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Abstract: This study is based on a case study research design. The approach for the study is adapted from 
Monte-Carlo simulation models. The study model can fit a finite number of patients who can join in the 
queue in different counters and performance of the selected counter in a particular time. The data are 
collected through direct observation with the help of a checklist. Out of 150 patients, 50 patients are 
observed in each new, old, and reserved (ex-army Indian pensioner and health insurance policy holder) 
counter. Our main findings are mean number of patients waiting in queue, mean number of patients in the 
system, mean time of patient waiting in queue, the time spent by a patient in the system, Average time that 
the server is idle, the percentage of the time that the server is busy. The study concludes that the service 
provided in the old counter is satisfactory to some extent. The research has been come up with the model 
design to estimate patients demand in the counters and it uses mean arrival time and mean service time. 
 

Keywords: Inter-arrival time; Service time; Queueing simulation; Monte-Carlo simulation 
 

1. Introduction 
Study of queueing systems and their characteristics in different frameworks began from the work 

done by various researchers from time to time. Its history goes back to more than ten decades. A paper on 
the topic Waiting time and number of calls by Johannsen was published in the year 1907. It was reprinted 
in Occice Electrical Engineers Journal from Landon in October 1910 is assumed to be the very first paper 
in queueing theory. But it was found to have some mathematical errors. Thus, A. K. Erlang was the first 
person to study the problem of telephone networks in terms of queueing theory and he is called the father 
of queue [4, 13, 16, 21]. Kleinrock [13] started with query how much time did you spent in waiting line in 
this week. It seems, we cannot escape frequent delays and they are getting progressively worse. In his 
book, he explain the phenomena of standing, waiting and serving, and necessity of study queueing theory. 
He explained global picture of where queueing system arise and why they are important. Entertaining 
examples are provided for attraction on reader. 
Jazwinski [11] presented a unified treatment of linear and non-linear filtering theory for engineers and with 
sufficient emphasis on applications to enable the reader to use the theory. In attempting to fill the stated 
needs, the author has retained as much mathematical rigor as he felt was consistent with the prime 
objective to explain the theory to engineers. As a result, the author only requires of the reader background 
in advanced calculus, theory of ordinary differential equations and matrix analysis. Kumar [14] examined a 
WIMAX simulation model design with OPENET modeler 14 to measure the delay, load and the throughput 
performance factors. Haghighinejad [8] aimed to determine the number of patients who are waiting and 
waiting time in emergency department services in an Iranian hospital emergency department and to propose 
scenarios to reduce its queue and waiting time. For 30 days revealed that a total of 4088 patients left the 
emergency department after being served and 1238 patients waited in the queue for admission in the 
emergency department (actually these patients received services out of their defined capacity). The first 
scenario result in the number of beds had to be increased from 81 to 179 in order that the number waiting 
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of the server become almost zero. On the other side, limit hospitalization time in the emergency department 
bed area to the third quartile of the serving time distribution could decrease the number waiting to 586 
patients. Similarly, Qing et al. [17] studied healthcare units in many hospitals face challenges of the 
increased operation cost, shortage of qualified medical staff, and limited hospital facilities. Walled [1] 
identified  unbalance  between  limited  resources  and  increasing  demands  is  the main reason leading to 
overcrowding in many units of hospitals. 

In the field of computer engineering and design, Bhanot [7] described the supercomputer. In 
marine engineering Santos [20] described a probabilistic methodology they have developed to assess 
damaged ship survivability based on Monte-Carlo simulation. He used Monte-Carlo simulation in 
aerospace engineering to geometrically model in an entire spacecraft and its payload by using the integral 
mass model. Claude [18] introduced simulation, point wise presented advantages and disadvantages of 
simulation, listed future limitations to those mentioned by author. Similarly, Rarita [19] tackled a numerical 
package for the simulation of general queueing systems, implemented with mathematica is described on the 
other hand Goswami [6] studied balking and reneging in finite buffer discrete time single server queue with 
single and multiple working vacations. Its main theme is to avoid balking and reneging which immediately 
effect to optimize the revenue. Kleijnen [12] surveyed optimization of simulated systems. The survey 
reflects the author extensive experience with simulation of optimization through kriging (or Gaussian 
process) meta-models analyzed through parametric bootstrapping for deterministic and random simulation 
and distribution free boots trapping (or resampling) for random simulation. Alenany and Ei-Baz [3] 
analyzed the flow of different classes of patients into a hospital is modeled and studied by using the 
queueing network analyzer (QNA) algorithm and discrete event simulation.  Input data for QNA are the 
rate and variability parameters of the arrival and service times in addition to the number of servers in each 
facility. Patient flows mostly match real flow for a hospital in Egypt. 

Seyed [9] studied the main reliability analysis challenges in mining machinery by comparing two 
analytical methods and a simulation approach. In this scenario, the maintenance data from a fleet of face 
drilling rigs in Swedish underground metal mine were extracted by the MAXIMO system over a period of 
two years and were applied for analysis. This investigation reveals that the performance of these 
approaches in ranking and the reliability of the studies of the machines is different. However, all mentioned 
methods provide similar outputs but, in general, the simulation estimates the reliability of the studied 
machines at a higher level. Raheel [15] noted applications of simulation model for block chain system in 
different e-field. It described a queueing theory based model proposed for understanding the working and 
theoretical aspects of the block-chain. In his study he tried to validate his proposed model using the actual 
statistics of two popular crypto currencies, bit coin and ethereum, by running simulations for two months of 
transaction. Obtained performance measures parameters such as the number of transactions per block, 
mining time of each block, system throughput, memory pool count, waiting time in memory pool, number 
of unconfirmed transactions in the whole system, total number of transactions, and number of generated 
blocks, these values have been compared with actual statistics. Adeniran [2] deliberated single server queue 
system (M/M/1) which occur if arrival and service rate is Poisson distributed and Multi-server queue 
system which comprises of single queue many servers (M/M/c) queue with Poisson servers. Deepti [5] 
assumed M/M/R queue with multivariate gamma prior distribution of arrival and service and applying the 
Markov chain Monte-Carlo method. Huang [10] develops two models and includes eight formulas to 
calculate the results. They validate their model by the simulation data and verify the results by the Monte-
Carlo simulation method. 

In this paper some essential performance measures have been obtained by using Monte-Carlo 
simulation. The Monte-Carlo simulation best fits in this study in the sense that arrival of the patients are 
random, queue formed is not systematic and patients join the queue and leave the queue haphazardly which 
demonstrates the queueing system confusion and no conventional queueing model formulas can handle the 
problem. The simulation is the technique of solving the problem by the use of data collection which cannot 
be solve by any conventional mathematical formulation. For this purpose the random numbers have been 
used under the probabilistic character of random variable. 

 
 

Nepal Journal of Mathematical Sciences (NJMS),  Vol.2, No. 2 , 2021 (August): 23-34 
 

25 
 

 

2. Notation Used 
  Arrival rate 

  Service rate 

   System utilization 

     Average number of customers in the system 
   Average number of customers waiting for service in the queue 

   Average time an arriving customers has to wait in the system 
   Average time an arriving customers has to wait in the queue before being served 

    Probability of no customer in the system 
 

3. Methodology 
First ticket is provided to the first patient who comes to the counter first. Counter for coupon of 

new and old patient (except emergency) open from 7:00 am to 12:30 pm which we exclude in our study. 
There are three server for serving tickets to the patient. These three service counter provides ticket for new, 
old and privileged patient (Indian pensioner police, army and employees of Manipal Hospital and patient 
who have to take insurance policy of Nepal government). Ticket counters are open from 8:30 am to 2:00 
pm and other service counters like as doctor’s clinic, laboratory open from 9:00 am to 4:00 pm. We have 
collected data by which information on a phenomenon is gathered through observation. This observation 
involves present information of primary source. The best tool for the observations in our study is preparing 
checklist by direct observations. We use a cluster sampling where we took a random sample of groups or 
cluster of patients at Manipal Teaching Hospital between 8:30 AM to 12:30 PM at 2017-12-18 by 
observation of three ticket counters. 

Monte-Carlo simulation is an experiment on chance so we use probability as well as random 
number. After getting result, we take decision under uncertainty. To understand this technique, this is break 
down into three steps as follows. 
(i) We established cumulative distribution table. 
(ii) Generate random numbers for arrival and service time distribution. 
(iii) Preparing solution table that provides us certain desired results. 
 

4. Data Analysis and Result Discussion 
We go through a single queue system. We consider a server model with eight different inter arrival 

time between 1 and 31 minute. The probability of each time interval is of length corresponding inter arrival 
time and we use random numbers to generate customer arrival, that present in following probability 
distribution (P. d.) table. 

     

Table 1:  P. d. of inter arrival time of counter A  Table 2:  P. d. table of service time in counter A 

Inter A. P C. P. I S. T. P C. P. I 
1 0.38 0.38 0.00-0.37 1 0.12 0.12 0.00-0.11 

2 0.24 0.62 0.38-0.61 2 0.28 0.4 0.12-0.39 

3 0.22 0.84 0.62-0.83 3 0.26 0.66 0.40-0.65 

4 0.06 0.9 0.84-0.89 4 0.16 0.82 0.66-0.81 

5 0.04 0.94 0.90-0.93 5 0.06 0.88 0.82-0.87 

6 0.02 0.96 0.94-0.95 6 0.06 0.94 0.88-0.93 

7 0.02 0.98 0.96-0.97 9 0.04 0.98 0.94-0.97 

31 0.02 1 0.98-0.99 11 0.02 1 0.98-0.99 
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increased operation cost, shortage of qualified medical staff, and limited hospital facilities. Walled [1] 
identified  unbalance  between  limited  resources  and  increasing  demands  is  the main reason leading to 
overcrowding in many units of hospitals. 

In the field of computer engineering and design, Bhanot [7] described the supercomputer. In 
marine engineering Santos [20] described a probabilistic methodology they have developed to assess 
damaged ship survivability based on Monte-Carlo simulation. He used Monte-Carlo simulation in 
aerospace engineering to geometrically model in an entire spacecraft and its payload by using the integral 
mass model. Claude [18] introduced simulation, point wise presented advantages and disadvantages of 
simulation, listed future limitations to those mentioned by author. Similarly, Rarita [19] tackled a numerical 
package for the simulation of general queueing systems, implemented with mathematica is described on the 
other hand Goswami [6] studied balking and reneging in finite buffer discrete time single server queue with 
single and multiple working vacations. Its main theme is to avoid balking and reneging which immediately 
effect to optimize the revenue. Kleijnen [12] surveyed optimization of simulated systems. The survey 
reflects the author extensive experience with simulation of optimization through kriging (or Gaussian 
process) meta-models analyzed through parametric bootstrapping for deterministic and random simulation 
and distribution free boots trapping (or resampling) for random simulation. Alenany and Ei-Baz [3] 
analyzed the flow of different classes of patients into a hospital is modeled and studied by using the 
queueing network analyzer (QNA) algorithm and discrete event simulation.  Input data for QNA are the 
rate and variability parameters of the arrival and service times in addition to the number of servers in each 
facility. Patient flows mostly match real flow for a hospital in Egypt. 

Seyed [9] studied the main reliability analysis challenges in mining machinery by comparing two 
analytical methods and a simulation approach. In this scenario, the maintenance data from a fleet of face 
drilling rigs in Swedish underground metal mine were extracted by the MAXIMO system over a period of 
two years and were applied for analysis. This investigation reveals that the performance of these 
approaches in ranking and the reliability of the studies of the machines is different. However, all mentioned 
methods provide similar outputs but, in general, the simulation estimates the reliability of the studied 
machines at a higher level. Raheel [15] noted applications of simulation model for block chain system in 
different e-field. It described a queueing theory based model proposed for understanding the working and 
theoretical aspects of the block-chain. In his study he tried to validate his proposed model using the actual 
statistics of two popular crypto currencies, bit coin and ethereum, by running simulations for two months of 
transaction. Obtained performance measures parameters such as the number of transactions per block, 
mining time of each block, system throughput, memory pool count, waiting time in memory pool, number 
of unconfirmed transactions in the whole system, total number of transactions, and number of generated 
blocks, these values have been compared with actual statistics. Adeniran [2] deliberated single server queue 
system (M/M/1) which occur if arrival and service rate is Poisson distributed and Multi-server queue 
system which comprises of single queue many servers (M/M/c) queue with Poisson servers. Deepti [5] 
assumed M/M/R queue with multivariate gamma prior distribution of arrival and service and applying the 
Markov chain Monte-Carlo method. Huang [10] develops two models and includes eight formulas to 
calculate the results. They validate their model by the simulation data and verify the results by the Monte-
Carlo simulation method. 

In this paper some essential performance measures have been obtained by using Monte-Carlo 
simulation. The Monte-Carlo simulation best fits in this study in the sense that arrival of the patients are 
random, queue formed is not systematic and patients join the queue and leave the queue haphazardly which 
demonstrates the queueing system confusion and no conventional queueing model formulas can handle the 
problem. The simulation is the technique of solving the problem by the use of data collection which cannot 
be solve by any conventional mathematical formulation. For this purpose the random numbers have been 
used under the probabilistic character of random variable. 
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cluster of patients at Manipal Teaching Hospital between 8:30 AM to 12:30 PM at 2017-12-18 by 
observation of three ticket counters. 

Monte-Carlo simulation is an experiment on chance so we use probability as well as random 
number. After getting result, we take decision under uncertainty. To understand this technique, this is break 
down into three steps as follows. 
(i) We established cumulative distribution table. 
(ii) Generate random numbers for arrival and service time distribution. 
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4. Data Analysis and Result Discussion 
We go through a single queue system. We consider a server model with eight different inter arrival 

time between 1 and 31 minute. The probability of each time interval is of length corresponding inter arrival 
time and we use random numbers to generate customer arrival, that present in following probability 
distribution (P. d.) table. 

     

Table 1:  P. d. of inter arrival time of counter A  Table 2:  P. d. table of service time in counter A 

Inter A. P C. P. I S. T. P C. P. I 
1 0.38 0.38 0.00-0.37 1 0.12 0.12 0.00-0.11 

2 0.24 0.62 0.38-0.61 2 0.28 0.4 0.12-0.39 

3 0.22 0.84 0.62-0.83 3 0.26 0.66 0.40-0.65 

4 0.06 0.9 0.84-0.89 4 0.16 0.82 0.66-0.81 

5 0.04 0.94 0.90-0.93 5 0.06 0.88 0.82-0.87 

6 0.02 0.96 0.94-0.95 6 0.06 0.94 0.88-0.93 

7 0.02 0.98 0.96-0.97 9 0.04 0.98 0.94-0.97 

31 0.02 1 0.98-0.99 11 0.02 1 0.98-0.99 
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For service, we consider a server model with eight different service time between 1 and 11 unit minute 
time.  The  probability  of  each  length  of  service  time  is  corresponding inter arrival time (i. a. t.) and  
we  use random numbers (r. n.) to generate customer getting service that present in following probability 
distribution table. Counter for coupon opened at 7:00 A. M., first patient arrived at 7:25 A. M. and has 
been waiting for ticket where ticket counter will opened at 8:30 A. M.  Hospital counter provide ticket to 
patient till 12.00 noon, but here counter A was opened at 8: 35 A. M. (i.e. 5 minute later). In our study 
we excluded the condition of coupon counter. 
 

Table 3 R. n. for inter arrival of server A  Table 4 R. n. for inter arrival of server A 

84 94 56 58        73 91 9 8 4 87 
77 93 50 83 78 97 30 1 52 71 
12 95 66 38 95 84 18 5 98 66 
43 20 4 34 59 9 57 8 77 81 
46 80 61 84 39 90 2 5 43 77 
66 51 49 15 86 94 72 9 95 37 
4 33 40 89 85 25 50 4 40 79 
75 24 10 99 42 72 46 3 50 13 
95 3 62 75 4 76 24 5 9 96 
31 48 28 18 93 79 1 95 74 28 

 
Table 5 Solution table by Monte-Carlo simulation method of probability distribution table 1 and 2. 

R. N I. A. T       A. T.      S. S.    R. N.  S. T.          S.E. W. T.        S. I. T. (    N. W. L     

84 4 8:31 8:35 91 6 8:41 4 -        0 

77 3 8:34 8:41 97 9 8:50 7 - 1 

12 1 8:35 8:50 84 5 8:55 15 - 1 

43 2 8:37 8:55 9 1 8:56 18 - 1 

46 2 8:39 8:56 90 6 9:02 17 - 1 

66 3 8:42 9:02 94 9 9:05 20 - 1 

4 1 8:43 9:05 25 2 9:07 22 - 1 

75 3 8:46 9:07 72 4 9:11 21 - 1 

95 6 8:52 9:11 76 4 9:15 19 - 1 

31 1 8:53 9:15 79 4 9:19 22 - 1 

94 6 8:59 9:19 9 1 9:20 20 - 1 

93 5 9:04 9:20 30 2 9:22 16 - 1 

95 6 9:10 9:22 18 2 9:24 12 - 1 

20 1 9:11 9:24 57 3 9:27 13 - 1 

80 3 9:14 9:27 2 1 9:28 13 - 1 

51 2 9:16 9:28 72 4 9:32 12 - 1 

33 1 9:17 9:32 50 3 9:35 15 - 1 

24 1 9:18 9:35 46 3 9:38 17 - 1 

3 1 9:19 9:38 24 2 9:40 19 - 1 

48 2 9:21 9:40 1 1 9:41 19 - 1 
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56 2 9:23 9:41 88 6 9:47 18 - 1 

50 2 9:25 9:47 10 1 9:48 22 - 1 

66 3 9:28 9:48 58 3 9:51 20 - 1 

4 1 9:29 9:51 83 5 9:56 22 - 1 

61 2 9:31 9:56 5 1 9:57 25 - 1 

49 2 9:33 9:57 92 6 10:03 24 - 1 

40 2 9:35 10:03 45 3 10:06 28 - 1 

10 1 9:36 10:06 30 2 10:08 30 - 1 

62 3 9:39 10:08 54 3 10:11 29 - 1 

28 1 9:40 10:11 95 9 10:20 31 - 1 

58 2 9:42 10:20 4 1 10:21 38 - 1 

83 3 9:45 10:21 52 3 10:24 36 - 1 

38 2 9:47 10:24 98 1 10:25 37 - 1 

34 1 9:48 10:25 77 4 10:29 37 - 1 

84 4 9:52 10:29 43 3 10:32 37 - 1 

15 1 9:53 10:32 95 9 10:41 39 - 1 

89 4 9:57 10:41 40 3 10:44 44 - 1 

99 31 10:2 10:44 50 3 10:47 16 - 1 

75 3 10:3 10:47 9 1 10:48 16 - 1 

18 1 10:3 10:48 74 4 10:52 16 - 1 

73 3 10:3 10:52 87 4 10:56 17 - 1 

78 3 10:3 10:56 71 4 11:00 18 - 1 

96 7 10:4 11:00 66 4 11:04 15 - 1 

59 2 10:4 11:04 81 4 11:08 17 - 1 

39 2 10:4 11:08 77 4 11:12 19 - 1 

86 4 10:5 11:12 37 2 11:14 19 - 1 

85 4 10:5 11:14 79 4 11:18 17 - 1 

42 2 10:5 11:18 13 2 11:20 19 - 1 

4 1 11:0 11:20 96 9 11:29 20 - 1 

93 5 11:0 11:29 28 2 11:31 24 - 1 

 ∑  =158    ∑  =182  ∑  =1070 ∑  =0 ∑  =49 
 

Where S. S. = service start, S. T. = service time, S. E. = service end,  

     N. C. W. = no. of customer waiting in line & N = 50. 

(i) Average waiting time for a customer in queue = ∑        
        minutes 

(ii) Average service time for a customer in queue  = ∑       
        minutes 

(iii) Average inter arrival time for a customer in queue  = ∑       
        minutes 
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95 6 8:52 9:11 76 4 9:15 19 - 1 

31 1 8:53 9:15 79 4 9:19 22 - 1 

94 6 8:59 9:19 9 1 9:20 20 - 1 

93 5 9:04 9:20 30 2 9:22 16 - 1 

95 6 9:10 9:22 18 2 9:24 12 - 1 

20 1 9:11 9:24 57 3 9:27 13 - 1 

80 3 9:14 9:27 2 1 9:28 13 - 1 

51 2 9:16 9:28 72 4 9:32 12 - 1 

33 1 9:17 9:32 50 3 9:35 15 - 1 

24 1 9:18 9:35 46 3 9:38 17 - 1 

3 1 9:19 9:38 24 2 9:40 19 - 1 

48 2 9:21 9:40 1 1 9:41 19 - 1 
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56 2 9:23 9:41 88 6 9:47 18 - 1 

50 2 9:25 9:47 10 1 9:48 22 - 1 

66 3 9:28 9:48 58 3 9:51 20 - 1 

4 1 9:29 9:51 83 5 9:56 22 - 1 

61 2 9:31 9:56 5 1 9:57 25 - 1 

49 2 9:33 9:57 92 6 10:03 24 - 1 

40 2 9:35 10:03 45 3 10:06 28 - 1 

10 1 9:36 10:06 30 2 10:08 30 - 1 

62 3 9:39 10:08 54 3 10:11 29 - 1 

28 1 9:40 10:11 95 9 10:20 31 - 1 

58 2 9:42 10:20 4 1 10:21 38 - 1 

83 3 9:45 10:21 52 3 10:24 36 - 1 

38 2 9:47 10:24 98 1 10:25 37 - 1 

34 1 9:48 10:25 77 4 10:29 37 - 1 

84 4 9:52 10:29 43 3 10:32 37 - 1 

15 1 9:53 10:32 95 9 10:41 39 - 1 

89 4 9:57 10:41 40 3 10:44 44 - 1 

99 31 10:2 10:44 50 3 10:47 16 - 1 

75 3 10:3 10:47 9 1 10:48 16 - 1 

18 1 10:3 10:48 74 4 10:52 16 - 1 

73 3 10:3 10:52 87 4 10:56 17 - 1 

78 3 10:3 10:56 71 4 11:00 18 - 1 

96 7 10:4 11:00 66 4 11:04 15 - 1 

59 2 10:4 11:04 81 4 11:08 17 - 1 

39 2 10:4 11:08 77 4 11:12 19 - 1 

86 4 10:5 11:12 37 2 11:14 19 - 1 

85 4 10:5 11:14 79 4 11:18 17 - 1 

42 2 10:5 11:18 13 2 11:20 19 - 1 

4 1 11:0 11:20 96 9 11:29 20 - 1 

93 5 11:0 11:29 28 2 11:31 24 - 1 

 ∑  =158    ∑  =182  ∑  =1070 ∑  =0 ∑  =49 
 

Where S. S. = service start, S. T. = service time, S. E. = service end,  

     N. C. W. = no. of customer waiting in line & N = 50. 

(i) Average waiting time for a customer in queue = ∑        
        minutes 

(ii) Average service time for a customer in queue  = ∑       
        minutes 

(iii) Average inter arrival time for a customer in queue  = ∑       
        minutes 
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(iv) Average time that the server is idle = ∑     
     minute 

(v) Average number of customers waiting in queue  = ∑      
          

(vi)  The percentage of the time that the server is busy = ∑            
               

      Where    = total time spent in the system, N = total expected time (i.e., 205 minutes). 

(vii) Average time that a customer spent in the system = ∑    ∑  
      

      
       

         minutes 

   Similarly for counter B. 

        Table 6 P. d. table of inter arrival time in counter B 

I. A. T. P CP I 
1 0.32 0.32 0-31 
2 0.32 0.64 32-63 
3 0.22 0.86 64-85 
4 0.08 0.94 86-93 
5 0.02 0.96 94-95 
6 0.02 0.98 96-97 
21 0.02 1 98-99 

 

           Table 7 P. d. table of service time in counter B 
S. T  P CP I 

1 0.1 0.1 0-9 
2 0.14 0.24 10-23 
3 0.22 0.46 24-45 
4 0.22 0.68 46-67 
5 0.14 0.82 68-81 
6 0.06 0.88 82-87 
7 0.02 0.9 88-89 
8 0.06 0.96 90-95 

10 0.02 0.98 96-97 
14 0.02 1 98-99 

 

Counter for coupon open at 7:00 A.M. First customer arrive at 7:37 A.M. and wait for ticket where ticket 

counter will open at 8:34 A. M. Hospital counter provide ticket to patient till 12.30 PM. For our study our data 

involved only 50 patient, where patient till 12: 02PM were taken. 

Table 8 R. n. for inter arrival of server B  Table 9 R. n. of service time for server B 
9 58 13 21 44 95 42 89 49 72 

29 83 12 79 88 3 47 58 45 58 
64 65 70 33 22 40 88 80 45 30 
48 76 80 69 96 5 26 32 96 73 
88 69 14 14 14 98 23 28 25 30 
1 73 55 43 90 50 29 58 19 83 
7 79 50 6 31 72 55 93 32 37 

16 46 88 44 14 91 5 39 38 49 
27 38 34 82 88 15 27 80 8 43 

 

Table 10:  Solution table by Monte-Carlo simulation of probability distribution table 6 and 7 
R. N I. A. T     A.T. S.S. R. N. S. T.      S.E. W. T.      S. I. T.     N. W. L     

9 1 8:34 8:35 95 8 8:43 1 - 0 

29 1 8:35 8:43 3 1 8:44 8 - 1 

64 3 8:38 8:44 40 3 8:47 6 - 1 

48 2 8:40 8:47 5 1 8:48 7 - 1 

88 4 8:44 8:48 98 14 9:02 4 - 1 

1 1 8:45 9:02 50 4 9:06 17 - 1 

7 1 8:46 9:06 72 5 9:11 20 - 1 
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16 1 8:47 9:11 91 8 9:19 24 - 1 

27 1 8:48 9:19 15 2 9:21 31 - 1 

54 2 8:50 9:21 43 3 9:24 31 - 1 

58 2 8:52 9:24 42 3 9:27 32 - 1 

83 3 8:55 9:27 47 4 9:31 32 - 1 

65 3 8:58 9:31 88 7 9:38 33 - 1 

76 3 9:01 9:38 26 3 9:41 37 - 1 

69 3 9:04 9:41 23 2 9:43 37 - 1 

73 3 9:07 9:43 29 3 9:46 36 - 1 

79 3 9:10 9:46 55 4 9:50 36 - 1 

46 2 9:12 9:50 5 1 9:51 38 - 1 

38 2 9:14 9:51 27 3 9:54 37 - 1 

50 2 9:16 9:54 79 5 9:59 38 - 1 

13 1 9:17 9:59 89 7 10:06 42 - 1 

12 1 9:18 10:06 58 4 10:10 48 - 1 

70 3 9:21 10:10 80 5 10:15 49 - 1 

80 3 9:24 10:15 32 3 10:18 51 - 1 

14 1 9:25 10:18 28 3 10:21 53 - 1 

55 2 9:27 10:21 58 4 10:25 54 - 1 

50 2 9:29 10:25 93 8 10:33 54 - 1 

88 4 9:33 10:33 39 3 10:36 60 - 1 

34 2 9:35 10:36 80 5 10:41 61 - 1 

36 2 9:37 10:41 75 5 10:46 64 - 1 

21 1 9:38 10:46 49 4 10:50 68 - 1 

79 3 9:41 10:50 45 3 10:53 69 - 1 

33 2 9:43 10:53 45 3 10:56 70 - 1 
69 3 9:46 10:56 96 10 11:06 70 - 1 
14 1 9:47 11:06 25 3 11:09 79 - 1 
43 2 9:49 11:09 19 2 11:11 80 - 1 
6 1 9:50 11:11 32 3 11:14 81 - 1 

44 2 9:52 11:14 38 3 11:17 82 - 1 
82 4 9:56 11:17 8 1 11:18 81 - 1 
19 1 9:57 11:18 73 5 11:23 81 - 1 
44 2 9:59 11:23 72 5 11:28 84 - 1 

88 4 10:03 11:28 58 4 11:32 85 - 1 

22 1 10:04 11:32 30 3 11:35 88 - 1 

96 6 10:10 11:35 73 5 11:40 85 - 1 

14 1 10:11 11:40 30 3 11:43 89 - 1 

90 5 10:16 11:43 83 6 11:49 87 - 1 

31 1 10:17 11:49 37 3 11:52 92 - 1 
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(iv) Average time that the server is idle = ∑     
     minute 

(v) Average number of customers waiting in queue  = ∑      
          

(vi)  The percentage of the time that the server is busy = ∑            
               

      Where    = total time spent in the system, N = total expected time (i.e., 205 minutes). 

(vii) Average time that a customer spent in the system = ∑    ∑  
      

      
       

         minutes 

   Similarly for counter B. 

        Table 6 P. d. table of inter arrival time in counter B 

I. A. T. P CP I 
1 0.32 0.32 0-31 
2 0.32 0.64 32-63 
3 0.22 0.86 64-85 
4 0.08 0.94 86-93 
5 0.02 0.96 94-95 
6 0.02 0.98 96-97 

21 0.02 1 98-99 
 

           Table 7 P. d. table of service time in counter B 
S. T  P CP I 

1 0.1 0.1 0-9 
2 0.14 0.24 10-23 
3 0.22 0.46 24-45 
4 0.22 0.68 46-67 
5 0.14 0.82 68-81 
6 0.06 0.88 82-87 
7 0.02 0.9 88-89 
8 0.06 0.96 90-95 

10 0.02 0.98 96-97 
14 0.02 1 98-99 

 

Counter for coupon open at 7:00 A.M. First customer arrive at 7:37 A.M. and wait for ticket where ticket 

counter will open at 8:34 A. M. Hospital counter provide ticket to patient till 12.30 PM. For our study our data 

involved only 50 patient, where patient till 12: 02PM were taken. 

Table 8 R. n. for inter arrival of server B  Table 9 R. n. of service time for server B 
9 58 13 21 44 95 42 89 49 72 

29 83 12 79 88 3 47 58 45 58 
64 65 70 33 22 40 88 80 45 30 
48 76 80 69 96 5 26 32 96 73 
88 69 14 14 14 98 23 28 25 30 
1 73 55 43 90 50 29 58 19 83 
7 79 50 6 31 72 55 93 32 37 

16 46 88 44 14 91 5 39 38 49 
27 38 34 82 88 15 27 80 8 43 

 

Table 10:  Solution table by Monte-Carlo simulation of probability distribution table 6 and 7 
R. N I. A. T     A.T. S.S. R. N. S. T.      S.E. W. T.      S. I. T.     N. W. L     

9 1 8:34 8:35 95 8 8:43 1 - 0 

29 1 8:35 8:43 3 1 8:44 8 - 1 

64 3 8:38 8:44 40 3 8:47 6 - 1 

48 2 8:40 8:47 5 1 8:48 7 - 1 

88 4 8:44 8:48 98 14 9:02 4 - 1 

1 1 8:45 9:02 50 4 9:06 17 - 1 

7 1 8:46 9:06 72 5 9:11 20 - 1 

 
 

Nepal Journal of Mathematical Sciences (NJMS),  Vol.2, No. 2 , 2021 (August): 23-34 
 

29 
 

16 1 8:47 9:11 91 8 9:19 24 - 1 

27 1 8:48 9:19 15 2 9:21 31 - 1 

54 2 8:50 9:21 43 3 9:24 31 - 1 

58 2 8:52 9:24 42 3 9:27 32 - 1 

83 3 8:55 9:27 47 4 9:31 32 - 1 

65 3 8:58 9:31 88 7 9:38 33 - 1 

76 3 9:01 9:38 26 3 9:41 37 - 1 

69 3 9:04 9:41 23 2 9:43 37 - 1 

73 3 9:07 9:43 29 3 9:46 36 - 1 

79 3 9:10 9:46 55 4 9:50 36 - 1 

46 2 9:12 9:50 5 1 9:51 38 - 1 

38 2 9:14 9:51 27 3 9:54 37 - 1 

50 2 9:16 9:54 79 5 9:59 38 - 1 

13 1 9:17 9:59 89 7 10:06 42 - 1 

12 1 9:18 10:06 58 4 10:10 48 - 1 

70 3 9:21 10:10 80 5 10:15 49 - 1 

80 3 9:24 10:15 32 3 10:18 51 - 1 

14 1 9:25 10:18 28 3 10:21 53 - 1 

55 2 9:27 10:21 58 4 10:25 54 - 1 

50 2 9:29 10:25 93 8 10:33 54 - 1 

88 4 9:33 10:33 39 3 10:36 60 - 1 

34 2 9:35 10:36 80 5 10:41 61 - 1 

36 2 9:37 10:41 75 5 10:46 64 - 1 

21 1 9:38 10:46 49 4 10:50 68 - 1 

79 3 9:41 10:50 45 3 10:53 69 - 1 

33 2 9:43 10:53 45 3 10:56 70 - 1 
69 3 9:46 10:56 96 10 11:06 70 - 1 
14 1 9:47 11:06 25 3 11:09 79 - 1 
43 2 9:49 11:09 19 2 11:11 80 - 1 
6 1 9:50 11:11 32 3 11:14 81 - 1 

44 2 9:52 11:14 38 3 11:17 82 - 1 
82 4 9:56 11:17 8 1 11:18 81 - 1 
19 1 9:57 11:18 73 5 11:23 81 - 1 
44 2 9:59 11:23 72 5 11:28 84 - 1 

88 4 10:03 11:28 58 4 11:32 85 - 1 

22 1 10:04 11:32 30 3 11:35 88 - 1 

96 6 10:10 11:35 73 5 11:40 85 - 1 

14 1 10:11 11:40 30 3 11:43 89 - 1 

90 5 10:16 11:43 83 6 11:49 87 - 1 

31 1 10:17 11:49 37 3 11:52 92 - 1 
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14 1 10:18 11:52 49 4 11:56 94 - 1 

88 4 10:22 11:56 43 3 11:59 94 - 1 

96 21 10:43 11:59 24 3 12:02 76 - 1 

 ∑  =130    ∑   = 207  ∑   = 2676 ∑   = 0 ∑   = 49 
 

(i) Average waiting time for a customer in queue = 53.52 minutes 

(ii) Average service time for a customer in queue = 4.14 minutes 

(iii) Average inter arrival time for a customer in queue = 2.6 minutes 

(iv) Average time that the server is idle = 0 minute 

(v) Average number of customers waiting in queue = 0.98 

(vi) The  percentage  of  the  time  that  the  server  is  busy  =  88.08%  where  total  time  spent  in  the system = 

235 minutes & total expected time is 235 minutes. 

(vi) Average time that a customer spent in the system = 57.66 minutes 
 

Table 11 P. D. Table of I. Arrival Time in Counter C 

Inter A T P C. P. I 

1 0.38 0.38 00-37 

2 0.28 0.66 38-65 

3 0.18 0.84 66-83 

4 0.12 0.96 84-95 

6 0.02 0.98 96-97 

20 0.02 1 98-99 
 

      Table 12 P. D. Table of Service Time in Counter C  

S.T P C. P. I 

1 0.72 0.72 00-71 

2 0.14 0.86 72-85 

3 0.08 0.94 86-93 

5 0.04 0.98 94-97 

7 0.02 1 98-99 

    

Counter for coupon open at 7:00 A.M. First customer arrive at 7:25 A.M. and wait for ticket where ticket 

counter will open at 8:35 A. M. Hospital counter provide ticket to patient till 12.30 PM. In our data I used 

only 50 patient, where patient till 10:  41AM were taken. 
 

Table 13 Random Number of Arrival for Counter C  Table 14 Random Number of Service for Counter C 
 

59 12 67 53 82 54 50 23 28 89 

79 41 97 10 53 36 50 82 29 32 

45 56 31 71 13 34 58 87 60 85 

31 76 67 3 82 42 24 57 72 65 

42 33 31 41 15 15 49 54 45 31 

81 52 3 47 17 89 29 18 8 46 

99 54 24 54 57 18 31 86 15 28 

33 92 78 72 94 99 80 63 97 19 

89 3 3 79 79 36 16 6 85 12 

58 59 84 29 16 67 13 28 11 74 
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(vi) The  percentage  of  the  time  that  the  server  is  busy  =  88.08%  where  total  time  spent  in  the system = 

235 minutes & total expected time is 235 minutes. 

(vi) Average time that a customer spent in the system = 57.66 minutes 
 

Table 11 P. D. Table of I. Arrival Time in Counter C 

Inter A T P C. P. I 

1 0.38 0.38 00-37 

2 0.28 0.66 38-65 

3 0.18 0.84 66-83 

4 0.12 0.96 84-95 

6 0.02 0.98 96-97 

20 0.02 1 98-99 
 

      Table 12 P. D. Table of Service Time in Counter C  

S.T P C. P. I 

1 0.72 0.72 00-71 

2 0.14 0.86 72-85 

3 0.08 0.94 86-93 

5 0.04 0.98 94-97 

7 0.02 1 98-99 

    

Counter for coupon open at 7:00 A.M. First customer arrive at 7:25 A.M. and wait for ticket where ticket 

counter will open at 8:35 A. M. Hospital counter provide ticket to patient till 12.30 PM. In our data I used 

only 50 patient, where patient till 10:  41AM were taken. 
 

Table 13 Random Number of Arrival for Counter C  Table 14 Random Number of Service for Counter C 
 

59 12 67 53 82 54 50 23 28 89 

79 41 97 10 53 36 50 82 29 32 

45 56 31 71 13 34 58 87 60 85 

31 76 67 3 82 42 24 57 72 65 

42 33 31 41 15 15 49 54 45 31 

81 52 3 47 17 89 29 18 8 46 

99 54 24 54 57 18 31 86 15 28 

33 92 78 72 94 99 80 63 97 19 

89 3 3 79 79 36 16 6 85 12 

58 59 84 29 16 67 13 28 11 74 
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Table 15 Solution Table by Monte-Carlo Simulation of Probability Distribution Table 11 and 12 

R. N I. A. T      A.T. S.S. R. N. S. T.      S.E. W. T.      S. I. T.       N. W. L      
59 2 8:34 8:36 54 1 8:37 2 - - 

79 3 8:37 8:37 36 1 8:38 - - - 

45 2 8:39 8:39 34 1 8:40 - 1 - 

31 1 8:40 8:40 42 1 8:41 - - - 

42 2 8:42 8:42 15 1 8:43 - 1 - 

81 3 8:45 8:45 89 3 8:48 - 2 - 

99 20 9:05 9:05 18 1 9:06 - 17 - 

33 1 9:06 9:06 99 7 9:13 - - - 

89 4 9:10 9:13 36 1 9:14 3 - 1 

58 2 9:12 9:14 67 1 9:15 2 - 1 

12 1 9:13 9:15 50 1 9:16 2 - 1 

41 2 9:15 9:16 50 1 9:17 1 - 1 

56 2 9:17 9:17 58 1 9:18 - - 0 

76 3 9:20 9:20 24 1 9:21 - 2 - 

33 1 9:21 9:21 49 1 9:22 - - - 

52 2 9:23 9:23 29 1 9:24 - 1 - 

54 2 9:25 9:25 31 1 9:26 - 1 - 

92 4 9:29 9:29 80 2 9:31 - 3 - 

3 1 9:30 9:31 16 1 9:32 1 - 1 

59 2 9:32 9:32 13 1 9:33 - - - 

67 3 9:35 9:35 23 1 9:36 - 2 - 

98 6 9:41 9:41 82 2 9:43 - 5 - 

31 1 9:42 9:43 87 3 9:46 1 - 1 

67 3 9:45 9:46 57 1 9:47 1 - 1 

31 1 9:46 9:47 54 1 9:48 1 - 1 

3 1 9:47 9:48 18 1 9:49 1 - 1 

24 1 9:48 9:49 86 3 9:52 1 - 1 

78 3 9:51 9:52 63 1 9:53 1 - 1 

3 1 9:52 9:53 6 1 9:54 1 - 1 

84 4 9:56 9:56 28 1 9:57 - 2 - 

53 2 9:58 9:58 28 1 9:59 - 1 - 

10 1 9:59 9:59 29 1 10:00 - - - 
71 3 10:02 10:02 60 1 10:03 - 2 - 
3 1 10:03 10:03 72 2 10:05 - - - 

41 2 10:05 10:05 45 1 10:06 - - - 

47 2 10:07 10:07 8 1 10:08 - 1 - 



 32

 

 

Bharat Raj Wagle and Ram Prasad Ghimire / Performance Analysis of Service System in Health Care Network 
 

32 
 

54 2 10:09 10:09 15 3 10:12 - 1 - 

72 3 10:12 10:12 97 5 10:17 - - - 

79 3 10:15 10:17 85 2 10:19 2 - 1 

29 1 10:16 10:19 11 1 10:20 3 - 1 

82 3 10:19 10:20 89 3 10:23 1 - 1 

53 2 10:23 10:23 32 1 10:24 - - - 

13 1 10:24 10:24 85 2 10:26 - - - 

82 3 10:27 10:27 65 1 10:28 - 1 - 

15 1 10:28 10:28 31 1 10:29 - - - 

17 1 10:29 10:29 46 1 10:30 - - - 

57 2 10:31 10:31 28 1 10:32 - 1 - 

94 4 10:35 10:35 19 1 10:36 - 3 - 

79 3 10:38 10:38 12 1 10:39 - 2 - 

16 1 10:39 10:39 74 2 10:41 - - - 

 ∑  = 125    ∑  = 76  ∑  = 24 ∑  = 49 ∑  = 15 

(i) Average waiting time for a customer in queue = 0.48 minutes 

(ii)  Average service time for a customer in queue = 1.52 minutes 

(iii)  Average inter arrival time for a customer in queue = 2.5 minutes 

(iv)  Average time that the server is idle = 0.98 minute 

(v)  Average number of customers waiting in queue = 0.3 

(vi)  The percentage of the time that the server is busy = 32.34% where total time spent in the system 

= 76 minutes and total expected time is 235 minutes. 

(vii) Average time that a customer spent in the system = 2 minutes 

After manual calculation, we have arrival rate                 and service rate                     of 

the Counter A, B and C respectively. The real situation of the hospital in the study of three ticket counter 

seemed to have M/M/1 classical queueing model and we got performance of the queueing system by using 

conventional explicit formulas. 

 
Figure 1:  System Utilization vs arrival rate (A,B,C)       Figure 2:  System Utilization vs service rate (A,B,C) 

If system utilization (ρ) > 1 in a queue where either the inter-arrival or service time or both are random, 

the queue becomes unstable, i.e., the length of the queue and the wait become infinity. If both are 
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constants, ρ > 1 implies instability. Such queues need additional servers for stability. See 1 and 2. In this 

study instability condition occurred in ticket counter A and B because the check list prepared by 

observation in rush hours. Which seems on realistic but it is due to the fact that service rate is significantly 

greater than arrival rate. 

Figure 3:  A. t. in system vs arrival rate (Counter 3)     Figure 4: A. t.  wait in queue vs arrival rate (counter 3) 

 
            Figure 5:  A. t.  in system vs service rate (Counter3)    Figure 6:  P. of no customer vs arrival rate (counter3) 

From  fig.3  average  time  an  arriving  customers  spend  in  the  system  in  counter  C  is  decreasing  

when arrival rate of the customers is increasing.  In similar manner from fig.4 average time an arriving 

customers has to wait in the queue before being served initially increase up to 0.24 hours then decreasing 

when  arrival  rate  increasing.   There  is  more  pressure  in  rush  hours  in  counters  A  and  B,  so  there 

should be additional server for better performance of the system. 

5. Conclusion 
We restricted our study in tickets counters of the hospitals.  If we extend additional nodes (Dr.  

clinic, lab,  pharmacy,  etc.)  and  data  of  any  significant  days,  that  helps  identification  of  the  

bottleneck  of the system.  Our study being of an exploratory and interpretive nature by using obtained 

numerical results.  It raises a number of opportunities for future research that helps to enhance the 

performance of a system. 
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Abstract: The aim of the present research was to study the effect of magnetic field on the layer of 
electrically conducting couple-stress fluid heated from below in porous medium. Following the linearized 
stability theory, Boussinesq approximation and normal mode analysis, the dispersion relation is obtained. 
The stationary convection, stability of the system and oscillatory modes are discussed. For the case of 
stationary convection, it is found that the couple-stress parameter and magnetic field have stabilizing effect 
on the system whereas the medium permeability has a destabilizing effect on the system. The magnetic field 
introduces oscillatory modes in the system which was non-existent in its absence. A sufficient condition for 
the non-existent of overstability is also obtained.  

Keywords: Couple-stress fluid, Heated from below, Linearized stability theory, Normal mode analysis 
method, Porous medium, Uniform magnetic field   

1. Introduction 

A comprehensive account of thermal instability (Be′nard convection) in  a fluid layer, in the absence and 
presence of magnetic field has been summarized in the celebrated monograph by Chandrasekhar [3]. The 
use of the Boussinesq approximation has been made throughout, which states that the variations of density 
in the equations of motion can safely be ignored everywhere except in its association with the external 
force. The approximation is well justified in the case of incompressible fluids. Abdul-Bari and Al-Rubai [1] 
have studied the influence of Rayleigh-number in turbulent and laminar region in parallel-plate vertical 
channels. The influence of radiation on the unsteady free convection flow of a viscous incompressible fluid 
past a moving vertical plate with Newtonian heating has been investigated theoretically by Narahari and 
Ishak [10]. Admon et al. [2] have considered the unsteady free convection flow near the stagnation point of 
a three-dimensional body.  

The flow through porous media is of considerable interest for petroleum engineers, for geophysical fluid 
dynamicists and has importance in chemical technology and industry. An example in the geophysical 
context is the recovery of crude oil from the pores of reservoir rocks. The derivation of the basic equations 
of a layer of fluid heated from below in porous medium, using Boussinesq approximation, has been given 
by Joseph [5]. The study of a layer of fluid heated from below in porous media is motivated both 
theoretically and by its practical applications in engineering disciplines. Among the applications in 
engineering disciplines one can find the food process industry, chemical process industry, solidification and 
centrifugal casting of metals. The development of geothermal power resources has increased general 
interest in the properties of convection in porous medium. Lapwood [9] has studied the stability of 
convective flow in a porous medium using Rayleigh’s procedure. The Rayleigh instability of a thermal 
boundary layer in flow through a porous medium has been considered by Wooding [16]. When the fluid 
slowly percolates through the pores of the rock, the gross effect is represented by the well-known Darcy’s 
law. An extensive and updated account of convection in porous media has been given by Nield and Bejan 
[11]. The effect of a magnetic field on the stability of flow is of interest in geophysics, particularly in the 
study of Earth’s core where the Earth’s mantle, which consists of conducting fluid, behaves like a porous 
medium which can become convectively unstable as a result of differential diffusion. The other application 




