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Abstract 

Research shows that college students make numerous algebra and other prerequisite 
content-related errors in Calculus courses. Most of these errors are common, 
persistent, and often observed in simple mathematical tasks. This qualitative study is 
an attempt to identify the potential sources of such errors. Based on our observations 
of student errors, we wrote a Precalculus and a Calculus test and administered 
them in twelve sections of four different undergraduate mathematics courses for 
which either Precalculus, Calculus I or both were a prerequisite. The tests were 
announced on the first day of the class and administered the following week. All 
the questions on the test were True or False questions. Based on our experience as 
college mathematics instructors, we assumed that many students would perceive the 
True answers as False and the False as True. Therefore, if students’ selected a given 
answer, mathematical statement, process or solution as True, they were asked to 
justify why that was not False and vice-versa. They were instructed to provide logical 
explanations and avoid plugging in numbers to check for correctness. Analysis 
of data using grounded theory approach resulted in the following three possible 
external sources of common and persistent student errors: a) Difficulty with symbols 
and/or lack of attendance to the meaning of those symbols, b) Instructional practices, 
and c) Lack of knowledge. We will provide examples to illustrate how such errors 
could have originated from these sources.
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Introduction

There is well-documented evidence that many students who take college 
mathematics courses often come underprepared (Poladian & Nicholas, 2013; 
Rodgers, Blunt, & Trible, 2014). Lack of prerequisite knowledge and skills are 
found to hinder student success in these courses (Booth et al., 2014; Stewart et al., 
2018). From our own experience as college mathematics instructors, we observe that 
many students make errors even on relatively simple tasks. While making mistakes 
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in mathematics is natural (Sousa, 2008), many of the mistakes are repetitive and 
common in nature (Elbrink 2007; Stavrou 2014, Benander et al. 1985 & Ashlock 
2006). Students often make similar and predictable errors.  For example, many 
students think 2 2+ = +a b a b  is a true statement even for nonzero numbers a and 
b. Despite continued effort, repeated observations of these errors can be frustrating 
to mathematics instructors. According to Stewart et al. (2018), many students 
also express frustration with their lack of algebraic skills, which they believe are 
inhibiting their success in solving calculus problems. However, they found that the 
same group of students were also made numerous errors on relatively simple calculus 
tasks that did not require algebraic and other prerequisite skills. This means that such 
repetitive common errors are not just limited to basic algebra. 

Research shows that the error patterns displayed by students are not due to 
carelessness alone or lack of insufficient practice (Ashlock, 2006). Then a natural 
question to ask in this regard is: why do students make such common and repetitive 
errors? Finding a specific and definitive answer to this question is difficult and 
impractical because error types vary from problem to problem, and students make 
such errors for a number of reasons. Even though some research has identified and 
categorized student common algebraic errors in calculus (Ashlock, 2010), research 
on identifying possible sources of such errors is sparse. This qualitative study is 
an attempt to list the possible external sources that can be attributed to students’ 
repeating common errors in algebra and calculus. 

Literature Review

There can be three different types of error in mathematics: factual, procedural, 
or conceptual, and those errors may occur for a number of reasons (Lai, 2012). 
Students make errors primarily due to two reasons: lack of knowledge (Hudson 
& Miller, 2006), and carelessness and poor attention (Stein, Silbert, & Carnine, 
1997). However, research also shows these are not the only reasons of error patterns 
displayed by students (Ashlock, 2006). This indicates that there are other sources of 
student errors that need to be identified. 

The use of symbols that are used to express mathematical expressions, 
functions, and statements could be a source of student difficulties because they add 
a layer of abstraction to novice learners. According to Drouhard and Treppo (2004), 
although the language aspect of mathematics (that is, use of symbols) makes it 
possible to “move fluently through a layer of abstraction and compress complex 
mathematical thoughts into efficient symbol strings” (p. 240), such characteristics 
also make symbolic writings very “opaque” to novice learners. As a result, many 
students carry out procedures to ‘solve’ problems by manipulating the symbols 
but without attending to or understanding the meaning of those symbols (Harel, 
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Fuller, & Rabin, 2008). Gray and Tall (1994) introduced the notion of “procept” 
to describe a combination of symbols that can be interpreted as a process, or as 
denoting a mathematical object of that process. In any given mathematical context, 
they consider students as fluent in algebra (and other areas of mathematics) if they 
have no difficulty in moving back and forth between these two viewpoints. Sfard 
and Linchevski (1994) see this duality of process and object as two different layers 
of mathematical understanding, which involves operational and structural modes of 
thinking. They introduced a notion of “reification” to explain these hierarchical levels 
of cognitive abstraction: moving from process to seeing it as an object in its own 
right. Since it involves a significant cognitive restructuring to move back and forth 
between these two levels of mathematical understanding, many students often face 
difficulties with symbolic representations of mathematics. According to them, how 
individuals interpret a collection of symbols depends on their preparedness to notice 
and ability to perceive. 

Researchers suggested that students’ difficulty with symbols and their poor 
attendance to the meanings of those can be linked to certain teaching practices 
(Brousseau, 1997; Harel et al., 2008; Schoenfeld, 1991). Brousseau (1997) referred 
to this phenomenon as didactical obstacles. Teaching practices that deemphasize 
the meanings of symbols and definitions “may encourage the undesirable non-
referential symbolic way of thinking, wherein students view symbols as having a life 
of their own and manipulate them based on arbitrary rules” (Harel et al., 2008, p. 
125). Schoenfeld (1994) suggested that students’ overall impression of mathematics 
comes directly from the practices of their mathematics classrooms. Based on class 
observation of teachers, Harel et al (2008) suggested teachers’ use of “shortcut” rules 
and treatment of symbols and mathematical expression of certain forms as inputs to 
a standard procedure is deemphasizing the meaning of the symbols and expressions. 
According to them, such teaching practices can develop a belief in students that 
carrying out procedures is more important than understanding the meaning and 
reasoning. For this reason, if teachers do not attend to the meanings of symbols as 
they teach, students may develop a non-referential symbolic way of thinking (Harel, 
Fuller, & Rabin, 2008). 

Impact of algebraic errors on students’ success in calculus courses has 
been well documented in the literature. Most of those errors are widespread 
among students, persistent, and are made on relatively simple tasks (e.g. Booth et 
al., 2014; Stewart et al., 2018). Students are also found to make errors on simple 
calculus tasks that do not require algebraic and other prerequisite skills (Stewart 
et al., 2018). Existing research is mostly limited to identifying and cataloguing 
algebraic and computational errors (e.g. Ashlock, 2010), but studies on identifying 
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potential sources of common but persistent student errors is sparse. Using previously 
identified student difficulties in the literature and our own observation of student 
errors as college mathematics instructors, this research attempts to close this gap by 
identifying the possible sources of such errors. In particular, we aim to answer the 
research question: Where do students’ common and persistent errors in algebra and 
calculus originate from? 

Method

In the summer 2018, the authors met in a research workshop in which 
classroom experiences were shared among authors, and a decision to collaborate 
on this project was made. Two co-authors were teaching at small two-year colleges 
in the Midwest, one in a small private four-year college, another one in a medium-
sized public university, and the other in a medium-sized private university in the 
southeastern United States. 
 Based on the review of literature and our own experience as college 
mathematics instructors, we developed a framework to design and guide our research 
as well as to understand the results of the study. Based on review of literature, 
we found that use of symbols in mathematics generally add a layer of abstraction 
making the learning process more difficult for the learners. Learning of any subject 
is a function of how students are taught, and what the students bring with them from 
their prior experience (e.g. Ball, 1988). Harel, Fuller and Rabin (2008) found that 
certain instructional practices and classroom culture hinder student learning (Harel, 
Fuller & Rabin, 2008). They found that mathematics teachers also provide “rules” 
to memorize, “keywords” to look for, and procedures (in addition to the concepts 
in most cases) to “solve” problems. In many cases, teachers are likely to teach the 
way they had experienced teaching as students, and students are also likely to follow 
“steps” or prescribed procedures to “solve” problems without even understanding 
or knowing what and why they are doing. Students carry out procedures to solve 
problems without understanding or attending to the meanings of the symbols being 
used. Such “teaching” and “doing mathematics” have been established as cultural 
phenomena among many teachers and students. Based on our own experience 
as mathematics instructors, we find that students do not always store conceptual 
knowledge, correct “rules”, “kew words” and procedural steps in their brain, and 
in many cases, they overlook the contexts (or even blindsided by the instructional 
practices) in which those rules or procedures could be applied. Even if they have 
stored complete information, many of them can retrieve only partial information 
when they solve problems. When students have perceived any concepts or 
procedures as correct (even if they are not), research shows that “unlearning” is more 
difficult than learning (e.g. Lubelfeld & Polyak, 2017) and therefore, relearning to 
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correct such misconceptions is difficult causing the errors to persist. In many cases, 
students learn and internalize correct concepts, and even retrieve them when they 
need to use them. However, they commit careless mistakes due to poor attention. 
We believe different combinations of these external factors eventually give rise to 
student errors, and so we have used this as our framework to design our research 
and understand the sources of student errors (see Figure 1). We want our readers 
to know that we are only seeking to identify possible external factors or sources of 
student errors. We understand that analyzing student thinking from the perspective of 
cognitive psychology is needed to determine the root cause of student learning.
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Figure 1. Our framework to understand external sources of student errors. 
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Figure 1. Our framework to understand external sources of student errors.

Based on this framework, and our past observation of student errors, we 
carefully developed and administered two tests (precalculus and calculus) in the 
Fall 2018 semester to assess students’ prerequisite concepts and skills. We wrote 
problems that many students were assumed to make errors in their solutions (both 
tests can be found in the appendix), stemming from each of the sources as depicted 
in Figure 1. For example, some problems were written anticipating students’ careless 
errors while some others were written anticipating errors due to abstraction brought 
by the use of symbols. The precalculus test included problems involving algebra, 
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exponential, logarithmic and trigonometric functions that are taught in a typical 
precalculus course in the United States. Similarly, the calculus test included only 
basic limits, derivative and integral problems that are taught in a typical calculus I 
course. Each test included 12 problems and the students were given a 40 minutes 
time limit. The problems in the tests were True or False questions. We were 
interested in learning why students would perceive incorrect answers, statements 
or justifications as correct, and correct as incorrect. For this reason, if they selected 
True, we asked them to justify why that was not False. Similarly, if they selected 
False, they were asked to justify why that was not True. For example, if students 
choose the statement 2 2+ = +a b a b  as True, they were asked to justify why it was not 
False. We also asked students to avoid plugging in numbers to check for correctness 
and giving reasons such as “it is not True because it is False”. Rather, they were 
asked to provide logical explanations in their justifications. 

We selected our research participants using convenience sampling: those 
students who were enrolled in our own classes. After getting an IRB approval from 
the Institutional Review Board, we secured informed consent from the participants 
to voluntarily participate in the research. Since all the students were 18 years or 
older, and they all agreed to participate, no one was excluded from participating in 
the research. After the data was collected, student papers were scanned, and stored in 
password protected personal office computers removing all identifiable information 
of the students

The Precalculus test was administered in 12 sections of four undergraduate 
courses: Business Calculus, Calculus I, Calculus II, and Introduction to Differential 
Equations. The Calculus test was given to three sections of Calculus II, and one 
section of Introduction to Differential Equations. We announced the tests on the 
first day of the class and administered them the following week. We employed the 
constant comparison method (Strauss & Corbin, 1994), a Grounded Theory approach 
to analyze our qualitative data (student justifications). During our initial discussion, 
we decided to grade student responses in each problem and code supporting 
justifications to categorize them into one of the two predetermined categories: right 
choice supported by right justifications (RR) and wrong choice supported by wrong 
justifications (WW). A random sample of 20 exams (a total of 240 responses) was 
selected which was coded independently by each author. Some students selected 
right answers but they provided either incorrect or unsatisfactory justifications or 
no justification at all. In our next meeting, we decided to categorize such responses 
into the third category: right choice supported by unsatisfactory justifications 
(RU). Afterwards, we analyzed data collected from our own respective classes and 
categorized them into the three categories RR, WW, and RU. 
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In the next step, we focused our attention on the category WW because we 
were interested in understanding the sources of student errors in their justifications. 
We independently coded student justifications in each problem of the same random 
sample for possible sources of errors. We met again to discuss our codes, renamed 
our codes as necessary, and sorted out any discrepancies. The discussions continued 
until we reached 100% agreement in each problem. As we saw similar (but incorrect) 
justifications in multiple students’ responses such as “this was a rule given in high 
school”, we realized that we should have included student interviews in our research 
design. Since class observation was not an option (we were assessing students’ 
prerequisite knowledge at the beginning of the semester), we also decided to use our 
experiences, perceptions, and reflections of our own teaching (such as how we had 
or would have taught the concepts/skills we were assessing) to help us in the coding 
process. Each of us then coded the data from our respective classes during which we 
sought each others’ opinions multiple times if there were difficulties in coding any 
student responses. After multiple rounds of discussions, reading and rereading of 
student justifications, and sorting our codes, four refined categories of the sources of 
student errors emerged. The categories along with some illustrative examples will be 
discussed in the Results and Discussion section. 

Results and Discussion

Altogether 232 students participated in the study. When the data from both 
tests were combined together, we found that 48.6% responses fell into the category 
RR, 12.8% into RU, and the remaining 38.6% into WW. Tables 1 and 2 provide the 
percentages of these categories in each problem. Note that the problems in the tests 
did not appear in the given order; they are ordered according to the highest to lowest 
WW rates. 
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Table 1

Percentage of categories WW, RU and RR by problems in the precalculus test
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Table 2

Percentage of categories WW, RU and RR by problems in the calculus test

Our analysis resulted in the following thee refined categories for possible 
sources of student errors. Codes, groups of codes, and final refined categories can 
be found in the Appendix B. We want our readers to know that these sources or 
factors should not be considered as complete, definitive, or mutually exclusive. We 
understand that it is not reasonable to attribute student errors directly to a particular 
source because most of the errors were carried over from the past (we were assessing 
students’ prerequisite concepts and skills). 
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a) Difficulty with symbols and/or lack of attendance to the meaning of those symbols. 
We found that students had either difficulty with the use of symbols or they 

did not attend to the meanings of those symbols. For example, a little more than one-
third of the students considered the following derivative ( ) ( ) ( )d sin cosx  cos cosx  sin sinx

dx
= + −  as 

correct. In their justifications, they wrote that the product rule was correctly applied 
and that the derivatives of both Sine and Cosine functions were correct. This example 
shows that many students have difficulty with the use of symbols in denoting 
trigonometric functions and their compositions. For them, the function ( )sin cosx  and 
the product sin x cosx were the same. Despite treating ( )sin cosx  as the product, they 
were probably thinking that it was okay to write the argument x in one of them and 
not in the other. For example, a student wrote that “the derivative of the product is 

( ) ( ) ( ) ( ) ( ) ( )f x .g x f' x g x f x  g' x= + ” without writing the derivative symbol on the left side 
(see Figure 2). 

Figure 2. An example illustrating how students overlook symbolic  
representation of a composite function.

 The student failed to see the distinction between the composition and the 
product of functions in the first place. Even though this particular student correctly 
remembered the product rule for derivatives, student’s use of symbols to express 
the product rule is incorrect despite writing “the derivative of the product”. The 
statement ( ) ( ) ( ) ( ) ( ) ( )f x .g x f' x g x f x  g' x= +  would make no sense. This example 
shows students’ difficulty with the use of symbols or their non-attendance to the 
meaning of the symbols they use to express mathematical statements. 

We also observed that students often get confused with the same symbol 
to represent two different things. For example, we noticed that students often have 
difficulty in distinguishing the difference between the reciprocal of a function and 
its inverse primarily because of the use of the same superscript -1. A little more than 
a quarter of the students (27%) thought that the inverse of cosine function 1cos x− is 
the same as the reciprocal 1

cosx . In their justifications, they stated that since 1 1x  
x

− =  is 
true, the above statement should be true as well for the same reason. Their confusion 
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seems to have stemmed from our conventional use of the same superscript symbol 
-1 to denote the reciprocal of a quantity and the inverse of a function. Since students 
learn the reciprocal of numbers and the symbol to denote them earlier than the 
inverse of functions, it looks like they find it difficult to use the same symbol for the 
inverse functions. 
 Around 38% of all the students marked the statement 1

2
1tan x 

1 x
− =

+  as True, 
which came as highly surprising to us. One of the students wrote “This is not False 
because the basic derivative rule of arctan gives this”. It is worth mentioning that 
the statement did not have a derivative or integral symbol. However, this student 
assumed that the derivative symbol was there, but it was either not necessary or not 
important in the statement. We considered justifications like this as examples of 
students’ lack of attention to the meaning of the symbols.  This particular student 
justification also shows how students incorrectly verbalize the mathematical 
statements expressed with the use of symbols. Similarly, some students justified 
the statements 1

2
1tan x 

1 x
− =

+  and Sinx 1
x

=  as true by writing these are “the standard trig 
identities we learned in high school (or college)”. As we know, there needs to be 
either a derivative symbol on the left or an integral symbol on the right for the first 
statement to be True and a limit (as x approaching zero) symbol for the second 
statement. However, students either did not pay attention to those symbols and 
their meanings or they were not able to recall the operations such as derivative and 
integral operating on one of those functions, or they just thought they were not 
important. 

In many cases, several symbols are used to express a mathematical statement. 
Even though such denotations and statements are trivial for experts, they could 
actually be very difficult for novice learners to comprehend. For example, around 
33% of the students marked the statement Sinx 1

x
=  as True. They provided justifications 

such as “it is a known trig identity” and “this is a rule we learned in calculus”. 
Many students perhaps know that the Sine function oscillates but the function ( )f x x=  
does not. Most likely, they can even correctly recall the graphs of these functions. 
However, the students seem to sinx

x  as a constant function whose value is 1 for all 
x. Therefore, despite having the correct information at hand, many students did not 
pay attention to the “ratio” of those two varying quantities. Actually, we wanted 
to check if the students pay attention to the meaning of the limit symbol in the 
statement

x 0

sinxlim  1
x→

= . This is a function whose limiting value as x approaches zero is 
discussed using numerical, graphical, geometrical, and even using L’Hopital’s Rule 
in a standard Calculus I course in the US. In this statement, there are many symbols 
involved: the limit, the variable x, the function sinx

x , the equal sign, and the numbers 
0 and 1. Among these pieces of information, students perhaps stored only partial 
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information, or even if they had stored the complete information, they retrieved those 
that stood out clearly to them: only Sinx 1

x
=  in this case. Based on student justifications, 

it is likely that students would consider the statement x 0

sinxlim  1
x→

= as True if the number 
zero was replaced by infinity or any other number. 

b) Instructional practices (use of memorized “rules”, keywords or forms of 
expression). 

Students were found to use many memorized “rules” that could have been 
either given by their instructors or made by themselves. In many cases, their rules 
consisted of only partial information. Students either memorized partial information 
given by their instructors, or they were not able to retrieve the complete information. 
Some important conditions under which their “rules” would be true were missing 
in their rules. For example, 60% of the students marked the statement ( 3lnt)e 3t− = −  as 
True, and based on their justification, almost all of them selected their answer based 
on the same rule: “e and ln cancel each other out”. In their written justifications, 
students implied that they could “cancel e and ln out” as long as they see both of 
them in the same expression. Similarly, 63% of all the students marked the statement  
logx logx logy
logy

= − as True providing the same justification: “product gives sum, division 
gives difference” (see Figure 3). 

Figure 3. An example of a student's use of memorized rule.
Students perhaps stored and retrieved the key words ‘logarithmic function’, 

‘division or quotient’, and ‘difference’ from the above “rule”. In the same 
manner, one-third of all the students considered the statement 2 2a b a b+ = +  as True 
because “square and square root cancel each other out”, a “rule” that they made 
by themselves or given by their teachers or someone else. Student justifications 
indicated that students are often misled by such rules because they seem to be caring 
less “under what conditions” their “rules” could be applied. Interestingly, 38% of all 
the students answered that x  was correctly distributed in ( )2x 1 x x x+ = + . 
They believed that this statement should be True because “square and square root 
cancel each other out”. This indicates that they tend to “cancel” the square and 
square root as soon as they see those in a given expression without attending to the 
underlying operations. 
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Many students are found to have paid more attention to the “forms” of the 
expressions to follow memorized procedures. For example, some students thought 
that it was okay to solve the equation ( )x x 2 4− =  by equating each factor on the left 
side to the number on the other side (see Figure 4). In this case, students treated 
the equations ( )x x 2 4− =  and ( )x x 2 0− =  similarly, and followed a memorized 
procedure without attending to the meaning of the expression ( )x x 2−  and the 
equation as a whole. Here, the students did not pay attention to the fact that the 
procedure they intended to use was “if the product of two real numbers is zero, 
either one or both of those must be zero”. But, as can be seen in the justification (see 
Figure 4), the student used the memorized rule “since the two expressions are being 
multiplied, you can look at them separately.” 

Figure 4. An example showing how students use forms of expressions as a guide to 
use a procedure without attending to the meaning of the expression.

 Similarly, 34% of the students answered the statement ∫ 2 21/ x dx 1/ x dx ln x ln x C+ ∫ = + +  
2 21/ x dx 1/ x dx ln x ln x C+ ∫ = + +  as correct. In their justifications, they indicated that since  

∫1/ x dx ln x C= + is true, the same should be true for 2 21/ x dx ln x C∫ = +  . Interestingly, 
20% of all the students also answered the statement lnx dx 1 / x C∫ = +  as True in the 
same test. In the later case, students’ memorized rule was “lnx gives 1/x, and 1/x 
gives lnx.” They paid attention to only the functions but not much to the operators 
(differential or integral) or could not retrieve the correct operations on the correct 
functions. 

Class observation was not a part of our data collection because we were 
assessing students’ prerequisite concepts and skills at the beginning of the semester. 
However, after reading student justifications and existing literature, we reflected 
on our own teaching practices and agreed that many of the student errors could 
have come from our own classroom practices. We understand that we need class 
observations and more data to back up any claims. Therefore, we only speak for 
ourselves here. There are several concepts, skills or symbols that are trivial for 
us (instructors) but confusing and difficult for students to comprehend. When we 
teach, we often overlook (unintentionally) their difficulties and how they process 
information in their minds, and internalize concepts and procedures, which could 
have unintended consequences in student learning. For example, while introducing 
the concept of and symbols to denote inverse functions, we could be overlooking 
the fact that the use of the same superscript -1 to denote reciprocals and inverse 
functions could be confusing students. A brief review of the reciprocal of numbers 
or functions and their symbols before introducing the concept of inverse functions 
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and their symbol could have helped. Similarly, after introducing the concept of 
inverse of a function, a simple example such as “the reciprocal of a nonzero number 
x is ( 1)x 1/ x− = but the inverse of a function ( )f x x=  is itself, that is ( )1f x x− = ”  could 
help alleviate student confusion between the reciprocals and inverses. Similarly, 
explaining conventional use of the superscript -1 in sin–1x  is reserved only to denote 
the inverse sine function but the reciprocal of sinx is written as (which is cscx) 
could help. Comparing the graphs of reciprocal and inverse functions could help the 
students further to see the distinction between the two. When we reflected on our 
teaching practices, we realized that we just introduced the concept of inverse of a 
function and the notation used to denote inverse functions without stressing much on 
the distinction of the two concepts despite the similarity of the symbols used. 

When we reflected on our teaching practices, we all agreed that we showed 
(or had students show) the standard limit example x 0

sinxlim  1
x→

=  using numerical, graphical, 
geometrical, and later even using the L’Hopital’s Rule. Still, several students marked 
the statement sinx 1

x
=  as True. In their justifications, students wrote that “it is a known 

trig identity” or “this is a rule we were given”. In the limit statement x 0

sinxlim  1
x→

=  there 
are many symbols involved: the limit, the variable x, the function sinx

x , the equal sign, 
and the numbers 0 and 1. Based on student justifications, we can see that some of the 
information either goes unnoticed or is hidden from their view or students simply 
think it is okay to not write all of the symbols. As a result, the students perhaps store 
only partial information, or even if they have stored the complete information, they 
are able to retrieve only those that stand out clearly to them: only sinx 1

x
=  in this case. 

When we reflected on our teaching, we realized that we did not either emphasize 
enough on the meaning of the limit symbol or the covariation between the variable  
and the function, or did not stress the importance of the domain or the graph of 
the function. As a result, the students either did not understand the meaning of the 
limit symbol and its importance in the statement x 0

sinxlim  1
x→

= , the number where x was 
approaching (zero in this case), and therefore, the limit symbol could have become 
less important or even non-important to them. We showed the graph of the function 
sinx

x  (or had students graph it) but did not ask them to find the limit as x approached 
other numbers rather than just approaching zero (even if the function is continuous 
elsewhere). If we (and other instructors) do this, perhaps the students would see the 
covariation of the independent variable and the function, and that the limit would not 
always be 1. 

Similarly, as we reflected on our teaching, we explicitly (or would have) 
mentioned that “if the product of two real numbers is zero, either one or both of them 
must be zero” while teaching how to solve equations like ( )x x 2 0− = . We assumed that 
this should be a simple concept and students should have no difficulty internalizing 



K. Nepal, K. Pokharel, D. Basyal, D. Banjade & M. Lamichhane22

Mathematics Education Forum  Chitwan, September 2021, Issue 6, Year 6

it. However, after analyzing student justifications, we observed that they pay more 
attention to the form of the expression and the process rather than to what role the 
number zero on the right-hand side of the equation plays (see Fig 3 above). As a 
result, when students saw equations of similar form ( )x x 2 4− = , they tend to separate 
x=4 and x–2=4 to solve. As we discussed how we would have taught to solve this 
equation, we all agreed that we would not stress enough on the role the number zero 
on the right-hand side plays (we would have certainly mentioned it once) and perhaps 
would not even give an example to explain why the process would be different if the 
number on the right-hand side was not zero as in ( )x x 2 4− = . This made us realize 
that our instructional practice could be a cause of student errors. Similarly, if we 
were to teach inverse of functions, at one point, we would have come to explain 
why ( )( )1f f x x− =  and ( )( )1f f x x− =  in their domains but we could have easily forgotten 
to give examples to explain why ( )( )1f cf x− is not always equal to cx for a constant c. 
Our action can easily cause students to make their own rule such as “f and f–1 cancel 
each other out” and “e and ln  cancel each other out”. As a result, student error in 
considering the statement 3lnte  3t− = − as True can be attributed (at least partially) to our 
classroom practices. About 60% of the students considered this statement as True in 
our data. 

c) Lack of knowledge. 
This factor or source is the least interesting for us as researchers, perhaps an 

easy guess to the readers, and also documented in the literature (Hudson & Miller, 
2006). In many cases, students simply did not have the knowledge of some of the 
mathematical facts or conventions, and as expected they were likely to make errors. 
In most such cases, it was not easy for students to check the correctness of the 
‘facts’ they thought were true or not true because checking the correctness would 
also require knowledge. For example, 22% of the of all the students considered the 
statement “If log x 2=  then 2x 10= ” as False, and 44% of them considered x x 1d a xa

dx
−=

as a True statement (for a positive constant a). To be able to check the correctness 
of these statements, they needed to know the definition of the exponential and 
logarithmic functions, the distinction of the exponential and power functions, and 
how their derivative formulas were derived. Similarly, 23% of all students did not 
know the correct derivative of an inverse Sine function, which eventually made it 
difficult for them to check the correctness of the antiderivative. 

The factors or sources discussed above were investigated individually 
for their impacts on student learning. However, we did not find any studies that 
attempted to link common and persistent errors (especially related to calculus 
concepts) to these factors. This study has been able to fill that gap in the literature 
to some extent. There are documented evidences of students’ challenges with 
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mathematical symbols and their non-attendance to the meaning of those symbols 
(e.g. Bigg & Pierce, 2020; Drouhard & Treppo, 2004; Harel, Rabin & Fuller, 2008; 
Rubenstein & Thompson, 2001). According to Rubenstein and Thompson (2001), 
mathematical writing with the use of symbols challenges our students, and as a 
result, they face difficulty in verbalizing, reading, understanding, and expressing 
their mathematical ideas in writing. While the use of symbols in mathematics enables 
us to express abstract and compress complex mathematical ideas efficiently in 
writing, these symbolic writings add another layer of abstraction to novice learners 
(Drouhard & Treppo, 2004). As a result, students cannot move back and forth 
easily between the process and object viewpoints of the combination of symbols 
used to denote a mathematical expression (Gray and Tall, 1994). Since it involves a 
significant cognitive restructuring to move back and forth between these two levels 
of mathematical understanding, many students often face difficulties with symbolic 
representations of mathematics (Sfard and Linchevski, 1994). Many students, 
therefore, just look at the forms of expressions and follow a set of procedures to 
‘solve’ problems by manipulating the symbols but without fully understanding or 
attending to the meaning of those symbols (Harel, Fuller, & Rabin, 2008). 

There can be other factors or sources of student misconceptions and some 
of these difficulties could be inherent to the subject itself. However, most of the 
potential sources of common and persistent student errors could be the result of 
instructional practices. Observing classes of high school mathematics teachers, Harel, 
Fuller, & Rabin (2008) noticed various issues concerning purpose, mathematical 
terminologies, and mathematical symbols. There were several instances where 
the instructors demonstrated no intellectual purpose for what they were teaching, 
mathematical symbols were either ignored in many cases, or were presented without 
giving their meanings. In some cases, the symbols were also treated as inputs 
to procedures. Similarly, more emphasis was given to the forms of expression, 
procedures were treated as more important than the meaning of the terms, and the 
term short-cut was used to show quicker computations shadowing the underlying 
concepts. Likewise, they noticed that either incorrect definitions were accepted 
in some cases or multiple definitions were accepted without even discussing their 
equivalences or differences. Summarizing the perceptions of mathematics faculty 
and tutors, Begg and Pierce (2021) state that the students transitioning from high 
school to college have difficulty with symbols not only because they are not familiar 
with the symbols and syntax but also because the symbols and syntax template they 
are already familiar with also take on a different meaning or range of meanings 
in college mathematics courses (Begg & Pierce, 2021). The faculty and tutors in 
that research also believe that the comprehension of symbols in newer context and 
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extended domain should be explicitly taught to the students. 

Implication for Instruction

We believe that our classroom practices should align with what we expect our 
students to learn. As the results suggested, mathematical symbols and instructional 
practices were two major sources of student errors, mathematics instructors’ 
assessment instruments should value mathematical communication skills, and 
continuously reflect on their teaching practices. Moreover, they should also collect 
and analyze the cognitive aspect of common student errors to find the root cause of 
such errors. And since it can be difficult to unlearn what has been already “learned”, 
middle and high school teachers should be made aware of common difficulties of 
students transitioning from schools to college, and be provided training and resources 
for early intervention. We end this paper by endorsing Schoenfeld’s (1994) statement: 
“the activities in our classrooms can and must reflect and foster the understandings 
that we want students to develop with and about mathematics.” (p. 60). 

There are some limitations to this study. The institutions from which the data 
was collected were not randomly selected. The sources of student errors that we 
came up with were solely based on the analysis of written justifications provided by 
the students, and using our reflections, experience and perceptions. Future research 
should include classroom observations, interviews of students as well as those of 
school and college mathematics instructors, and the data should also be analyzed 
from the perspective of cognitive psychology to find out the root causes of common 
and persistent student errors. 
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Appendix A 
Precalculus Test 

MATH*** Precalculus Exam          ID: 
Instruction: Circle True or False under each statement. If your 
answer is True, explain why it is Not False, and if your answer 
is False, explain, why it Not True. Do Not check your answer 
by plugging in number; provide logical explanations to each of 
your answer.  
1. The ONLY solution to the equation x2 = 4x is x = 4  
          True         False      Justification  
2.                             

True         False      Justification  
3.                               

True          False     Justification  
4. √  (    )   √      

True         False     Justification  
5.        (     )      

True        False     Justification  
6. √                      

True        False     Justification 
7.                              

True        False     Justification 
8.          

                      
      True        False     Justification 
9.                      

True       False    Justification 
10. A student solved the equation  (   )    as follows, x = 

4, x-2 = 4 and got x = 4 and x = 6 his answers. His solution 
is   

True        False,    Justification  
11. If b the hypotenuse and c and a are the two legs of a right      

triangle, then          
     True    False,      Justification  
12.  

    
 
  

 
            

       True       False,    Justification  
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Calculus Test 
MATH***                   Calculus Exam          ID: 

Instruction: Circle True or False under each statement. If your 
answer is True, explain why it is Not False, and if your answer 
is False, explain, why it Not True. Do Not check your answer 
by plugging in number; provide logical explanations to each of 
your answer.  
1. Let a is a constant and x is a variable. Then     

          
False          True    Justification  

2. If x is a function of x, then     
         

False       True   Justification  
3.         

             False          True       Justification  

4.  
   

              False          True        Justification  

5.  
     (    )     (    )      (     )    

False          True    Justification  
6. ∫ (   

 
  )    | |    |  |        

 False          True   Justification  
7.                       

  False             True   Justification  
8.  

   
                 

 False             True   Justification  

9. ∫
 
  

   
      

 ∫
    
        

False          True       Justification  
10. ∫  

√                 
  False        True   Justification  

11.        
   
      

 
     

False          True    Justification  
12.  ∫         

     
False     True    Justification  
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Appendix B
Codes and Groups

Codes Groups Themes

Inverse functions as reciprocals
Composition of functions as their 
product

Multiple use or meaning of 
same symbol/similar looking 
expressions

Abstraction/difficulty with 
meaning of symbols

Difficulty with symbols/lack 
of attention to meanings of 
symbols

Understanding parts but not the whole
Treating function names as quantities
Illegal distribution (of operators, 
function names, exponents, symbols, 
fractions etc.)
Illegal swapping of symbols or operators
Difficulty with function and inputs
Difficulty with relationship between 
variables
Not using or inappropriate use of equal 
sign
Assuming symbols/operators (limits, 
differential and integral) without being 
given 
Assuming symbols/operators without 
writing them to follow procedures
My teacher gave me this (rule, 
procedure, identity etc.)
We were told to do this if …
I know this because I learned it in high 
school
We used to do this 

Teacher

Instructional practices

Square and square root cancel each other 
out
Natural log and e cancel each other out
In log, multiplication gives sum and 
division means subtraction
Can pull constants out (of operators)
This is a rule
This is an identity
Using forms of expression as a way of 
selecting a procedure

Given or made up rules/
procedures   

No idea
I don’t know
I never learned this
I am seeing this for the first time

Unfamiliar to content

Internalization/retrieval

Lack of knowledge

My mind is blank right now
Perhaps because …


