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Abstract 
Landslides are prevalent in the Himalayas, resulting in annual fatalities and economic losses during the 
monsoon season. Various studies are conducted for landslide susceptibility mapping in the Himalayas; 
however, many rural settlements are under the threat of landslide. The main objective of this study is to 
prepare the landslide susceptibility map by using the bivariate frequency ratio (FR) and weight of evidence 
(WoE) models. For this study, the landslide inventory map was initially developed, allocating 70% of the 
data for training and 30% for testing by using Landsat-8, Google Earth, and Sentinel imageries. After a 
thorough examination of existing literature and extensive field research, a total of twelve potential factors 
that can cause landslides were selected. The success and prediction rate of both models were obtained by 
using the area under the curve (AUC) method. The findings show that the landslide susceptibility maps 
prepared by the weight of evidence (WoE) and the frequency ratio (FR) models are more or less similar and 
have similar prediction and accuracy rates. Both the WoE and FR models exhibit a success rate of 0.703. 
Similarly, the accuracy rates of the FR and WoE models are 0.777 and 0.775, respectively. Both models 
have an accuracy and prediction rate that exceeds 70%, making them suitable for evaluating landslide 
susceptibility in the same terrains of Sudurpaschim province. However, the frequency ratio model shows 
slightly better predictive ability compared to WoE. The landslide densities derived from both models exhibit 
a gradual increase from low to very high susceptibility class. Nevertheless, there is no significant difference 
in the success and prediction rates between the two models. This result may be useful as a reference for 
future studies on similar terrain in Nepal. 
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Introduction 
Landslide is the movement of a mass of earth, rock, or 
debris down a slope (Cruden & Varnes, 1996). In the 
Himalayas, landslides are thought to constitute one of 
the most frequent geological hazards. People and 
infrastructure are vulnerable to landslide hazards since 
many hillside areas in Nepal are situated either directly 
on or next to unstable slopes and paleo landslide zones 
that periodically suffer recurrent instability (Thapa, 
2015). Understanding the geographical distribution of 
landslides is crucial to reducing the impact of these 
natural disasters on people and property since it may be 
used to identify places that are at risk of landslides owing 
to their propensity to occur (Dai et al., 2011; Collins et 
al., 2012; Petley, 2012). Landslide initiation and 
development is the dynamic process in the Nepal 
Himalaya where it takes a decade for landslide evolution 
(Bhandari & Dhakal, 2021). 
 
According to Bhandari et al. (2024), landslides in Nepal 
caused losses of USD 1,311,267 in 2021, resulting in 92 
deaths, 80 injuries, and damage to 1,968 houses. Creating 
precise and effective landslide susceptibility maps can 
greatly enhance disaster prevention and mitigation 
efforts, while also assuring adequate public safety. 
Consequently, landslides pose a significant threat to the 
human life and environmental integrity, despite the 
publication of numerous research on landslide modeling 
in Nepal over the past few decades. 
 

A number of variables relating to geology, 
geomorphology, land use and cover, rainfall, seismicity, 
human activity, etc. should be assessed in order to reduce 
the damage caused by landslides (Guzzetti et al., 2012). 
With the ability to create complete databases, thematic 
data layers, and spatial analyses of causative elements 
utilizing field data and remote sensing information, 
Geographic Information System (GIS) has become a 
vital tool in landslide research (Pradhan, 2010). In the 
field of landslide hazard management, landslide 
inventories created from Google Earth images, GIS, and 
remotely sensed data of a particular study area have 
proven to be extremely valuable tools (Guzzetti et al., 
2012). These resources are essential for assessing 
landslide susceptibility, hazard potential, and related 
risks (Aleotti & Chowdhury, 1999). In recent years, 
landslide susceptibility maps have been created for many 
regions across the globe using GIS. Several thematic 
layers have been integrated using a variety of techniques 
in Nepal Himalaya, such as frequency ratio (FR),weight 
of evidence (WoE), analytical hierarchy process (AHP), 
and logistic regression (LR) (Lee & Sambath, 2006; Khan 
et al., 2019; Jana et al., 2019; Thapa & Bhandari, 2019; 
Pokharel & Bhandari, 2019; Armas, 2012; Getachew & 
Meten, 2011; Bhandari et al., 2024; Ercanoglu et al., 
2008; Pourghasemi et al., 2018; Kayastha et al., 2013; 
Hung et al., 2017; Rasyid et al., 2016; Sun et al., 2022). 
Out of all of them, the frequency ratio and weight of 
evidence models are the most popular for efficiently 
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determining a person's vulnerability to landslides (Regmi 
et al., 2014, Bhandari et al., 2024).  
 
For a long time, the Sudurpaschim province of Nepal 
has been grappling with a number of landslide issues 
(Manchado et al., 2021). Several large to very large 
landslides in the Baitadi District of Nepal are posing a 
threat to the safety of people and developmental 
activities. There is a huge gap in the landslide 
investigation and susceptibility assessment in the Baitadi 
District. This study compares the weight of evidence 
(WoE) with the frequency ratio (FR) model for mapping 
landslide susceptibility in the Purchaudi Municipality of 
Baitadi District, Nepal. The landslide susceptibility map 
obtained from this work is useful for the study area to 
develop disaster risk management plans and procedural 
act. These findings may be helpful as a reference for 
further studies in the similar terrains of the 
Sudurpaschim province and other parts of the country.  
 

Materials and methods 
Study area 
Purchaudi Municipality is situated in the Baitadi District 
of the Sudurpaschim Province of Nepal (Fig.1). It is 
positioned in a latitude range of 29.67o to 29.52o north 
and a longitude range of 80.58o to 80.79o east. Bajhang 
District is situated to the east of this Municipality, while 
Dogdakedar Rural Municipality lies to the west. 
Dilashaini Rural Municipality is located to the north, and 

Surnaya and Sigash Rural Municipality are situated to the 
south. The majority of the region's topography consists 
of undulating terrain with precipitous inclines. The study 
area is situated at an elevation ranging from 911 to 2705 
meters above sea level. As to the Hydrology and 
Meteorological Department of Nepal, the highest 
temperature recorded in the Baitadi District is 38 oC, 
while the lowest temperature is 7.1oC. The average 
annual rainfall in the district ranges from 1646.8 to 
2191.79 millimeters. Ruini Gad, Baggad, and Loligad are 
the tributary streams that contribute to the Tribeni 
watershed. The tributaries of streams converge with the 
primary Mahakali River, located 5 km west of 
Purchaundi. 
 
Methods of data collection 
The initial step involved collecting spatial data and 
extracting relevant factors to achieve the primary 
objective of creating a landslide susceptibility map. 
These factors were then analyzed to determine their 
relationship with landslides, and the results were 
validated. Data collection involved collecting primary 
and secondary data for creating a spatial inventory map. 
The process included interpreting aerial photos, utilizing 
tools like Google Earth, and employing remote sensing 
data and GIS. Thematic data layers for different landslide 
factors were then prepared to aid in generating the final 
landslide susceptibility map.

 

 
Figure 1. Location map of the study area 
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Primary data collection 
The primary data collection involved field observations 
supported by instruments such as GPS and a checklist. 
During field visits, specific landslide sites were selected, 
and detailed photographs were captured to enhance 
understanding. Following the initial visit, a 
comprehensive inventory map of the landslides was 
generated. This map was created utilizing tools like 
Google Earth, Landsat and ArcGIS 10.8.2 version. 
Subsequently, a second round of field verification was 
executed, during which additional checklists were 
completed. As part of this second field visit, Key 
Informant Interview (KIIs) were also conducted to 
recognize old landslides. The new and recent landslides 
were observed and studied in the field. More than 70% 
landslides were verified in the field. Some of the recent 
landslides are shown in figures 2 a, b, c, & d.  
 
Secondary data collection 
The research area's overall assessment of landslide 
susceptibility utilized a combination of several methods 
and data sources. The evaluation procedure utilized 
ArcGIS 10.8.2, Google Earth, open street map, USGS 
data, meteorological data, and geological information. 
The field verification of landslide locations was crucial in 
ensuring accuracy and generating a detailed inventory 
map. This process was guided by data obtained from 
Google Earth. In order to create a map that identifies the 
factors that contribute to landslides, a Digital Elevation 
Model (DEM) with a resolution of 12.5 meters was 
obtained from the Alos Palsar. A thorough map was 
created by integrating many parameters such as slope, 
aspect, TWI, profile curvature, plane curvature, and SPI. 
ArcMap was employed open street map data to do 
Euclidean distance calculations, which helped in 
identifying regions near roads and rivers that are prone 
to landslides. The analysis of rainfall patterns was crucial. 
By using an Inverse Distance Weighting (IDW) 
interpolation approach to a dataset spanning a period of 
12 years (2011-2023) collected from three stations 
(Chainpur west, Patan west, and Pipalkot), a rainfall map 
was constructed. This map provided insights into the 
distribution of rainfall and its possible consequences in 
triggering landslides. The geological map developed by 
Department of Mine and Geology was used to correlate 
landslide susceptibility with geological units. The 
statistical computations described in the document were 
performed, most likely including the analysis of a dataset 
to establish susceptibility to the Purchaundi municipality. 
This is an important step in assessing the total 
susceptibility to landslides. 
  
Landslide conditioning factors 
The event-controlling factors are known as 
“predisposing factors”, “causative factors”, “causal 
factors”, “intrinsic factors”, “conditioning factors”, 
“quasi-static factors,” and “preparatory factors” (Zhu et 
al., 2014). Identifying landslides and developing landslide 
susceptibility maps are critical steps in disaster 
preparation that can assist planners, local governments, 
and decision-makers (Kavzoglu et al., 2014). For this 
study, eleven landslide causative factors were selected 

based on literature and field observation. The factors 
having visual effects and prior possibility to trigger 
landslides are selected for preparing susceptibility maps.  
 
Slope  
The different types of slope movements observed result 
from various conditions that render the slope unstable, 
ultimately triggering movement (Karimi et al., 2011). 
Mass wasting or sliding events are more noticeable on 
steep terrain compared to gentle slopes. In the study 
area, a slope map was generated from a 12.5×12.5 m 
resolution DEM using the "Raster Surface" method. The 
slope angles in study area varied from 0° to 73° and 
which were classified into different zones, i.e., <17°, 17-
27°, 27-35°, 35-46°, and >46°, as illustrated in Figure 3a. 
 
Aspect 
Aspect plays an important role in the occurrence of 
landslides. Since it can influence the moisture levels in 
the soil within a specific region. The orientation of the 
landscape affects several processes, including 
evapotranspiration, rainfall patterns, exposure to 
sunlight, and wind patterns. Besides this , the aspect of a 
slope impacts the amount of sunlight it receives and the 
conditions of seepage and groundwater (Hamza & 

Raghuvanshi, 2017). In a particular study investigation, a 
GIS tool was used to create an Aspect map from a DEM 
with a 12.5 m resolution. The aspect values within the 
study area span from -1 to 359.524 degrees, signifying 
the slope's directional orientation. These values were 
subsequently categorized into eight classes: north, 
northeast, east, southeast, south, southwest, west, and 
northwest, as illustrated in figure 3b. 
 
Elevation 
The elevation is not directly affected on landslide 
occurrence, but it impacts other factors such as rainfall, 
tectonic activities etc. Elevation factors affect landslide 
susceptibility because the higher the elevation, the higher 
the chances of a landslide. These factors were taken from 
DEM and categorized into five groups, as shown in 
figure 3c. 
 
Topographic wetness index (TWI) 
Different  researchers have utilized topographic indices 
to elucidate how soil moisture is distributed across 
different geographical areas (Burt & Butcher 1986); 
(Moore et al., 1991). The TWI was developed (Beven & 
Kirkby, 1979) within the runoff model TOP MODEL. 
TWI is a commonly used approach that combines both 
the local upslope contributing area and the general slope 
of the terrain to quantify how topography affects 
hydrological processes. It is expressed as:  
 
              TWI = ln (a /tan β)  
 
Where “a” represents the accumulated upslope area that 
drains through a specific point per unit contour length, 
"tan β" represents the slope angle at that point. In the 
study, TWI was regarded as an additional influencing 
factor, as illustrated in Fig. 3d. 
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Figure 2. a) Dandpur Mega Landslide b) Landslide occurred on the slopy terrace c) Landslide on the agriculture 

land near read section d) Landslide on the settlement area 
 

 

 
Figure 3. a) Slope map b) Aspect map c) Elevation map d) Topographical wetness index map of the study area 

(a) 

(b) 

(c) (d) 

(b) 

(c) (d) 

(a) 
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Curvature  
Curvature also plays a vital role in landslide occurrence. 
In Geo-science, curvature refers to the various curved 
features present in landscapes. Curvature is basically 
classified into three classes: concave, planar, and convex. 
In this study, a curvature map was generated from a 
DEM map with a resolution of 12.5×12.5 using ArcGIS 
software. These curvature values represent the 
topographic morphology of the area (Lee & Min, 2001). 
The profile curvature and plane curvature maps are 
shown in Figure 4a and Figure 4b. 

 
Stream power index  
The stream power index can be used to describe 
potential flow erosion at the given point of the 
topographic surface. As the catchment area and slope 
gradient increase, the amount of water contributed by 
upslope areas and the velocity of water flow increase; 
hence stream power index and landslide and erosion risk 
increase stream power index maps are shown in Fig. 4c. 

The SPI map was created by using the following 
equation:  
 
SPI=ln (A*tan(S))                         
 
Where ‘A’ represents the area of land that directs water 
flow towards a specific pixel, and ‘S’ represent the 
gradient of the local slope in degrees. 
 
Distance to stream  
In areas with soft lithology like mountainous terrain, 
rivers can trigger landslides by eroding the base of slopes 
and introducing water. To account for this in the study, 
river buffers were created. These buffers were generated 
by digitizing river locations from topographical maps 
and using the Euclidean distance tool. Within the study 
region, the categorical values for distance from the river 
ranged from 0 to 800 meters. These values were further 
divided into five classes: 0-100, 100-200, 200-300, 300-
400, 400-500, and >500 meters, which is shown in Fig. 
4d. 

 

 
 

Figure 4. a) Plane curvature b) Profile curvature c) Stream power index d) Distance to stream map of the study area 
 
Distance to the road 
Research based on practical observations has indicated 
that poorly planned road construction, often without 
taking geological and geotechnical factors into account, 
has played a role in causing shallow landslides, as 

documented by studies conducted by ( Shahi et al., 2022). 
Improper construction practices on sloping terrain, such 
as uncontrolled road excavation, can result in loss of 
support and changes in topography, leading to increased 
strain behind the slope and the formation of cracks. To 

(a

) 

(b

) 

(c

) 

(d

) 
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evaluate road proximity in this study, the Euclidean 
distance tool was applied, using a newly digitized polyline 
layer of roads obtained from topographical maps and 
Google Earth Pro in 2021. Within the study area, the 
categorical values for distance from the road ranged 
from 0 to 1000 meters. The values were buffered at 
various intervals, including 0-50, 50-100, 100-150, 150-
200, and >200 meters, as shown in Fig. 5a. 
 
Rainfall 
Increased rainfall leads to elevated soil moisture levels on 
slopes, diminishing slope stability. Rainfall data 
quantifies the volume of water that descends onto the 
earth's surface within a specific timeframe and is denoted 
in millimeters (mm) (Fell et al., 2008). Rainfall data from 
the DHM of 13 years from 2011-2023AD of three 
stations (Chainpur west, Patan west and Pipalkot) were 
used to classify rainfall amounts in the study area. The 
higher the rainfall frequency, the higher the chances of 
landslides, as shown in Figure 5b. 
 
Geology 
The study of landslide susceptibility is influenced by 
geology, as it involves analyzing the varying susceptibility 
of different geological formations to active 
geomorphological processes (Pradhan et al., 2002). For 
this study, the geological map was obtained from the 

department of Mines and Geology (DMG), Government 
of Nepal and digitized it in the ArcGis. The geological 
formations developed by DMG were used to correlate 
landslide with geology. There are six formations in the 
geological map of the study area namely: Lakharpata 
Formation, Galyang Formation, Ranimatta Formation, 
and Sallyani Gad formation. Ba, Syangja formation as 
illustrated in Fig. 5c. 
 
Land cover 
Land cover refers to the visible presence of physical and 
biological elements on the surface of the Earth. Land 
cover changes can impact on an area's susceptibility to 
landslides, either increasing or decreasing it. Geological 
structure, lithology, and land cover can undergo seasonal 
or rapid changes due to natural processes and human 
activities (Reichenbach et al., 2018). To evaluate the 
impact of land cover on landslide occurrences, it is 
crucial to establish the relationship between different 
land cover types and landslides. This correlation needs 
to be defined because land cover can undergo rapid 
changes within a short period. By studying how land 
cover  influences landslides, researchers can assess the 
effects of land cover  dynamics on landslide occurrences 
and better understand the role of land cover in landslide 
susceptibility (Pisano et al., 2017). The land use and land 
cover map are shown in Fig. 5d.

 
 

 
 

Figure 5. a) Distance to road b) Rainfall c) Geology d) Land use map of the study area 

(a) (b) 

(c) (d) 
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Landslide inventory mapping  
The inventory map of the study area was created by 
digitizing satellite images from Google Earth and 
Landsat captured between 2006 and 2021(Fig. 6). The 
landslides were divided into two categories: Training 
landslides and testing landslides. The landslides were 
marked as polygons and imported into ArcGIS software 
for further analysis. To conduct a thorough examination, 
the polygon-shaped landslide data was converted into 
raster format and then projected onto the WGS 1984 
UTM zone 44N geographical coordinate system. The 
mapping procedure was executed with a scale of 
1:25,000, and to ensure data accuracy, field surveys were 
conducted on-site for validation. In the inventory, 70% 

of the pre-existing landslides were chosen for training, 
while the remaining 30% consisted of current landslides 
reserved for testing and evaluation. Each factor map was 
reclassified, and the pixel area for each class in the factor 
map was manually recorded in ArcMap. Using cross-
tabulation in ArcMap, the landslide pixel areas were 
extracted from the factor maps and the landslide 
inventory maps. To analyze the data, the FR and the 
WoE were applied based on the values of the class pixel 
area in the factor maps and the landslide pixel class area. 
This allowed for a comprehensive analysis of the 
relationship between the factor maps and the occurrence 
of landslides. 

 

 
 

Figure 6. Landslide inventory map of the study area 
 
Landslide susceptibility mapping  
Frequency ratio model 
To assess the significance of each factor in relation to 
landslide susceptibility, the landslide estimation group 
was overlaid with individual thematic data layers. Then, 
the FR for each class of these factors was determined 
through a three-step process. Initially, the calculation 
involved determining the ratio of the area where 
landslides occurred to the area where they did not occur 
within each class of the factor. Subsequently, the ratio of 
each factor's class area to the total area of that factor was 
computed. The formula for calculating the FR for a 
specific class of factors influencing landslides is detailed 
in Equation as outlined by Lee and Pradhan (2010) and 
Bhandari et al. (2024) . 

    FR= 
𝐴/𝐵

𝐶/𝐷
                                                                 

In this context, 'A' represents the count of pixels with 
landslides for each factor, 'B' is the total number of 
landslides in the study area, 'C' is the count of pixels 
within the class area of the factor, 'D' is the total number 
of pixels in the study area, and 'FR' stands for the 
frequency ratio of a class for the factor. The calculated 

ratio values using the FR were designated as weights for 
the classes within each factor map. These weighted 
factor thematic maps were then superimposed and 
mathematically combined using a raster calculator, 
following Equation as described by (Lee & Pradhan, 
2010).  

𝐿𝑆𝐼 = ∑𝐹𝑟                                                                     
In this equation, 'FR' represents the frequency ratio 
corresponding to each type or range of factors. A higher 
LSI pixel value indicates a greater susceptibility to 
landslides, while a lower pixel value suggests a lower 
susceptibility. Various techniques can be used to 
categorize landslide susceptibility indexes, including 
methods like equal intervals, natural breaks, and standard 
deviations, as outlined by (Ayalew & Yamagishi, 2005). 
This method divides the landslide susceptibility indexes 
into four distinct classes: 1) Low, 2) Moderate, 3) High, 
and 4) Very High. 
 
Weight of evidence model 
To assess how each factor contributes to landslide 
susceptibility, the landslide estimation group was 



66 

 

  

Nep J Environ Sci (2024), 12(2), 59-72 

https://doi.org/10.3126/njes.v12i2.73671 

overlaid with thematic data layers individually, and the 
weight of evidence for each class of factors was 
determined through a two-step process. Initially, 
calculations were made for W+ and W- values based on 
the occurrence and non-occurrence of landslides within 
each class of the factor. Subsequently, an analysis of Wc 
was conducted. The  WoE  model equation conducted 
by Bonham-Carter (1989) and Bonham-Carter (1994) is 
given below in the equations.  
 

W+ = Ln  
𝑃(

𝐵

𝐷
)

𝑃(
�̅�

�̅�
)
                                                   

W- = Ln  
𝑃(

𝐵

𝐷
)

𝑃(
�̅�

�̅�
)
                                                     

 
In the provided equation, 'P' stands for probability, 
whereas in this context, the natural logarithm is involved. 

'B' and 'B ̅' represent the presence and absence of 
potential landslide evidence factors, respectively. 

Similarly, 'D' and 'D ̅' denote the presence and absence 
of landslides, respectively. To compute the significance 
of each causal factor contributing to landslide 
occurrences, as described by Van Westen et al. (2003)  
have been employed. 
 

W+ = ln{(
[𝑁𝑝𝑖𝑥1

[𝑁𝑝𝑖𝑥1]+[𝑁𝑝𝑖𝑥2]
)/(

[𝑁𝑝𝑖𝑥3

[𝑁𝑝𝑖𝑥3]+[𝑁𝑝𝑖𝑥4]
)}                     

W- = ln{(
[𝑁𝑝𝑖𝑥3

[𝑁𝑝𝑖𝑥1]+[𝑁𝑝𝑖𝑥2]
)/(

[𝑁𝑝𝑖𝑥4

[𝑁𝑝𝑖𝑥3]+[𝑁𝑝𝑖𝑥4]
)}                   

 
Npix1 is the number of pixels expressing the existence 
of both landslide contributing factors and landslide; 
Npix2 represents the presence of landslide and absence 
of landslide and absence of landslide contributing factor. 
While Npix3 means the presence of landslide 
contributing factors and the absence of landslide. 
Similarly, Npix4 represents the absence of both landslide 
and landslide contributing factors. The final weight 
expressed with Wc was calculated using the following 
Equation.  
 
          Wc =  (W+)  - (W-)                                                                
Where Wc is the difference between W+ and W-. This 
elucidates the spatial relationship of all landslides 
contributing factors and landslides. This method 
classified landslide susceptibility indexes into four 
susceptible classes 1) Low, 2) Moderate, 3) High, and 4) 
Very High. 
 
Model validation  
In research, after data analysis, map validation is 
necessary to check the data's accuracy. In modern times 
there are different tools developed which help easily 
determine how much our analyzed data is valid or 
accurate.  
 
The final step in landslide susceptibility analysis entails 
verifying the reliability of the projected results. There are 
several methods available for validating the LSI map, 
including approaches like ROC analysis as described by 
Mathew et al. (2007) and the AUC method employing 

success rate curve or prediction rate curve. In the present 
study, the landslide susceptibility maps were verified 
utilizing the success rate and prediction rate curves (Xu 
et al., 2013)  to validate the prediction results. The 
success rate curve was obtained from the ArcMap when 
Arc- SDM software was installed on the desktop and 
added to the Arc toolbox. Arc SDM software was 
opened through the ROC tool in the Arc toolbox. From 
the ROC tool, prediction and success curve was 
generated by manually using training and testing points 
in input and LSP in the output section for both models. 
The LDR method was also applied for data validation. 
Landslide density was determined by comparing the area 
of specific susceptibility classes to the area of landslides 
within those classes. It was noticed that the various 
susceptibility zones identified through both methods 
had nearly equal areas. 
 

Results and Discussion 
Landslide Inventory Map 
Altogether 515 landslides were traced out in the 
inventory map. Out of 515 landslides, 365 (making up 
70%) were allocated for training purposes, representing 
older landslides. The remaining 150 (constituting 30%) 
were reserved for validation and represented currently 
active landslides. Within the testing landslides, 13 were 
found in the Ruinigad catchment area, 7 in the Baggad 
catchment area, and 10 in the Loligad catchment area. 
Furthermore, 90 landslides were found downstream of 
Tribeni. The Danpur landslide, located within the 
Tribeni watershed, was identified as the largest landslide. 
 
Additionally, 15 landslides were observed outside the 
Tribeni catchment. The study area encompasses a total 
area of 198.5 km², and the landslides are unevenly 
distributed throughout this region. Upon comparing the 
training and testing inventory maps, it was evident that 
most of the landslides overlay each other, indicating that 
active landslides occur on top of pre-existing landslides, 
particularly near the streamside. The inventory map 
shows a large landslide in Dandpur, Chimada, and Kimet 
Budada. The temporal inventory map of Dandapur 
shows that the area of landslide is frequently increasing 
on the top side over time.  
 
Landslide Susceptibility  
Landslide susceptibility maps plot the potential for 
landslides to occur in a region as a function of the 
environmental conditions of the area. These 
susceptibility maps describe the size and spatial 
distribution of landslide occurrences in the region and 
can influence regional hazard mitigation and relief plans 
(Mezughi et al., 2011; Mondal & Mandal, 2019). The 
success rate is a calculation of the success of a model that 
shows how well the model matches the prior events 
(Chung & Fabbri, 2003). The landslide susceptibility mas 
was created using the FR and WoE models. In both 
models, factor maps were computed by reclassifying 
each individual factor map and superimposing them with 
the training landslide data. Compared to the southern 
part, the northern and eastern parts of the study area 
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exhibit a high to extremely high class of susceptibility. 
The proportions of medium and high susceptibility 
classes exceed those of low and very high susceptibility 
classes. Overall, 33.49% of the region is classified as high 
susceptibility, while 30.88% is classified as moderate 
susceptibility. Only 16.91% of the area falls into the very 

high susceptibility class. 35.05% of the landslide's total 
area falls into the intermediate susceptibility class. Figure 
7 illustrates the landslide susceptibility map generated 
utilizing the FR model. Furthermore, Fig. 8 illustrates the 
percentage distribution of susceptibility classes and 
landslide occurrences derived from the FR model. 

 
 

 
Figure 7. Landslide susceptibility map by using frequency ratio model 

 
 

 
 

Figure 8. Percentage distribution of the susceptibility classes and landslide occurrence by using FR model 
 
The landslide susceptibility map by using WoE model is 
shown in Fig. 9 and percentage distribution of the 
susceptibility classes and landslide occurrence by using 
WoE Model is given in Fig. 10. The result is more or less 
similar to the FR model. The northern and eastern parts 
of the study area are found to have high to very high 
susceptibility in comparison to the southern and south-

western parts. The percentages of medium and high 
susceptibility classes are greater than low and very high. 
The high susceptibility class occupies 33.82% of the area, 
while the moderate susceptibility class occupies 30.52%. 
Very high-susceptibility classes occupy only 17.06% of 
the area. 35.1% of the total landslide area falls into the 
moderate susceptibility class. 

18.72

30.88
33.49

16.91

21.73

35.05

29.96

13.25

0

5

10

15

20

25

30

35

40

45

Low Moderate High Very high

A
re

a
 p

er
ce

n
ta

g
e

Landslide Susceptibility Level

Class Area(%) Landslide area(%)



68 

 

  

Nep J Environ Sci (2024), 12(2), 59-72 

https://doi.org/10.3126/njes.v12i2.73671 

 
 

Figure 9. Landslide susceptibility by weight of evidence model 
 

 
 

Figure 10. Percentage distribution of the susceptibility classes and landslide occurrence by using WoE Model 
 
Landslides density percentage analysis 
Density is typically computed by determining the 
proportion of the area belonging to a specific 
susceptibility category relative to the area impacted by 
landslides within that category. Interestingly, the distinct 
susceptible zones categorized under both approaches 
exhibit nearly identical areas. Consequently, with respect 
to landslide occurrence areas, both methodologies have 
displayed outstanding outcomes, significantly enhancing 
the credibility and verification of both models in the 
context of identifying regions susceptible to landslides. 
 
It has been observed that the landslide densities derived 
from both methodologies exhibit a gradual increase 
from the lowest susceptibility class, 'Very Low,' to the 
highest, 'Very High' (Figs. 11a, 11b). This observed trend 
further affirms the accuracy and effectiveness of the 
susceptibility classification scheme employed in this 
Landslide study (Neupane et al., 2023). 

 
AUC validation 
The success and prediction rate of the two models are 
shown in Fig. 12 (a, b, c, and d). Validation datasets 
collected during fieldwork were used to verify the two 
landslide susceptibility models' predictions in this study. 
Figure 12 shows the performance of the model using the 
area under the curve (AUC). The results show that both 
models are capable of accurately predicting 
susceptibility. Because of this, both models 
demonstrated similar prediction and success rate, and it 
is highly acceptable. The prediction rate of both models 
is 0.703. Similarly, the success rate of both models is 
genuine and acceptable: FR (0.777) and WoE (0.775). In 
terms of mapping landslide susceptibility in the research 
area, similar result obtained from both models. Based on 
the validation result, any of the models can be used for 
landslides susceptibility in the similar region. 
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Figure 11. LDR validation of a) FR method b) WoE method of the study area 
 

 
 
Figure 12.  Area Under Curve shows a) prediction rate curve of landslide susceptibility by FR model b) WoE model 
c) success rate curve of landslide susceptibility by FR model d) success rate curve of landslide susceptibility by WoE 

model 
 
Regmi et al. (2013) employed Fr, WoE, and SI models to 
evaluate landslide susceptibility mapping in the Central 
Nepal Himalaya region. In their result, the FR model 
exhibited the highest performance, achieving a success 
rate of 76.8% and a predicted accuracy of 75.4%, 
according to the statistics. The study conducted by Pham 

et al., (2015) shows that the FR model exhibited a 75% 
success accuracy and a 70% prediction accuracy. Regmi 
et al., (2014) performed a study that attained a success 
accuracy of 83.31% and a prediction accuracy of 78.58% 
by using FR model in the Bhalubang–Shivapur Area of 
Nepal. The study conducted by Bhandari et al. (2024) 

(a) (b) 

(c) (d) 
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obtained higher prediction and success rate by FR model 
in the Siwalik zone of Nepal. Previous research 
conducted in Nepal indicated that individual FR and 
WoE yielded a superior prediction rate. In the previously 
referenced studies, the FR model demonstrated superior 
performance in the Nepal Himalaya for landslide 
susceptibility (Bhandari et al., 2024). Thapa and Bhandari 
(2019) obtained more than 75% success and prediction 
rate by using FR model in the Siwalik section of Nepal. 
Nevertheless, the WoE model exhibited exceptional 
performance in terms of both the rate of success and the 
rate of prediction in the Lesser Himalaya region of 
Nepal.    
 
In this study, the training data for the two susceptibility 
models showed a fair level of goodness of fit. There is 
no significant difference in the success and prediction 
rate in both models, however, FR model shows a slightly 
better level of prediction. This is apparent from the area 
under the Curve (AUC) readings of the Receiver 
Operating Characteristic (ROC), which reaches a value 
of 0.777. The study found that the FR model achieved a 
success rate of 77.7%. FR achieved an area under the 
curve (AUC) value of 0.777, whereas the WoE models 
had AUC values of 0.775. The correlation between the 
training data and validation data on landslide 
occurrences indicates a satisfactory level of concurrence. 
The majority of pixels that encountered landslides were 
categorized as having a significant or elevated 
susceptibility in both models. 
 

Conclusions 
In this study, landslide susceptibility maps were created 
by using bivariate models that utilized both the 
frequency ratio and weight of evidence methods. 
Initially, 70% of the data was randomly selected for 
training the model, while the remaining 30% was used 
for validation purposes. Twelve distinct factors were and 
these were factor maps were integrated into the 
modeling process using ArcGIS. Subsequently, the 
prepared landslide susceptibility maps were categorized 
into four classes, ranging from "Low" to "Very High," 
by using the natural break method. In both modeling 
methods, the density of landslides slightly increases as we 
move from the Low susceptibility class to the Very High 
susceptibility class. Notably, the moderate and high 
susceptibility classes cover a significantly larger area 
compared to the low and very high classes. The success 
rate curves for both models exhibited an identical value 
of 77.77%. Similarly, the prediction rate curves for FR 
and WoE also yielded equivalent results, both at 70.2%. 
With both methods achieving an accuracy level 
exceeding 70%, the findings are considered reasonable. 
Both of the models are suitable for the development of 
susceptibility maps in the similar terrains in the 
Sudurpaschim province. The landslide susceptibility map 
generated from this study is valuable for the study area 
in formulating a disaster risk management plan and 
procedural actions. These findings may serve as a 
reference for future studies in similar terrains in 

Sudurpaschim province and other regions of the 
country. 
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