw 
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4. Maximum Likelihood Estimation 
 

The maximum likelihood estimates (MLEs) of the unknown’s parameters of the distribution based on 
 1, , nx x x observed sample value with of set of parameters ( , , | )x   .The log likelihood 

function of the parameter ( , , )    is given by; 
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MLE is a technique to determine the value of the parameters by differentiating w.r.t.to parameters and 
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To estimate the unknown parameters ,   and       , we need to solve non-linear equation (31), (32) 
and (33). It is clear that, these equations cannot solve analytically. Therefore, we estimate the value of 
unknown parameters by applying the Newton-Raphson’s iterative technique in log-likelihood function 
of equation (30) directly, using optim () function in R software [3, 23].  
Let us denote the parameter vector by ( , , )     and corresponding MLE of ˆ ˆ ˆˆ as  ( , , )     , 

then asymptotic normality result is     1
3

ˆ 0, ( ) .N I     Where, ( )I   is fisher information 

matrix.  By applying the Newton-Raphson algorithm in equation (30), it produced the observed 
information matrix ˆ( )O  (elements given in Appendix-A), which is estimated matrix of fisher 
information matrix. Therefore, observed information matrix ˆ( )O   is used in the common procedure, 
which can be written as;  
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Where, H is the hessian matrix,   = ( ,   , )T    as a parameter and ̂  = ˆ ˆˆ( ,   , )T   as estimated 
value of corresponding parameters. The inverse of hessian matrix is called variance –covariance 
matrix which can be expressed as;   
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Finally, we construct approximate 100 (1 )  % confidence interval for  ,   and     is  

/2 /2 /2
ˆ ˆ ˆ ˆˆ ˆvar( )  ;  var( )   and  var( )z z z                                      (36) 

Where, /2Z  is the upper percentile of standard normal variate.  

5. Result and Discussion 
The COVID 19 is a worldwide pandemic disease that occurred in Nepal, causing severe acute 
respiratory syndrome. COVID 19's various waves are on display all over the world. The syndrome of 
the second wave of the COVID-19 pandemic was commonly observed in Nepal during the first week 
of April. The death rate in Nepal was high following the second wave of COVID 19. The number of 
death cases in Nepal on the first day of April was only one; however, this situation has steadily 
increased, and by the end of the 14th of May, the number of deaths in Nepal was 203 per day. As a 
result, this study concentrated on the prediction of deaths in Nepal after starting with the second wave 
(1st April to 14th May). The data (at least one death per day from 1st April to 14th May) were 
reported in the following (Government of Nepal Ministry of Health and Population, 2021). 
(1, 1, 4, 2, 1, 1, 13, 5, 3, 5, 4, 5, 8, 8, 11, 10, 5, 5, 14, 28, 12, 18, 17, 35, 33, 19, 27, 37, 55, 58, 54, 50, 
53, 88, 139, 225, 168, 214, 203) 

Table 2: The summary of number of death due to COVID 19 

Statistical Measure Minimum 
1Q  Median Mean 

3Q  Maximum 

Number of deaths 1 5 14 43 52 225 
 

From the finding on the average 43 person/day died in Nepal due to COCID 19 second wave. The 
shape of the data was highly skewed (box plot) and can be predicted by an alternative probability 
model (TTT plot). Hence, this data has been predicted from our proposed model (EMOE).  

 
Figure 2: Box plot (left panel) and TTT plot (right panel) 
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5.2 Parameter Estimation 
We have computed the ML estimates by maximizing the log-likelihood function given in 

equation (30) directly using optim () function in R software, Braun et al. (2016), R Core Team (2020). 

Finally, we have to present the value of   ˆ ˆˆ ,  and     with standard error (SE) (Table 3). 

Table 3: Estimated value of parameters 
Parameters MLEs SE p-value 

̂  0.00728 0.00549 0.185 

̂  0.09596 0.11430 0.401 

̂  1.16686 0.47487 0.014 

5.3. Model Validation  

The probability-probability (P-P) plots and quantile -quantile (Q-Q) plots can be inspected to 
verify the model either valid or not. The Q-Q plot may provide information about the lack-of-fit at the 
tails of the distribution, whereas the P-P plot emphasizes the lack-of-fit. Therefore, proposed model 
has good fit of theoretical distribution versus empirical distribution in both plots (Fig 2).

 

Fig 2:  P-P plot (left panel) and Q-Q plot (right panel) of proposed model 

Further, validation of the model, we compute the Kolmogorov-Smirnov (KS), Anderson Darling and 
Cramer-von Mises test. It measured distance between the Empirical Distribution Function (edf) and 
fitted distribution function. The, p-value of KS test, 2A  test and Cramer-von Mises test was 0.752 (D 
= 0.10811), 0.8273 (D = 0.42053) and 0.8824(D = 0.049439) respectively. Hence, p-value > 0.05 of 
each statistics indicates that it supports the null hypothesis of goodness of fit. Hence, proposed model 
satisfactorily fits for further data analysis, Kumar and Ligges (2011). 

5.4 Prediction of Death Rate 
The proposed model is appropriate for predicting the death rate of Nepal as a result of the 

COVID 19 second wave. Therefore, we must use the proposed model to predict the various mortality 
rates. The daily mortality rate was predicted by our proposed model is high (94.61%). As a result, if 
the current situation persists, there is a high risk of up to 150 people dying per day in Nepal (Table 4). 

 

Table 4: Prediction of death rate due to COVID 19 second wave in Nepal 

Number of deaths 050 50100 100150 150200 200250 250300 
Probability 0.7940 0.1106 0.04154 0.02071 0.01177 0.00719 
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COVID 19 second wave. Therefore, we must use the proposed model to predict the various mortality 
rates. The daily mortality rate was predicted by our proposed model is high (94.61%). As a result, if 
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5.5 Model Comparisons 
We have considered four alternative models named Generalized Inverted Generalized 

Exponential (GIGE) by Oguntunde et al. [20], Exponentiated Half Logistic Exponential (EHLE) by 
Almarashi et al. [2], Exponentiated Generalized Inverted Exponential (EGIE) by Oguntunde et al. 
[25], Half Logistic Exponential (EHLE) by Almarashi et al. [1] and Exponentiated Inverse Rayleigh 
(EIR) by [28]. These models are compared with proposed model (MMOE) by Akaike Information 
Criterion (AIC), Corrected Akaike Information Criterion (CAIC) and Bayesian information criterion 
(BIC) and value of log-likelihood. 

AIC= ˆ2 ( ) 2k  ; BIC= ˆ2 ( ) log( )k n    and  CAIC=
2 ( 1)

1
k kAIC

n k



 

 

Where k is the number of parameters in the model and n is total sample under consideration. 

Here, the parameters are determined by the optim ( ) function of each model from R software and 
determine the values of Log-likelihood, AIC, BIC and CAIC. The least value of each finding shows 
the better fit as compare to other models. As a result, the intended model is satisfactory model among 
several models (Table 4). 

Table 4: Comparing the value of Log-likelihood, AIC, BIC and CAIC  

Models ̂  ̂  ̂  ̂  ˆ( )  AIC BIC CAIC 

GIGE 0.5785 
 

2.2031p 
 

- 1.6003 
 

-181.4761  
 

368.9522 
 

373.9428 369.6379 

EIR 0.21421  
 

- 1.54827q 
 

- -184.4011  
 

372.8021 
 

376.1293 273.1354 

EGIE 0.67672 
 

24.75149 
 

- 0.05817 
 

-180.1067 
 

366.2134 
 

371.2058 366.8991 

EHLE 0.01015 
 

0.48769 
 

- 1.87052 
 

-182.6091 
 

371.2182 
 

376.2088 371.9046 

EMOE 0.00728 0.09596 1.16686 - -178.1595  362.3191 367.3096 367.9953 
q = , p = γ 
Likewise, we compared the estimated cdf of the intended model with the estimated cdf of the 

GIGE, EIR, EGIE and HLE distributions. Again, we plot the estimated pdf of the intended model with 
the estimated pdf of these well-known distributions. In both cases, our intended model fits perfectly 
than all other distributions. As a result, the intended model is an alternative model for real data 
modeling in various fields, which has tremendous upside (Fig 3). 

 
Figure 3: Estimated fitted cdfs with edf (left panel) and estimated fitted pdf (right panel)  
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Conclusion: 
In this study, we proposed a new three-parameter probability distribution called the 

Exponentiated Marshall-Olkin Exponential (EMOE) distribution. Some of the important properties of 

the distribution, namely quintile; asymptotic behavior, moments, residual life function; R`enyi and q 

entropy; probability weighted moments and order statistic are investigated of intended model. The 

value of parameters of proposed model of death rate of COVID 19 in Nepal is estimated by maximum 

likelihood methods with its confidence interval. We have predicted the mortality rate per day will go 

as high as up to 150 in Nepal. Therefore, government have to focus on the improvement the health 

situation of Nepal. From the data analysis (graphical as well as numerical), it is observed that 

proposed distribution has precisely fitted than others some well-known distribution. Hence, the 

proposed model is satisfactory model for prediction the mortality rate of COVID 19 in Nepal. Hence 

it can be applied in skewed and non-normal data modeling and reliability analysis in different areas 

like as engineering, actuarial, environmental science, medical sciences, biological studies, 

demography, economics and others.  

Appendix –A (Element of Observed Information Matrix) 
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1.  Introduction 

In 1922, S. Banach [2] established a fixed point theorem in complete metric space, which is famous 
now as Banach contraction principle. This principle has been generalized and extended by several authors 
and has wide applications in the field of pure and applied mathematics. In 2000, P. Hitzler and A.K. Seda 
[4] obtained a generalization of topology which they named as dislocated topology. The corresponding 
generalized notion of metric was the dislocated metric. The concept of dislocated metric space was 
appeared in [8] by S. G. Matthews in 1986 under the name of metric domains. In 2002, A. Branciari [3] 
obtained a fixed point theorem for a map satisfying contractive condition of integral type with a summable 
Lebesgue integrable mapping in a complete metric space has been an interesting area of research. B.E 
Rhoades [9] extended the theorem of Banciari [3] with a most general contractive condition.  

The purpose of this paper is to establish some results for integral and rational type contractive 
conditions for two pairs of maps with E.A. property for coincidence point results and with CLR property for 
weakly compatible maps for common fixed point results. Our results extend some fixed point theorems in 
the literature in the setting of dislocated metric space. 

 
2.  Preliminaries 
 

We start with the following definitions, lemmas and theorems.  
 
Definition 1 [4] Let   be a non empty set and let             be a function satisfying the following 
conditions:   

    1.         =        
    2.        =        = 0 implies      
    3.  d(x, y)   d(x, z) + d(z, y) for all x, y, z   X.  

Then d is called dislocated metric (or d-metric) on X and the pair (X, d) is called the dislocated metric space 
(or d-metric space).  


