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1. Introduction 

There are certain problems in mathematics which looks very simple and understandable to wide range of 

peoples, but very difficult to solve, and no one has yet found the solution to them. These problems are quite 

interesting because it seems the prerequisites for understanding the statement of the problem are much lower 

than the prerequisites for working on the problem. One of such problems is the 3n+1 problem. This is a well-

known problem in elementary number theory, and it can be explained to a child who has learned how to 

divide by 2 and multiply by 3. The problem can be stated simply as follows: Take any positive integer n. If n 

is even, divide it by 2 to get  
n

2
 . If n is odd, multiply it by 3 and add 1 to get 3n+1. Repeat the process again 

and again. The conjecture associated to this problem is called Collatz conjecture or simply 3n +1 conjecture, 

and it asserts that, no matter what the number n is taken, the process will always eventually reach 1, that is, 

every positive integer is eventually periodic, and the cycle it falls onto is 1      .This conjecture is 

first proposed by Lothar Collatz in 1937. It is also known, the Ulam conjecture, the Kakutani’s problem, the 

Twaites conjecture, or the Syracuse problem. The problem looks very simple, but “mathematics has not been 

ready for such problems”, according to Paul Erdos [6]. He also offered US$500 for its solution [7]. Jeffrey 

Lagarias in 2010 claimed that, based only on known information about this problem, this is an 

extraordinarily difficult problem, completely out of research of present mathematics [10]. Therefore, the 

Collatz conjecture remains today unsolved problem of mathematics, as it has been for over 80 years. The 

interest in this problem extends past the area of Number Theory; including Computer Science, via algorithms 

to help compute and find patterns in our iteration, into Logic as decision problems, and Dynamical Systems, 

by examining our iteration as a dynamical system on set of integer‟s  . A systematic survey with variety of 

already established results about 3n +1 problem can be found in the work of Lagarias [9], [10], and 

Wirsching [21].The classical Collatz conjecture has been extensively studied by several researchers [5], [16].  
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In this paper, we more concentrate on the fact of extending this problem to holomorphic dynamics. The 

related research had been done first by Letherman et al. [13] in 1999 and a little bit more extension by 

Lakshminarayanan and Ramohan [11] in 2012.  

2. Mathematical Formulation of the 3n + 1 Problem 

We first define some useful functions and concepts to describe behaviour of the sequences and starting 

values in the 3n + 1 problem.  

Definition 2.1 (3n + 1 function): Let  represents the set of natural numbers. For any    , the 3n + 1 or 

Collatz function   f :   →   is defined by f (n) = 3n +1 if n is odd and f (n) =
n

2
  if n is even. In modular 

notation, function f can be written as f (n) = 3n +1 if n≡ 1(mod 2), and f (n) =
  

 
 if n ≡ 0 (mod 2).  

There are some terminologies which are defined by using 3n +1 function.  

The trajectory or orbit O
+
 (n) of n is the ordered set {n, f (n), f 

2
 (n), f 

3
 (n),⋯}, where f 

 i
 represents i

th
 

composition of f with itself, and it is usually known as i
th 

iterates of f. If |O
+
 (n)| = ∞, then O

+
 (n) is said to be 

a divergent trajectory. If |O
+
 (n)| = k < ∞ and f 

k 
(n) = n, then O

+
 (n) is said to be a cycle of length k. 

The number of steps needed to iterate below n: γ (n) = inf{k: f 
k 
(n) < n} is called the stopping time of n. The 

number of steps needed to iterate 1: σ (n) = inf {k: f 
k 
(n) = 1} is called the total stopping time. The largest 

number to which n iterates: h (n) = sup {f  
k 
(n): k    } is called the height of n. 

With these definitions, the 3n + 1 or Collatz conjecture is formulated as follows. 

Conjecture 2.1 (3n + 1 or Collatz conjecture):  For every n    , there exists a k     with f 
k
 (n) = 1.  

Conjecture 2.1 asserts that every n has a finite total stopping time. If, for some n, such a k doesn't exist, we 

say that n has infinite total stopping time and the conjecture is false. If the conjecture is false, it can only be 

because of there is some starting number which gives rise to a sequence that does not contain 1. Such a 

sequence would either enter a repeating cycle that excludes 1, or increase without bound. No such sequence 

has been found. 

Let ak = f 
k
 (n), then a0 = n, a1 = f (n) = f (a0), a2 = f (a1) =f 

2 
(n), and so on, with a0 ≥ 1. According to 

Conjecture 1.1, any n ≥ 1 would always eventually arrive at a i = 1 for some i = 1, 2, ⋯ after which it will 

stay in the cycle (1, 4, 2, 1) forever. For example, if we look at the starting values a0 = 1 to 9, we get the 

following sequences: 

a0= 1; {a0, a1, a3, ⋯} = {1, 4, 2, 1, ⋯}. 

a0= 2; {a0, a1, a3, ⋯} = {2, 1, ⋯}. 

a0= 3; {a0, a1, a3, ⋯} = {3, 10, 5, 16, 8, 4, 2, 1, ⋯}. 

a0= 4; {a0, a1, a3, ⋯} = {4, 2, 1, ⋯}. 

a0= 5; {a0, a1, a3, ⋯} = {5, 16, 8, 4, 2, 1, ⋯}. 

a0= 6; {a0, a1, a3, ⋯} = {6, 3, 10, 5, 16, 8, 4, 2, 1, ⋯}. 

a0= 7; {a0, a1, a3, ⋯} = {7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, ⋯}. 

a0= 8; {a0, a1, a3, ⋯} = {8, 4, 2, 1 ...}. 

a0= 9; {a0, a1, a3, ⋯} = {9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, ⋯}. 

However, when we look at a0 = 27, we get the following sequence: {a0, a1, a2, ⋯} = {27, 82, 41, 124, 62, 31, 

94, 47, 142, 71, 214, 107, 322, 161, 484,242,121, 364, 182, 91, 274, 137, 414, 206, 103, 310, 155, 466, 233, 
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700, 350, 175, 526, 263, ⋯}. Surprisingly, it takes 111 iterations to reach 1, and the largest number that we 

get in 77
th
 iterations is 9232. That is, σ (27) = 111, h (27) = 9232, and γ (27) =96. As we see in the above 

sequence, the number 9 has longest total stopping time 19 for all n     below 10. Likewise, below 100, 

number 97 has longest total stopping time 118; below 1000, number 871 has longest total stopping time 178; 

below 10000, number 6171 has longest total stopping time 261. Below 10
10

, number 9780657630 has 

longest total stopping time 1132[12], and for the numberless than 10
17

, 93571393692802302 has longest 

total stopping time 2091[17]. Until 2020, the conjecture has been checked by computer for all starting values 

upto 2
68

 ≈ 2.95×10
20

. Please note that the computer evidence is not a proof that the conjecture is true. As 

shown in the cases of the Pólya conjecture [15], the Mertens conjecture, and Skewes' number ([18], [19]), 

counterexamples were found when using very large numbers.  

Mathematically speaking, a (discrete) dynamical system is a state space X, together with a shift map f from X 

to itself. The iterates f, f 
2
, f

 3
, ⋯describe the dynamics of the system.  In the 3n +1 dynamical system, the 

state space is the set of natural numbers   = {1, 2, 3, ⋯} and the shift map is the 3n + 1 map f. The 3n +1 

conjecture 2.1 highlights the basic fact that even very simple equations can lead to amazingly complicated 

dynamics. In this paper, we behave 3n +1 problem as a discrete integer dynamics, and we see the latest 

results that are extended upto holomorphic dynamics. Lagarias [9] extended this problem to the set of 

rational numbers   by defining the maps: 

fk (x) = 
(3x +k)

2
  if x ≡ 1 (mod 2), and 

                                            fk (x) = 
x

2
 if x ≡ 0 (mod 2), where k ≡ ± 1 (mod 6), and (x, k) =1. 

 Tempkin [20] extended the 3n +1 problem to the set of real numbers   by defining the function: 

 f (x) = {
 (    )   (     )      [       ]    
(    )   (     )         [       ]    

                       (2.1) 

He proved that on each interval [n, n+1], n    , f has periodic points of every possible period. Chamberland 

studied similar extension to (2.1) by defining the function:  

               f (x) = 
x

2
  cos

2πx

2
  + 3x +

1

2
 sin

2πx

2
  = x + 

1

4
 – 

(2x +1)

4
  cos(π x)                  (2.2) 

He showed that any cycle on   must be locally attractive. This map has two attracting cycles, namely (1, 2) 

and (1.192531907⋯, 2.138656335⋯). Equivalent to 3n +1 problem, he conjecture that these are only two 

attracting cycle of f on   .  

Letherman et al. [13] extended the map (2.2) to the set of complex numbers   by defining the function:  

       f (z) = 
z

2
  + 

1

2
 (1–cos πz)





z + 

1

2
  +

1

 π
 




 

1

2
 – cos π z   sin πz  + h(z) sin

2
 πz        (2.3) 

for any entire holomorphic function h. Note that first two terms of (2.3) match with (2.2), and this function 

agrees on all integers with the 3n + 1 function. The map (2.3) is thus known as the holomorphic 3n + 1 

function. Conjecture 2.1 was reformulated by them in this context as follows.  

Conjecture 2.2(The holomorphic 3n + 1 conjecture): Iterating the function f of (2.3) on any positive integer 

will land at the number 1 after finitely many steps. 
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3. Dynamics of a Holomorphic Function 

In this section, we briefly review the notion of holomorphic dynamics. For more details, we refer [4], [8], 

[14].The main purpose of this section is to provide a general background for the dynamics of the 

holomorphic 3n +1 function (2.3) of Section 2. Note that our holomorphic 3n +1 function (2.3) is 

transcendental entire, so we mainly concern with results related to transcendental dynamics. 

Let f be a holomorphic function. We can define orbit and cycle of f as defined in Section 2. Note that   ( ) 

is well defined for all z except for a countable set which consists of the pole of f,              when f is 

meromorphic. The study of the iterative sequence (  ( )) for various initial state z is known as holomorphic 

dynamics. The major concern of holomorphic dynamics is to study the fate of these orbits in the sense that 

fate is predictable or not. That is, the goal of studying holomorphic dynamics is to describe the asymptotic or 

long term behaviour of the sequence(  ( )).The dynamics of a holomorphic map mostly concerns with a 

dichotomy of the complex plane    into disjoint subsets where the sequence  (  ( )) as n shows a 

normal or chaotic behaviour.  

A subset of   where  (  ( )) as n behaves normally (in the sense of Montel) is known as Fatou set F(f), 

and its complement is called Julia set J(f). A maximum domain of normality of the iterates of f, that is, a 

connected component of the Fatou set is known as a stable domain or Fatou component. Fatou set is open by 

definition, and so its complement Julia set is closed. A Fatou component is simply or multiply connected. 

The following assertions are about the simply connected Fatou components. 

Theorem 3.1: Let f be a transcendental entire function bounded on a curve Γ which tends to ∞. Then every 

component of F (f) is simply connected.   

Theorem 3.2: Every unbounded Fatou component of a transcendental entire function is simply connected.  

Theorem 3.3: Let f be a transcendental entire function such that F (f) contains an unbounded component D. 

Then every components of F (f) is simply connected. 

The dynamics of a holomorphic function, in large extent, is determined by the periodicity of a point. A point 

z is called periodic if   ( ) = z for some positive integer n. The smallest n is called its period. In particular, 

if f (z) = z, then z is called fixed point (or equilibrium position) of f. The point z is called pre-periodic (or 

eventually periodic) if     ( )    ( ) for some k, n > 0 and strictly pre-periodic if it is pre-periodic but 

not periodic. Let z is a periodic point of period n with (  ) (z) =  , where the prime (′) denotes the complex 

differentiation. The complex number   obtained in this way is called multiplier or eigenvalue. The point z is 

called attractive or stable (or super-attractive) if |   < 1 (or |  = 0), and in this case, nearby points are 

attracted to the orbit under iteration by f, repelling or unstable if |   >1 in which case, points close to the 

orbit move away, and indifferent (or neutral) if |  =1=       in which case, iteration of nearby points stay 

near z but not converge to z. When   is rational number (in this case      for some integer n), the periodic 

point is called parabolic (or rationally indifferent), and the nearby dynamics are completely known. When   

is irrational (in this case     ), the periodic point z is called irrationally indifferent, and there are certain 

values of  , where nearby dynamics is still not known. It is known that a non-constant and non-linear entire 

function has at least two periodic points of period 1 or 2. This fact is generalized to the following assertion. 

Theorem 3.4[3]: A (transcendental) entire function has infinitely many (repelling) periodic points of period 

n (or f 
n 
has infinitely many fixed points) for all n ≥ 2.  
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This assertion was first proved by Rosenbloom in 1948, and later it was corrected by adding „repelling‟ 

before periodic by Bergweiler in 1991. From Theorem 3.1, one can say that transcendental entire function 

need not have fixed points. For example, f (z) = e
 z
 + z has no fixed points. Also, transcendental entire 

function need have attracting periodic points. For example, f (z) = e 
z
 has no attracting periodic points.   

The periodic points that we categorized above are contained in Fatou or Julia sets as shown in the following 

assertion. 

Theorem 3.5: Let f  be a holomorphic function. Then F (f) contains all (super) attracting periodic points and 

cycles, J (f) contains all repelling periodic points and cycles, all rationally indifference periodic points and 

cycles.  

There are two types of points for which the inverse of holomorphic functions are not well defined, namely 

critical values and asymptotic values, and collectively they are known as singular values. 
  

Definition 3.1(Critical value, asymptotic value and singular value): Let f be a holomorphic function. The 

critical point of a function f is a point    such that   (  ) = 0 and `the critical value is the image of critical 

point under f. A point w     is said to be an asymptotic value if there is a curve γ tending to ∞ such that, 

along γ the values of f (z) converges to w. The closure of the set of critical and asymptotic values is known 

as the set of singular values. This set is usually denoted by SV (f).  

Note that among the entire functions, only transcendental entire functions may have asymptotic values. It is 

clear that polynomials cannot have finite asymptotic values. There are certain holomorphic functions whose 

finite asymptotic values can also be critical values. For example, f (z) = z
2    

 
has an asymptotic value 0, 

and critical values 0, 1/e.  

Definition 3.2(Finite type and bounded type holomorphic function): Let f be a holomorphic function. If SV 

(f) is finite, then f is said to be finite type. If SV (f) is bounded, then f is said to be bounded type.  

Note that any finite type function is necessarily bounded type, but the converse may not hold.   For example, 

f (z) =   z
2    

 
is finite type transcendental entire function, and hence it is also bounded type. Later, in 

Section 4, we will discuss that the holomorphic 3n + 1 function (2.3) is bounded type but not finite type.  

There are dynamically important different Fatou components.  For transcendental entire functions, a Fatou 

component U is one of the following type, for more details, we refer [4], [8], [14]. 

 Periodic component: if f 
n
 (U) ⊆U. Minimum n is called the period of U.  

 Pre-periodic component: if f 
n
 (U) is periodic for some integer n.  

 Wandering domain: if {f 
n
 (U)} are disjoint for all n.  

Periodic component U is one of the following types. 

 Immediate attracting basin: if U contains (supper) attracting periodic point. 

 Parabolic or Leau domain: if ∂ U contains periodic point.  

 Siegel disk: if U contains irrationally indifference periodic point.  

 Baker domain: if U is unbounded and dynamics converge to ∞ locally uniformly. 

There are certain Fatou components which are always simply connected as shown in the following 

assertions.  
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Theorem 3.6[1]: Let f be a transcendental entire map. Then every periodic or pre-periodic Fatou component 

is simply connected, and therefore any multiply connected Fatou component is bounded and wandering. 

Theorem 3.7[2]: Let f be a bounded type transcendental entire function. Then all component of F (f) are 

simply connected.   

For certain holomorphic functions, Baker and wandering domains do not exists as shown in the following 

assertion.  

Theorem 3.8 [2]: Finite type transcendental entire functions do not have wandering domains, and bounded 

type transcendental entire function do not have Baker domain. 

For certain holomorphic function, Fatou set can be empty as shown in the following assertions. 

Theorem 3.9: Let f be a finite type holomorphic function such that orbit of each point in SV (f) either is pre-

periodic or converge to ∞. Then F (f) = ∅. In particular, if f (z) = e
 z
, then F (f) = ∅. 

Definition 3.3(Forward, backward and completely invariant set): Let f be a function. A set E is said to be 

forward invariant if f (E) ⊆E, backward invariant if f 
-1

 (E) ⊆E, and completely invariant if it is both 

forward and backward invariant. 

For example, f (z) = z
 2
 has two completely invariant domains, namely {z    : |z| < 1} and {z  : |z| > 1} as 

Fatou components, and Julia set J (f) = {z    : |z| =1} which is also completely invariant. This is an example 

of entire function which has a bounded and an unbounded completely invariant Fatou component.  

However, in case of transcendental entire functions, we have the following assertions. 

Theorem 3.10: Let f be a transcendental entire function. Then a completely invariant Fatou component U is 

unbounded, and J (f) = ∂ U and f has at most one completely invariant Fatou component. 

For any holomorphic function, Fatou and Julia sets are themselves completely invariant as shown in the 

following assertion.  

Theorem 3.11: Let f be a holomorphic map. Then Fatou and Julia sets are completely invariant. 

4. Dynamics of the Holomorphic 3n +1 Function 

In this section, we examine the dynamical behaviour of the holomorphic 3n + 1 function (2.3) of Section 2. 

We can easily check that z = 0 is a fixed point of the holomorphic 3n + 1 function (2.3). If we differentiate 

holomorphic 3n +1 function (2.3), we get 

f 
′
(z) = [

π

2
 (z +

1

2
 ) + 2 sin π z + 2 π h(z) cos π z + h

′
(z) sin π z] sin π z                              (4.1) 

From (4.1), we can say that all integers are critical points of function (2.3). Also, |λ | = | f
‘
(0)| = 0. Therefore, 

z = 0 is a super attracting fixed point, and thus it is in the Fatou set F (f) (by Theorem 3.5). If we consider 

function h (z) vanishes from function f (z), then function (4.1) reduces to 

f 
′
(z) = [

π

2
 (z +

1

2
 ) + 2 sin π z ] sin π z.                                                                                  (4.2) 

For any z = n + δ with |δ | < 
1

|2π 
2
n|

 , n    , one can calculate | f 
′
(z)| < 

1

2
 .  
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By these facts, Letherman et al. ([13], Lemmas 3.1, 3.2) proved the following assertions. 

Theorem 4.1 ([13], Lemmas 3.1 and 3.2): Let f be a holomorphic 3n + 1 function (2.3). Then all integers are 

critical points. If entire function h in (2.3) vanishes everywhere, then all integers are in the Fatou Set.  

From (4.1), we also can say that the holomorphic 3n + 1 function (2.3) is not finite type, but of course, 

bounded type. We can use this fact to prove the following assertions. 

Theorem 4.2([13], Proposition 3.4): Every Fatou component of the holomorphic 3n +1 function (2.3) is 

simply connected.  

Proof: The holomorphic 3n + 1 function (2.3) is bounded type. Hence, by Theorem 3.7, every component of 

F (f) is simply connected.                                                                                                                     □  

Proposition 4.1: Holomorphic 3n +1 function (2.3) has no Baker domains.  

Proof: The function (2.3) is a bounded type transcendental entire function. By Theorem 3.8, it does not have 

Baker domain.                                                                                                                                  □ 

Theorem 4.2 was stated by Letherman et al. [13] but its above short proof is ours. Their proof of this 

theorem is different and little bit long. We stated and proved Proposition 4.1 ourselves. We can also justify 

the essence of Proposition 4.1by the following assertion. 

Theorem 4.3 ([13], Proposition 3.6]): Let f be a holomorphic 3n +1 function (2.3).  No domain at infinity 

can intersect the real line. In particular, no integer can be in a domain at infinity.  

Since orbit of any n     under the holomorphic 3n + 1 function (2.3) contained in  . And, since all inters are 

supper attracting because they are all critical points of f. No orbit in a Siegel disk is discrete, so there is no 

chance of consisting integers in the Siegel disk as in the following assertion.   

Theorem 4.4([13], Lemma 3.3): Let f  be a holomorphic 3n +1 function (2.3). If a Fatou component of f 

corresponding to an attracting orbit contains an integer, then this orbit is super attracting. No Fatou 

component corresponding to rational indifference orbit or to a Siegel disk can contain integers.  

The holomorphic 3n +1 function (2.3) is not finite type, so it may or may not have wandering domains. By 

Theorem 4.1, all integers are in Fatou set,   and by Theorem 3.5, (super) attracting periodic points and cycles 

are in Fatou set. Therefore, every integer is in the basin of attraction of a (super) attracting periodic orbit of 

integers, or in a wandering Fatou component. By Theorem 4.2, every Fatou component is simply connected, 

so there is no chance of existing multiply connected wandering domains. In this context, holomorphic 3n +1 

function can have simply connected wandering domains only when Conjecture 2.2 is disproved. Letherman 

et al. [13]. Conjecture 3.7] conjectured that wandering domain for such a function does not exist. 
 

Conjecture 4.1: The holomorphic 3n +1 function (2.3) has no simply connected wandering domain 

intersecting the integers.  

If this conjecture was proved, then the holomorphic 3n + 1 Conjecture 2.1 is proved, and then the 3n + 1 

Conjecture 2.1 is also proved. Finally, we can say that the fate of the famous Collatz conjecture depends 

upon the Conjecture 4.1.   
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