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Abstract 
The Mandre-Khursanibari section of Arghakhanchi and Palpa districts consists of numerous landslides, small to 
large. Prospecting weak geological sections like the location of the Main Boundary Thrust (MBT)  and inherently 
weak lithological settings in addition to other factors are the main objectives of the present research. In this study, 
the results of the landslide susceptibility analysis using frequency ratios (FR) are assessed. The Mandre-
Khursanibari segment was subjected to landslide detection using imagery (Google Earth) with a spatial resolution 
of 50 cm. The landslide inventory was used to construct training and testing data. Based on topographic, 
geological, and land-use maps, nine contributing variables were identified. The FR ratings were established using 
the contributing elements and training data. The map illustrating landslide risk was produced by integrating the 
influencing components that determined FR ratings. The ROC-AUC curve shows a validation rate of 82.2 % in the 
present model of LSI. The three most important elements in the occurrence of the landslide, out of the nine potential 
causes, are distance from the thrust (MBT), land use, and distance from the road. However, the role of adverse 
lithological setting is found to be a minor in many sections of this region. The MBT is one of the main causes of 
landslides in this area. 
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Introduction 
The Himalayas stand out as the planet's most ever-changing 
and delicate mountain range, marked by ongoing tectonic 
activity. Their instability primarily stems from the 
mountains' rocks having a naturally weak geological setting. 
The main potential sites of landslides in the Nepal 
Himalayas are dictated by adverse geological conditions like 
the presence of thrusts, faults, and adverse lithology in 
addition to other triggering factors like steep slope, 
concentrated precipitation, and seismic activity (Acharya & 
Paudyal, 2023; Paudyal & Maharjan, 2022; Paudyal et. al, 
2022; Dhahal & Paudyal, 2022; Neupane & Paudyal, 2021; 
K.C. et al., 2018; Budha et al., 2016). Moreover, the weak 
geological setting is another strong factor causing the 
landslides in the hilly regions of Nepal (Neupane et. al, 
2023). Building safer infrastructure, reducing natural 
hazards, and halting environmental deterioration in the 
Himalayas shall all become significantly simpler with a 
better understanding of the terrain's geology and the 
interaction of many triggering factors (Upreti, 2001). 
Nepal's hilly areas, with their rough landscapes, frequent 
earthquakes, and heavy rains, are vulnerable to various 
natural dangers. Landslides can harm the region's growth 
over time (Paudyal & Maharjan, 2022). 
 
The geomorphic and tectonic history of the Nepal 
Himalayas is partly responsible for the abundance of deep 
and steep river valleys in Nepal. Earthquakes, particularly 
in seismically active areas like Nepal, might endanger the 
slope's stability in the long run (Taylor & Burns, 2005).  
 

Mandre-Khursanibari, the research area, is situated near 
the border of Nepal's Arghakhanchi and Palpa districts 
(Fig. 1). Because of the area's dissected and rough 
topography, as well as the existence of the Main Boundary 
Thrust (MBT) makes the study area prone to landslides 
(Upreti & Dhital, 1996). This section consists of numerous 
landslides and finding the cause of such landslides is one 
of the major tasks of the present study.  Finding the cause 
helps to select effective techniques to mitigate the 
landslides and reduce the risk of further land sliding in the 
region. The overall region under investigation is 
approximately 62 sq. km, with an altitude range of 336 m 
to as high as 1500 m. 
 
The research area is bordered between 27051’46” N, 
8309’31” E to 27048’56” N, 83016’11” E. Local routes 
linking to Mahendra Rajmarg can be used to reach the 
region. The Mandre-Khursanibari region is prone to 
several slope instability difficulties because of the steep 
slope, rough landscape, and weak rock state. 
 

Materials and Methods 
It is crucial to infer that landslide causative variables affect 
the geographical distribution of landslides and that future 
landslides will occur under conditions similar to those of 
prior landslides for landslide susceptibility mapping (Lee & 
Talib, 2005) (Fig. 2). This study will attempt to identify the 
areas susceptible to landslides using the Frequency Ratio 
(FR) method to explore the statistical relationship between 
parameters and landslides in GIS platform. 
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Figure 1 Location Map of Mandre-Khursanibari section. 
 
 
Over the past few decades, numerous researchers have 
developed effective techniques for producing precise 
maps of landslide susceptibility. Frequency ratio 
(Goetz et al., 2015; Hong et al., 2016; Lee et al., 2017), 
logistic regression (Chen et al., 2017; Steger et al., 
2016), decision trees (Lee & Park, 2013; Pradhan, 2013; 
Tsangaratos & Ilia, 2016), fuzzy logic (Feizizadeh et al., 
2014; Park et al., 2014; Pradhan, 2011), neuro-fuzzy 
systems (Pradhan, 2013; Aghdam et al., 2016; Lee et al., 
2015), support vector machines (Pradhan, 2013; Peng 
et al., 2014; Lee et al., 2017; Tien Bui et al., 2017), 
artificial neural networks (Conforti et al., 2014; 

Pradhan, 2011; Tsangaratos & Benardos, 2014), and 
multimethod approach (Althuwaynee et al., 2016; 
Pham et al., 2016; Pradhan, 2010; Yalcin et al., 2011) 
are a few approaches of these methods. The FR was 
utilized in the present investigation to assess the 
efficacy of the landslide susceptibility study. 
 
The FR model has the advantage of ranking the 
causative variables in terms of their risk of producing a 
landslide and assessing whether a certain combination 
of causative factor values would be harmful in the 
event of a landslide (Kannan et al., 2013). Landslides 
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and debris flows are caused by the presence of 
numerous variables. During severe rains, when soil 
moisture levels are high and soil strength is low, 
shallow landslides are most likely to occur 
(Montgomery & Dietrich, 1994).  
 
The landslide inventory of 72 was conducted using 
manual digitization of aerial photographs/satellite 
imagery from Google Earth (March-2020) and later 
verification field was carried out to assess the field 
reality of the region. The landslide inventory was 
afterward divided into training (70% - 50) and testing 
(30% - 22) samples. The landslide susceptibility index 
model (LSI) was developed using a training sample, and 
the model was validated using ROC-AUC in SPSS. Fig. 
2 depicts the methodology used in the LSI mapping. 
 
Thematic data layers must be prepared for landslide 
susceptibility mapping (Camarinha et al., 2014). As a 
result, nine thematic layers of 20 m × 20 m cell size 
were used: geology, slope, aspect, plan curvature, 
distance from the stream, distance from the thrust 

(MBT), distance from the road, relief, and land use land 
cover. To create topographic and hydrologic 
parameters, a digital elevation model (DEM) was 
prepared. For landslide susceptibility, topographic and 
hydrologic characteristics such as slope gradient, plan 
curvature, slope aspect, relief, and distance from the 
stream were taken into account. The satellite image was 
digitized in ArcMap10.4.1 to create the LULC map. 
The MBT and geology of the area have been obtained 
from the Department of Mines and Geology's 
geological map of the petroleum block 5. The 
Euclidean distance technique was used to calculate the 
distance to the MBT map. 
 
After creating all nine rasters of influencing factors, a 
landslide inventory map was utilized to cross with the 
nine-factor maps to produce tabulated statistics which 
was used to carry out the FR method of landslide 
susceptibility mapping (LSI). The resulting LSI map 
was divided to stable, quasi-stable, unstable, and 
unstable zones. 

  

 
Figure 2 Methodology used in analysis of LSI mapping using FR method. 

 
 
Frequency Ratio Method 
It is necessary to understand the physical characteristics 
of the landscape as well as the mechanisms that cause 
landslides in order to determine the possibility of 
landslides. The frequency ratio is a quantitative method 
for measuring landslide risk that makes use of 
Geographic Information Systems (GIS) and 
geographical data (Bonham-Carter, 1994; Lee & Talib, 

2005; Chen et al., 2016a; Chen et al., 2016b; Ding et al., 
2017). The frequency ratio (FR) approach is widely and 
efficiently used for mapping landslide vulnerability 
(Yilmaz, 2009; Reis et al., 2012; Umar et al., 2014; Chen 
et al., 2016a; Wu et al., 2016; Wang & Li, 2017). It is 
based on the quantifiable relationship between the 
landslide inventories and the slide triggering variables 
(Reis et al., 2012). Using the Eq (1), a combination of 
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the landslide inventory map and the factor map was 
created to determine the frequency ratio (FR) for each 
class of the contributing components (Mondal & Maiti, 
2013; Fayez et al., 2018). 
 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑖𝑜 (𝐹𝑅) =
𝑁𝑝𝑖𝑥 (1)/𝑁𝑝𝑖𝑥 (2)

∑ 𝑁𝑝𝑖𝑥 (3)/ ∑ 𝑁𝑝𝑖𝑥 (4)
 ----Eq. (1) 

 
Where Npix (1) = The number of pixels containing 
Landslide in a class 
Npix (2) = Total number of pixels of each class in 
whole area. 
Npix (3) = Total number of pixels containing landslide. 
Npix (4) = Total number of pixels in the study area. 
 
Using Eq. (2), the calculated frequency ratio is 
aggregated to create a Landslide Susceptibility Index 
(LSI) map (Lee & Talib, 2005). 

Landslide Susceptibility Index (LSI) = FR1 + FR2 + 
FR3 + FR4 + . . . . . . . . . + FRn ------------------- Eq. (2) 

 

Results and Discussion 
Landslide Inventory 
Landslide inventory mapping is an essential aspect of 
landslide susceptibility mapping, which attempts to 
identify landslide-prone regions and the potential 
hazards they portray to people and infrastructure. 
Landslide inventory mapping entails collecting and 
analyzing data on historical and contemporary 
landslides in the targeted area. This information is used 
to assess the likelihood of future landslides and to 
develop effective strategies for mitigating the risks 
associated with them. 72 landslides with a total area of 
0.243 km2 were mapped using Landsat images that are 
accessible on Google Earth and fieldwork (Fig. 3). 

 

 
 

Figure 3 Landslide inventory map of the Mandre-Khursanibari area. 
 
 
Influencing or Controlling Factors 
Land-Use Land Cover 
An image classification method was used to create a 
land cover map (Fig. 4). Table 1 shows that forest 
covers 72.5% of the entire area, agricultural land covers 
20.1%, barren land covers 0.7%, and sand covers 1.2%. 
Crossing LULC data with current landslides reveals 
that forest area accounts for 49.2% of total landslide, 
barren land accounts for 42.5%, agricultural land 

accounts for 1.18%, and bushland accounts for 1.18% 
(Table 1). LULC serves as an important indicator for 
identifying landslide-prone areas (Ghimire, 2011). 
 
With a high-frequency ratio of 62.48 compared to other 
classes like forests (0.68), shrubs (0.32), and (3.92), as 
well as agricultural land (0.09), which has the least FR, 
barren land is very prone to landslides by the frequency 
ratio for the land-use land cover (Table 2).
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Figure 4 Land-use map of the study area. 

 
 
Geology 
For the landslide mapping, a geological map from the 
Department of Mines and Geology was adopted (Fig. 
5). The research region is organized into eight primary 
lithological units based on its geology viz. the Lower 
Siwalik, Middle Siwalik, Swat Formation, Melpani 
Formation, Suntar Formation, Khara Formation, 
Katuwa Formation, Aru Formation, Charchare 
Formation, and the Gwar Formation. Table 1 
demonstrates that the Middle Siwalik dominates the 
research region, making up 59.5% of the entire area, 
while 90.3% of the total landslides are present and have 
a FR of 1.52 at the same geology. The Aru Formation 
occupies an area of 11.4% and has a total of 5.6% of 
landslides. The Swat formation has FR value of 1.41 
with 0.8% total area and 1.1% of the total landslide 
area. The Melpani Formation and the Suntar 
Formation, they only make up 3.1% and 1.1% of the 
entire study area, respectively, and there are no nearby 
landslides, they have the lowest frequency ratio of 0.  
 
Distance to Thrust (MBT) 
In this study, the distance to thrust (MBT) is an 
extrinsic parameter. The Main Boundary Thrust was 
located using the Geological map of exploration block 
number five by DMG-GON-1998. The block was then 
georeferenced, and the MBT's position was traced on 
the map. The MBT and Euclidean distance tool, which 
depicts each cell's link to a source or collection of 
sources based on the straight-line distance, were used 

to construct the distance to thrust map (Fig. 6). The 
five divisions of the map were spaced 500 m apart. 
 
According to the study, 16.8% of all landslides happen 
within 0-500 m of the MBT, making this area the most 
prone to them. The highest Frequency Ratio (FR) 
figure in this zone, 2.41, supports this. Additionally, the 
number of landslides within 0.5 to 1 km from the MBT 
is significant (20.33%). 
 
Slope 
The slope map (Fig. 7) was created using the Surface-
Spatial Analyst Tool in ArcMap and a 20*20 DEM 
(Digital Elevation Model). Using the equal interval 
classification approach, the slope is divided into six 
categories. According to Table 1, the slope angle range 
of 300 to 400 accounts for 39.68% of the research area 
and hosts 53% of all landslides. Similarly, slope angles 
between 100 and 200, 200 and 300, 400 and 500, and 500 
and 640 respectively occupy 3.37%, 12.23%, 29.46%, 
14.83%, and 0.43% of the total research area, while the 
corresponding slopes have landslides at rates of 3.1%, 
6.6%, 22.8%, 14.1%, 0.8%, and 0.5%.  According to 
Table 1, the terrain with slopes of 300–500 and 500–640 
is most susceptible to landslides, with frequency ratios 
of 1.33 and 1.15, respectively, while the terrain with a 
slope gradient of 100–200 is least susceptible, with a 
frequency ratio of 0.09, likely due to the lower number 
of landslides that occur in that particular slope. Slope 
gradient and relative relief are identified as crucial 
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factors, and their calculated factor weight values 
correlate well with landslide susceptibility. This factor 
serves as proxy indicator for identifying landslide-
prone areas (Ghimire, 2011). 
 
Aspect Map 
The Surface-Spatial Analyst Tool in ArcMap was used 
to create an aspect map for the research using a 20*20 
DEM (Fig. 8). South-facing slopes, which made up 
16.8% of the research area, were the predominant 
aspect among the eight groups of aspects (Table 1). 
Landslides were primarily seen on southeast-facing 
(20.49%), south-facing (19.34%), southwest-facing 
(18.69%), and west-facing (14.92%) sides. Aspect 
serves as an important indicator for identifying 
landslide-prone areas (Ghimire, 2011). The frequency 

ratio of the aspect map reveals that the southeast, 
south, southwest, and west aspects are are more prone 
to landslides, with the greatest frequency ratio values of 
1.41, 1.15, 1.35, and 1.19, respectively (Table 1). 
 
Relief Map 
20*20 m DEM was used to create an elevation map, 
also known as a relief map, of the research region (Fig. 
9). The greatest height is 1905 meters, while the lowest 
elevation is 336 meters. Four categories were used to 
categorize the relief map (Table 1). It was discovered 
that the elevation between 1000 and 1500 meters (m) 
accounts for 32.2% of the entire research area and 
contains 37.4% of all landslides, with a frequency ratio 
of 1.16. 

 

 
 

Figure 5 Geological map of the study area. 
 
Distance from Stream 
One of the key elements in determining landslide 
vulnerability is the stream. The distance to the stream 
map (Fig. 10) was created using the Euclidean distance 
tool, which represents each cell's relationship to a 
source or collection of sources based on the straight-
line distance since the ground around the stream is 
more prone to landslides. There are five interval classes 
in it. According to Table 1, the region between 0 and 
50 meters in diameter accounts for 12.0% of all 
landslides and 8.3% of the entire research area. 
Additionally, the region between 300 and 500 meters 
from the streams has a high-frequency ratio of 1.51 and 

is vulnerable to future landslides. 
 
Curvature 
The curvature, which is the departure of a surface from 
a plane or a curve from a straight line, is seen in Fig. 11. 
The curvature map was produced using a 20*20 m 
DEM and the Surface-Spatial Analyst Tool in ArcMap. 
The split of curvature into concave, linear, and convex 
surfaces is shown in Fig. 10. Table 1 shows that the 
studied region is more naturally convex than concave, 
with convex topography occupying 47.4% of the total 
area, concave topography covering 44.5% of the area, 
and linear or flat surface making up 8.1%.
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Figure 6 Distance from thrust map. 
 

 
 

Figure 7 Slope map of the study area. 
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Figure 8 Aspect map of the study area. 
 

 
Figure 9 Relief map of the study area. 
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Figure 10 Distance to stream map of the study area. 
 

 
Figure 11 Curvature map of the study area. 
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Distance from the Road 
Utilizing the linear road data of the research region, the distance from the road map (Fig. 12) was created. The 
Euclidean distance tool, which represents each cell's link to a source or collection of sources based on the straight-
line distance, was used to calculate the distance to the road map (Fig. 12). Six categories of distance from the road 
were created: 0–50 m, 50–150 m, 150–300 m, 300–500 m, 500–1000 m, and 1000–1853 m.  
 
According to Table 1, the area between 0 and 50 meters in height accounts for 10.3% of the total landslide and 
12.6% of the entire research area. The region between 150 and 300 meters and 300 and 500 meters from the road 
has a high frequency ratio of 1.30 and 1.27, and it is also likely to have landslides in the future. 
 
Concave curvature has a higher FR value than concave curvature (1.02), making it more prone to landslides. 
 

 
Figure 12  Distance from the road map. 

 
 

Table 1 Factors with landslide inventory showing area coverage. 

Domain Class Class Pixel 
Area  
(sq. km) 

Class 
pixel % 

Landslide 
pixel 

Area  
(sq. km) 

Landslide 
pixel % 

Slope 

0 - 10 5186 2.07 3.37 19 0.0076 3.11 
10 - 20 18789 7.52 12.23 40 0.016 6.56 
20 - 30 45284 18.11 29.46 139 0.0556 22.79 
30 - 40 60982 24.39 39.68 323 0.1292 52.95 
40 - 50 22791 9.12 14.83 86 0.0344 14.10 
50 - 64 658 0.26 0.43 3 0.0012 0.49 

Total 153690 61.48 100.00 610 0.244 100.00 

Distance to 
Thrust (MBT) 

0 – 500 m 25623 10.25 16.81 247 0.0988 40.49 
500 – 1000 m 24618 9.85 16.15 124 0.0496 20.33 
1000 – 2000 m 44094 17.64 28.92 122 0.0488 20.00 
2000 – 4000 m 50293 20.12 32.99 114 0.0456 18.69 
4000 – 5319 m 7823 3.13 5.13 3 0.0012 0.49 

Total 152451 60.98 100.00 610 0.244 100.00 

Land-use 

Forest 110509 44.20 72.49 300 0.12 49.18 
Agricultural Land 30594 12.24 20.07 11 0.0044 1.80 
Bushes 8465 3.39 5.55 11 0.0044 1.80 
Barren Land 1036 0.41 0.68 259 0.1036 42.46 
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Domain Class Class Pixel 
Area  
(sq. km) 

Class 
pixel % 

Landslide 
pixel 

Area  
(sq. km) 

Landslide 
pixel % 

Sand 1847 0.74 1.21 29 0.0116 4.75 

Total 152451 60.98 100.00 610 0.244 100.00 

Geology 

Middle Siwalik 90768 36.31 59.54 551 0.2204 90.33 
Swat Formation 1243 0.50 0.82 7 0.0028 1.15 
Melpani Formation 4569 1.83 3.00 0 0.000 0.00 
Suntar Formation 1695 0.68 1.11 0 0.000 0.00 
Lower Siwalik 6255 2.50 4.10 3 0.001 0.49 
Khara Formation 10592 4.24 6.95 0 0.000 0.00 
Katuwa Formation 8167 3.27 5.36 10 0.004 1.64 
Aru Formation 17454 6.98 11.45 34 0.014 5.57 
Charchare Formation 7546 3.02 4.95 0 0.000 0.00 
Gawar Formation 4162 1.66 2.73 5 0.002 0.82 

Total 152451 60.98 100.00 610 0.244 100.00 

Distance to 
Stream 

0 –50 m 12654 5.06 8.30 73 0.029 11.97 
50 –150 m 21393 8.56 14.03 89 0.036 14.59 
150 – 300 m 29812 11.92 19.56 117 0.047 19.18 
300 – 500 m 31695 12.68 20.79 192 0.077 31.48 
500 – 1780 m 56897 22.76 37.32 139 0.056 22.79 

Total 152451 60.98 100.00 610 0.244 100.00 

Curvature 
Concave 68345 27.34 44.47 277 0.111 45.41 
Linear 12436 4.97 8.09 41 0.016 6.72 
Convex 72909 29.16 47.44 292 0.117 47.87 

Total 153690 61.48 100.00 610 0.244 100.00 

Aspect 

North  14707 5.88 9.57 10 0.004 1.64 
Northeast  15246 6.10 9.92 22 0.009 3.61 
East  19683 7.87 12.81 66 0.026 10.82 
Southeast  22359 8.94 14.55 125 0.050 20.49 
South  25821 10.33 16.80 118 0.047 19.34 
Southwest  21215 8.49 13.80 114 0.046 18.69 
West  19244 7.70 12.52 91 0.036 14.92 
Northwest  15415 6.17 10.03 64 0.026 10.49 

Total 153690 61.48 100.00 610 0.244 100.00 

Relief 

336 – 600 m 22295 8.92 14.51 79 0.032 12.95 
600 – 1000 m 63894 25.56 41.57 260 0.104 42.62 
1000 – 1500 m 49448 19.78 32.17 228 0.091 37.38 
1500 – 1905 m 18053 7.22 11.75 43 0.017 7.05 

Total 153690 61.48 100.00 610 0.244 100.00 

Distance 
from Road 

0 – 50 m 19301 7.72 12.56 63 0.025 10.33 
50 – 150 m 30589 12.24 19.90 135 0.054 22.13 
150 – 300 m 37694 15.08 24.53 195 0.078 31.97 
300 – 500 m 32212 12.88 20.96 163 0.065 26.72 
500 – 1000 m 26957 10.78 17.54 54 0.022 8.85 
1000 – 1853 m 5698 2.28 3.71 0 0.000 0.00 

Total 152451 60.98 99.19 610 0.244 100.00 
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Total 152451 100.0 610 100 5.02 1.00 100 
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Land use 

Forest 110509 72.5 300 49.2 0.68 0.01 1.01 

0
.0

0
 

0
.9

3
 

0
.9

2
 

 

1
3
.8

8
 Agricultural 

Land 
30594 20.1 11 1.8 0.09 0.001 0.13 

Bushes 8465 5.6 11 1.8 0.32 0.005 0.48 
Barren Land 1036 0.7 259 42.5 62.48 0.93 92.57 
Sand 1847 1.2 29 4.8 3.92 0.06 5.81 

Total 152451 100.0 610 100 67.50 1.00 100 

     

Geology 

Middle Siwalik 90768 59.5 551 90.3 1.52 0.37 36.67 

0
.0

0
 

0
.3

7
 

0
.3

7
 

 

5
.5

1
 

Swat 
Formation 

1243 0.8 7 1.1 1.41 0.34 34.02 

Melpani 
Formation 

4569 3.0 0 0.0 0.00 0.00 0.00 

Suntar 
Formation 

1695 1.1 0 0.0 0.00 0.00 0.00 

Lower Siwalik 6255 4.1 3 0.5 0.12 0.03 2.90 
Khara 
Formation 

10592 6.9 0 0.0 0.00 0.00 0.00 

Katuwa 
Formation 

8167 5.4 10 1.6 0.31 0.07 7.40 

Aru Formation 17454 11.4 34 5.6 0.49 0.12 11.77 
Charchare 
Formation 

7546 4.9 0 0.0 0.00 0.00 0.00 

Gawar 
Formation 

4162 2.7 5 0.8 0.30 0.07 7.26 

Total 152451 100.0 610 100.0 4.14 1.00 100.00 

     

Distance 
to 
Stream 

0 – 50 m 12654 8.3 73 12.0 1.44 0.26 25.81 

0
.1

8
 

0
.2

7
 

0
.1

0
 

 

1
.4

3
 50 – 150 m 21393 14.0 89 14.6 1.04 0.19 18.61 

150 – 300 m 29812 19.6 117 19.2 0.98 0.18 17.56 
300 – 500 m 31695 20.8 192 31.5 1.51 0.27 27.10 
500 – 1780 m 56897 37.3 139 22.8 0.61 0.11 10.93 

Total 152451 100.0 610 100 5.59 1.00 100 

     

Curvature 
Concave 68345 44.5 277 45.4 1.02 0.357 35.69 

0
.2

9
 

0
.3

6
 

0
.0

7
 

 

1
.0

0
 

Linear 12436 8.1 41 6.7 0.83 0.290 29.04 
Convex 72909 47.4 292 47.9 1.01 0.353 35.27 

Total 153690 100.0 610 100.0 2.86 1.00 100.00 

     

Aspect 

North  14707 9.6 10 1.64 0.2 0.02 2.27 

0
.0

2
 

0
.1

9
 

0
.1

6
 

 

2
.4

7
 

Northeast  15246 9.9 22 3.61 0.4 0.05 4.83 
East  19683 12.8 66 10.82 0.84 0.11 11.22 
Southeast 22359 14.5 125 20.49 1.41 0.19 18.70 
South  25821 16.8 118 19.34 1.15 0.15 15.29 
Southwest  21215 13.8 114 18.69 1.35 0.18 17.98 
West  19244 12.5 91 14.92 1.19 0.16 15.82 
Northwest  15415 10.0 64 10.49 1.0 0.14 13.89 

Total 153690 100.0 610 100.00 8 1.00 100.00 

     
Relief 

336 – 600 m 22295 14.5 79 13.0 0.89 0.24 24.26 

0
.1
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2
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9
 

600 – 1000 m 63894 41.6 260 42.6 1.03 0.28 27.86 
1000 – 1500 m 49448 32.2 228 37.4 1.16 0.32 31.57 
1500 – 1905 m 18053 11.7 43 7.0 0.60 0.16 16.31 

Total 153690 100.0 610 100.0 3.68 1.00 100.00 

     

Distance 
from 
Road 

0 – 50 m 19301 12.6 63 10.3 0.82 0.16 16.39 

0
.1

0
 

0
.2

6
 

0
.1

6
 

 

2
.3

9
 

50 – 150 m 30589 19.9 135 22.1 1.11 0.22 22.16 
150 – 300 m 37694 24.5 195 32.0 1.30 0.26 25.98 
300 – 500 m 32212 21.0 163 26.7 1.27 0.25 25.41 
500 – 1000 m 26957 17.5 54 8.9 0.50 0.10 10.06 
1000 – 1853 m 5698 3.7 0 0.0 0.00 0.00 0.00 

Total 152451 99.2 610 100 5.02 1.00 100      

 
 
 
Landslide Susceptibility Analysis 
By integrating all nine-factor maps, a Landslide 
Susceptibility Index (LSI) map was created (Fig. 13(a)). 
Final LSI = PRd1*FR1 + PRd2*FR2 + PRd3*FR3 + 
PRd4*FR4 + . . . . . . . . . + PRdn*FRn 

 
Where, 
PR = Predictive ratio of each factor 
FR = Frequency ratio of each class of a factor 
(Influencing domain) 

Here, the domain or influencing factor from Table 1 is 
given weight in the predictive ratio (Acharya & Lee, 
2019) (Table 3), which is determined as shown in eq. 3 
below: 
PR = (Maximum RF – Minimum RF)/ (Minimum RF 
of Maximum RF – Minimum RF) - - - Eq. 3. 
RF is an abbreviation for relative frequency. It is the 
proportion of a domain's class FR to the domain's 
overall FR.

 
 



47 

 

 

Nep J Environ Sci (2023), 11(2), 35-53 
https://doi.org/10.3126/njes.v11i2.58152 

Table 3 Weight of individual domain or factors. 

Factor / Domain PR Weight 

Curvature 1.00 100 

Distance to stream 1.43 143 

Slope gradient 2.12 212 

Relief / Elevation 2.29 229 

Distance to Road 2.39 239 

Aspect 2.47 247 

Geology 5.51 551 

Distance to Thrust 6.92 692 

Land use 13.88 1388 

 
 

 
 

Figure 13(a) Landslide Susceptibility Index (LSI) map. 
 
 
Equation (2) was used to produce LSI. The ROC/AUC 
curve was used to categorize LSI data. IBM-SPSS 
Statistics 20's success rate curves were used to conduct 
a qualitative analysis of the LSI (landslide susceptibility 
index) in order to assess the predicting ability of the 
suggested frequency technique for the landslide 
potential zone. The area under the success rate curve 
(ROC/AUC) in the aforementioned plot Fig. 13(b) is 
0.796, suggesting that the analysis is accurate, and that 
the prediction rate was 82.2% with an upper bound of 
84.2%. The success rate for determining landslide 
potential shows that 20% of the study area has a high 
rank and might account for 68% of the area's total 

landslides. Additionally, 40% and 50% of the proposed 
GWP levels might each account for around 85% and 
90% of all known landslides. A final map of landslide 
susceptibility is created utilizing the three Groundwater 
Potential classifications that have been established: 
stable zone (more than 40%), quasi-stable zone (20-
40%), and unstable zone (0-20%). In order to create the 
final landslide susceptibility maps (Fig. 14), the LSI was 
divided into three susceptibility zones, namely the 
stable zone, quasi-stable zone, and unstable zone, with 
threshold values of corresponding classes of 4.08, 4.65, 
and 15.72, respectively (Table 4). 
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Case Summary 

Slide Valid N (listwise) 

Positive 610 

Negative 152447 

Larger values of the test result variable(s) indicate 
stronger evidence for a positive actual state. 

a. The positive actual state is 1. 

Area Under the Curve 

Test Result Variable(s): LSI 

Area 
Std. 

Error 
Asymptotic 

Sign 

Asymptotic 
95% 

Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

.822 .010 .000 .802 .842 

The test result variable(s): LSI has at least one tie 
between the positive actual state group and the 
negative actual state group. Statistics may be biased. 

a. Under the nonparametric assumption 

b. Null hypothesis: true area = 0.5 

 
Figure 13(b) ROC/AUC Curve of the LSI model. 

 
 

Table 4 Upper boundary value set for different landslide susceptibility classes. 

Cumulative % Class Name 
LSI 

Upper Bound 

60% Stable Zone 5.4837 

80% Quasi Stable Zone 6.2129 

100% Unstable Zone 21.3258 

 
 

Table 5 Areal coverage by different landslide susceptibility classes. 

Landslide Susceptibility Method of 
Classification LSI Class Pixel Count Area (sq. km) Area % 

Stable 91216 36.49 59.83% 

ROC/AUC Curve 
Quasi Stable 30641 12.26 20.10% 

Unstable 30590 12.24 20.07% 

Total 152447 60.98 100% 

 
 
The final susceptibility map (Fig. 14), which was 
created using 9 influencing factor maps, indicates that 
the villages of Geja, Bhartapur, Halde, Malarani, and 
Mandre are in an unstable zone and are prone to 
flooding. The quasi-stable zone includes Baundi, 
Halde, Malarani, and Ghorli Kharka. The rest of the 
settlements are in a stable zone. Out of the total study 
area, 59.83 percent is stable (Banskharka, Kudapani, 
Tallo Amja, Amja, Upallo Amja, Bhaetapur, Upallo 
Khanda, Dandagaun, Chahala, Khursanibari, and 
Dhungri Khola Gaun), 20.1 percent is quasi stable, and 
20.07 percent is unstable and very prone to landslides 
in the near future (Fig. 15; Table 5). 

Landslide Causative Factors 
The contributing factors in this study were chosen 
based on the literature reviews, existence or absence 
and the significance of the attributing factors for 
landslides. The geomorphological, anthropogenic, and 
extrinsic components were all included in the landslide 
conditioning factors. In this study, the distance from 
thrust (MBT), aspect, slope, land use/land cover, relief, 
distance from stream, geology, distance from road, and 
curvature were taken into account while preparing the 
landslide susceptibility map. Table 1 provides the 
allocated weights for each type of causative factor.
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Figure 14. Landslide susceptibility map of the study area. 

  
Figure 15. Final landslide susceptibility class in Mandre-Khursanibari. 

 
 
The Mandre-Khursanibari region is prone to several 
slope instability difficulties because of the high slope, 
rough landscape, and weak rock state. The frequency 
ratio method's deduced weights demonstrate that the 
terrain slope significantly affects the distribution of 
landslides. In general, as the gradient of the terrain 
increases, landslides occur more frequently. The 
majority of the landslides in our research area, however, 
accumulated between 30 and 40 degrees, giving the area 
a high-frequency ratio of 1.33 and making it the most 
prone to landslides. (Table 1). 

 
The southeast, southwest, and west facing aspects have 
the greatest frequency ratio values, according to the 
aspect map's frequency ratio (Table 1). The greatest FR 
is 1.41 on the southeast aspect, followed by 1.35 on the 
southwest and 1.19 on the west slope (Table 1). The 
high-frequency ratios are 1.44 and 1.51 at the distances 
of 0 to 50 meters and 300 to 500 meters from the 
streams, respectively. The barren terrain has the 
greatest FR of all the land uses, at 62.48.  According to 
Table 1, it was discovered that the research area's 
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concave curvature surface is more prone to landslides 
because convex curvature has a high frequency of 
landslide occurrence with a FR value of 1.02. 
Additionally, it was noted that the Middle Siwalik zone, 
which has a FR value of 1.52, followed by the Swat 
Formation and Aru Formation, with FR values of 1.41 
and 0.49 respectively, was where most of the landslides 
occurred. Both the role of lithology and the presence 
of regional thrust can be considered as the major cause 
for landslide in several regions.   
 
Distance from the road implies that areas 0–50 m and 
300–500 m are more prone to landslides, due to their 
higher FR values of 1.44 and 1.51 respectively. The 
zone between 0 and 500 m distance is most prone to 
landslides since it is the distance closest to the thrust, 
where MBT has the highest frequency ratio value of 
2.41. 
 
Topographic Parameters 
In the analysis of earthquake-induced landslides, the 
digital elevation model (DEM) has been a key 
component (Kamp et al., 2008; Wang et al., 2015). 
Although there is no clear correlation between height 
and the likelihood of a landslide occurring, research 
indicates that the possibility increases with elevation 
(Ercanoglu et al., 2004). The elevation range between 
600 m and 1500 m has the highest landslide 
concentration. Another important topographic feature 
that is included in landslide susceptibility research is the 
slope's steepness (Wang et al., 2015; Kamp et al., 2008; 
Regmi et al., 2016; Regmi et al., 2010; Pradhan & Lee 
2010). Fig. 7 illustrates the slope's range, which is 0° to 
64°. The slope range between 30° and 40° has the 
highest landslide concentration. The slope's aspect 
mimics moisture retention and its relationship to the 
rock formation's bedding pattern, which in turn 
impacts the material's physical characteristics and 
susceptibility to failure (Dai et al., 2001). According to 
this study, landslides are mostly caused by aspects to 
the west, southwest, and southeast (Fig. 8).  It often 
occurs because several landslides occur on the slope 
towards the river and the majority of the river segment 
trends towards SW-SE. 
 
Given its significant impact in causing slope instability, 
the slope's surface undulation can have a significant 
impact on the occurrence of landslides. Landslides 
typically occur on convex slopes and concave slopes 
along curves (Neupane & Paudyal, 2021) (Fig. 11). 
Landslides brought on by earthquakes frequently occur 
on convex slopes (Reneau & Dietrich, 1987). When 
building roads, the area between 150 and 300 meters 
from the road is more prone to landslides. 
 
Anthropogenic Factors 
One of the landslide conditioning elements is land use, 
as changes in land use may affect the plant cover and 
thus affect mechanical and hydrological aspects (e.g., 
soil strength and slope behavior; see, for example, 
Greenway, 1987; van Westen et al., 2003; Reichenbach 
et al., 2014). The variance in the distribution of land 

uses may be either natural, caused by humans, or both. 
The frequency ratio weight values show that there is a 
larger association between barren land (62.48) and 
other land use groups, and our conclusion is consistent 
with that value. 
 

Conclusions 
In the present study, the Frequency Ratio model was 
used as a statistical approach to assess the geographical 
likelihood of landslides. Each factor layer was 
weighted, revealing positive correlations between the 
model's predictions and field circumstances, this 
verifies the FR method's ability to forecast the 
likelihood of landslides occurrence. Among the 72 
landslides studied, a notable 40% were found to be 
strongly influenced by the proximity to the thrust 
(MBT). Notably, the Middle Siwalik zone emerged as a 
hotspot for landslides, as identified by the geology 
factor map. The lithological setting especially the hard 
rocks resting over the soft rocks like mudstone, shale 
and claystone are the prime cause for landslides in 
many cases. A significant finding lies in the 
identification of slope angles between 300 and 400 as 
prime areas for landslide occurrences, emphasizing the 
role of steeper slopes and increased relief. Moreover, 
the terrain map analysis predicted that the number of 
landslides would fall when 1000 meters elevation is 
exceeded. In the Mandre-Khursanibari region, the 
present study reshapes the understanding of landslide 
susceptibility. While agricultural and forested areas 
dominate the landscape, the results imply that barren 
terrain is more susceptible to landslides. Importantly, 
the study underscores the direct association between 
the distance from the thrust and landslide occurrences, 
with the highest distribution of landslides within 0 to 
500 meters distance from the MBT zone. The presence 
of the MBT in this region has made the rocks inherently 
weak. The rocks in the MBT zone are highly crushed, 
sheared and intensely fractured. The major cause of the 
landslide is ultimately connected with the active 
tectonics of this MBT in the region. The most 
important aspect of our findings lies in the 
identification of factors viz. distance from the thrust 
and geology as primary contributors to landslide 
initiation in the Mandre-Khursanibari area. This insight 
not only enhances our understanding of local 
susceptibility but also holds implications for proactive 
land-use planning and targeted mitigation strategies. As 
we advance our understanding of landslide dynamics, 
future research could explore innovative 
methodologies and technologies to refine predictive 
models, ultimately contributing to more effective risk 
management practices in landslide-prone regions. 
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