
Nepalese Linguistics, vol. 35, 2022, pp. 1-6. DOI: https://doi.org/10.3126/nl.v35i01.46553 

 

PREPROCESSING OF NEPALI NEWS CORPUS FOR DOWNSTREAM TASKS 

Sushil Awale, Suraj Prasai, Birodh Rijal & Santa B. Basnet 
 

Text collected from online resources introduce a 
lot of errors which results in incorrect learning 
outcomes in automatic language learning tasks. In 
this paper, we discuss a Nepali text preprocessing 
pipeline to generate clean corpus. This pipeline is 
tested using a language model to observe impact of 
each steps in learning task. The relevancy of this 
work lies in systematizing the procedure in the 
development of standard Nepali corpus. 
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1. Introduction 

Text preprocessing is the first step in a Natural 
Language Processing (NLP) pipeline and it is a 
very important step. Text preprocessing is the 
process of transforming raw textual data into a 
normalized form suitable for numerical and 
statistical operations in order to perform various 
analyses.  

In training Nepali NLP systems, text data is often 
scraped from Nepali news sites, eBooks, pdfs, 
blogs, and other online sources. The data from 
these sources often contain words with glyph 
errors, misspelled words, Non-Devanagari words, 
typos. Glyph errors are mostly caused by poorly 
built font conversion tools that are easily available 

online. A common glyph error is in converting फ 

from True Type Font (TTF) to Unicode. For 

example, फेवा  is translated as पेmवा. Typos and 

misspelled words are also quite common in online 
texts. Publishers make these mistakes due to 
various reasons such as inability to write the word 
correctly with available keyboards or lack of 
Nepali spell knowledge. In NLP models, different 
spellings for the same word result in different 
representations of the words in the vector space. As 
a result, the learning outcomes prove to be 
inefficient. 

In this paper, we introduce a text preprocessing 
pipeline that addresses the above-mentioned  

issues. We designed an NLP pipeline that filters 
Non-Devanagari words using a simple heuristic-
based algorithm, repairs glyph errors, and corrects 
misspelled words. We then run our text corpus 
through the pipeline and train a language model. 
Finally, we evaluated the language model for 
sentence completion tasks. The goal of our 
evaluation study is two-fold: 

i. Evaluate the impact of each individual 
preprocessing step in the result of the trained 
model, 

ii. Devise the best preprocessing pipeline for 
cleaning large Nepali corpus.  

2. Related work 

Text content collected from various sources 
contains different types of errors. Preprocessing the 
text is the first step in the pipeline of natural 
language processing (NLP) systems. The basic text 
preprocessing steps that involves tokenization, stop 
word removal, text normalization, stemming etc. 
(Camacho-Collados and Taher, 2018) have used 
lowercasing, lemmatizing, multiword grouping 
etc. tasks in text categorization and sentiment 
analysis which has better performance on 
preprocessed text. Improved performance is 
achieved while using text preprocessing and 
dimension reduction techniques are applied in text 
clustering systems (Kadhim et al., 2014).  Deep 
learning system often ignore the preprocessing of 
collected text which has an impact on the 
performance of the system.  

There are chances of additional type of error in the 
collected text for languages like Nepali. Most of 
the publications and news houses use traditional 
TTF fonts to produce the significant amount of text 
on a daily basis. Internet browsers do not render 
TTF fonts unless the font resources are provided in 
the user’s machine. Before publishing the content 
in the web most of the publisher use automatic font 
conversion program to convert text in TTF format 
to Unicode. Due to limitation of these automatic 
converter, the converted text is erroneous. There is 
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high possibility of broken glyph and character 
ordering in forming the character conjunct. Basnet 
et al. (2017) have proposed finite state approach to 
understand text encoding and utilize the character 
mapping table, run time cache and the glyph re-
arrangement rules during conversion which shows 
better performance in font conversion.  

3. Preprocessing pipeline 

The architecture of our pipeline, shown in Figure 
1, is simple. We merge the text files into a single 
large file and then feed it into the pipeline. 

 

 

Figure 1: Text preprocessing pipeline architecture 

3.1 Tokenizer 

We tokenize the text based on Devanagari end-of-

sentence markers - the purnabiram (।), the question 

mark (?), and the exclamation mark (!). Here, we 

preserve the end-of-sentence markers. 

3.2 Special character filter 

Next, we filter out special characters that are not 
used in the Nepali language but can be present in a 
corpus scraped from online sources. However, we 
do not remove punctuation and special characters 

that are used in the Nepali language. Figure 2, 
shows all the special characters that are filtered out. 

←�…¬ = > < @ # $ ^ & * | \ / ` ~ _ { } [ ] 

Figure 2: Filtered special characters 

3.3 Non-Devanagari filter 

We filter non-Devanagari tokens using a 
heuristics-based algorithm. The algorithm, shown 
in Figure 3, categorizes a token as non-Devanagari 
if the majority of the characters do not belong to 
the Devanagari script and discards them.  

 

Figure 3: Algorithm to filter non-Devanagari 
tokens 

3.4 Glyph and typo sanitizer 

We repair the broken glyphs and typos in the text 
by using a glyph and typo mapping table, shown in 
Table 1. The broken glyphs and typos are identified 
using regular expressions and replaced with the 
corresponding replacement. We created the glyph 
and typo mapping table by observation of the 
corpus. Finally, we pass the repaired text into a 
Unicode Character Tokenizer (UCT) (Singh and 
Basnet, 2017). The UCT tokenizes a given word 
into Unicode characters and returns glyph groups, 
as shown in Figure 4. Glyph groups are groups of 
characters that are manually categorized. The 
grouping is based either on the position the 
characters could appear during conjunct formation, 
or whether the character could appear alone. We 
then filter out tokens that do not belong to any 

for token in sentence 

  if majority of characters 𝜖 Non-Devanagari   

     token is not in Devanagari script 

else 

    token is in Devanagari script 

  
Text Files 

Tokenizer

Spelling Corrector

Glyph & Typo Sanitizer

Non-Devanagari Filter

Special Character Filter

Cleaned Corpus 
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glyph groups and concatenate all the remaining 
tokens. 

Table 1: Glyph and typo mapping table 

Rule Pattern Replacement 

R1 तm / पm / भm  क्त / फ / झ 
R2 ¥ / ‰ / Œ / œ / ÷  र ्/ झ / ƣ ्/ त्र / / 
R3 (C)«  (C)◌्र 
R4 (C)+  C 
R5 t ◌ं(C) /◌ँ(C) 
R6 अ + ◌ा / ◌ौ / ◌ो  आ / औ / ओ 
R7 आ + ◌े/◌ ै ओ / औ 
R8 ◌ा + ◌ े/ ◌ ै ◌ो/ ◌ौ 

Here, C refers to the set of consonants in the Nepali 
language and c refers to the set of vowel conjuncts 
in the Nepali language.   

3.5 Spelling corrector 

We correct the spelling in our corpus using a vector 
distance based spell checking system (Rijal and 
Basnet, 2017). It is currently the state-of-the-art 
spell checking system for Nepali. The spell 
checking system uses a font unification engine, 
vector distance metric based on the tf-idf weighting 
of character n-grams and language dependent 
conjunct replacement list to generate candidate 
suggestions. These suggestions are then ranked 
using Levenshtein distance to provide the final list 
of suggestions. Finally, the top most suggestions 
from the list is selected as the correct replacement. 

4. Evaluation 

We evaluate 5 different corpora obtained from the 
pipeline. The simplest way to perform this 
evaluation is through use case of language 

Sanitize
r 

औषधी  औषधी 

पmलानो 

औ{WV}, 
ष{WC}, 

धी{WC DV}

Sanitize
r 

UCT 

UCT फलानो 
फ{WC}, 

ला{WC_DV}, 
नो{WC_DV}, 
◌े{ELSE} 

Figure 4: Working of Unicode Character Tokenizer 

In Figure 4(a), the word ‘औषधी’ has no typo errors or glyph errors and hence no replacement takes place. 

Also, the output from the UCT assigns each token into valid groups. Hence, no tokens are removed. In 

Figure 4(b), the word ‘पmलानो’ is a combination of प + m + ल + ◌ा + न + ◌ा + ◌े + ◌े characters. It 

consists of both broken glyph (फ is shown as पm) and typo (नो is typed as न + ◌ा + ◌ े+ ◌े). The errors 

are identified using regular expressions and replaced by referring to the Glyph and Typo Mapping table. 

Also, the output from the UCT assigns each token into valid groups except for ◌े which is discarded, and 

the remaining tokens are concatenated to give the final output ‘फलानो’. 

(a) 

(b) 
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modeling. Language model is built using the 
cleaned corpus and the model is evaluated on a 
sentence completion task for our experiment. In the 
following sections, we discuss the dataset 
preparation, our experimental setup, and the 
evaluation results. 

4.1 Dataset 

For our dataset, we use 86,314 news articles 
collected from various Nepalese news portals. The 
corpus comprises of news articles in different 
categories like society, politics, sports, education, 
technology and other categories. We split the 
corpus into two sets viz. training and test set, in the 
ratio of 9:1. We passed the training set through the 
pipeline and trained the language model using the 
cleaned corpus while we build the sentence 
completion task dataset using the cleaned test 
corpus. We apply different settings in our pipeline 
to produce five corpora using the same train 
corpus:  

Corpus I: using pipeline up to Special Character 
Filter, 

Corpus II: using pipeline up to non-Devanagari 
filter, 

Corpus III: using pipeline up to Glyph and Typo 
Sanitizer, 

Corpus IV: using pipeline up to Spelling Corrector 
skipping Glyph and Typo Sanitizer,  

Corpus V: using the complete pipeline. 

4.2 Language model 

In NLP, language modeling is the task of predicting 
the nth word given a sequence of n-1 previous 
words. It can be extended to predicting characters, 
sentences, and phrases. We built a classical n-gram 
language models for our evaluation using the 
popular KenLM tool (Kenneth et al., 2013). 
KenLM uses Kneser-Ney smoothing which is a 
popular choice for language modeling due to its 
relatively low perplexity. The KenLM tool also 
allows for faster querying and low memory 
consumption by using merge sort and interpolation. 

We trained five 5-gram language models using the 
five corpora. We then evaluated the trained 
language models by performing extrinsic 
evaluation on sentence completion tasks. 

4.3 Sentence completion task 

In a sentence completion task, sentences consist of 
one or more blank spaces that need to be filled. 
Options for the answer may or may not be given. A 
suitable machine learning model is used to fill in 
the blanks, and the model is evaluated on the 
performance of the task. A study similar to ours 
was conducted by Geoffrey et al. (2012), where 
they used different language models on a 
Scholastic Aptitude Test (SAT) sentence 
completion task.  

For our evaluation, we generate a test set 𝑆 
consisting of 1700 sentences (~1% of test corpus) 
which are selected from the test corpus using 
stratified sampling where four strata were created 
based on sentence length. We randomly remove a 
word 𝑘௜ between the first and the last word position 
in the sentence 𝑆௜. Next, we build a bigram 
frequency distribution using the train corpus and 
collect all the bigrams having the keyword 
ሺ𝑘 െ 1ሻ௜ where ሺ𝑘 െ 1ሻ௜ is the word that appears 
one position before 𝑘௜ in 𝑆௜. We use this collection 
to generate a set of candidates 𝐶௜ for 𝑘௜. We also 
build test bigram set 𝐵 from the bigram frequency 
distribution using the test corpus, whose use case is 
described below. 

4.4 Evaluation 

For evaluation of the 5 corpora obtained from 
pipeline, we implement a sentence completion task 
to form complete sentences with each candidate in 
turn, and evaluate its probability under a language 
model. The probability of a sentence in a language 
model is calculated using the following formula 

𝑃ሺ𝑊௡ሻ ൌ ෑ 𝑃൫𝑤௝ห𝑤௝ିଵ൯

௡

௝ ୀ ଵ

                         ሺ4.4.1ሻ 

In 4.1, we compute the joint probability by 
calculating the conditional probability of a word 𝑤௝ 
given previous words 𝑤௝ିଵ.  

For each sentence 𝑆௜, we create a set of top five 
candidates (𝐶௜

ହ) from 𝐶௜ based on the probability 
score given by the language model. We also create 
a set of top five bigrams (𝐵ሺ௞ିଵሻ೔

ହ ) from 𝐵 for 
ሺ𝑘 െ 1ሻ௜. Finally, we evaluate the performance of 
the language models on the sentence completion 
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task using Precision (P), Recall (R), and F-measure 
(F). They are calculated using the following 
formulas                                                                                    

𝑃 ൌ
𝐻

𝐻 ൅  𝐼
                                                        ሺ4.4.2ሻ 

𝑅 ൌ
𝐻

𝐻 ൅  𝐷
                                                      ሺ4.4.3ሻ 

𝐹 ൌ
2𝐻

2𝐻 ൅ 𝐼 ൅ 𝐷
                                              ሺ4.4.4ሻ 

 

Here, a hit, H is the total number of words in 𝐶௜
ହ 

having the same position as in 𝐵ሺ௞ିଵሻ೔
ହ . Similarly, 

an insert, I is the total number of words in 𝐶௜
ହ that 

are also in 𝐵ሺ௞ିଵሻ೔
ହ  but not in the same position. 

Finally, a delete, D is the total number of words in 
𝐶௜

ହ that is not in 𝐵ሺ௞ିଵሻ೔
ହ . 

5. Results 

The results from the evaluation are shown in Table 
2. 

Table 2: Precision, Recall and F-Measure from 
model evaluation 

Our result shows the Corpus IV model and Corpus 
V model significantly outperformed the other 
models on the evaluation task. The addition of 
spelling correction in the preprocessing pipeline 

shows the biggest jump in recall. Here, the same 
words having different syntactic representations 
were converged by the spelling corrector 
explaining the increase in recall. Interestingly, 
adding the glyph and typo sanitizer in the pipeline 
did not show huge improvements, highlighting the 
importance of spelling correction in preprocessing. 
On the other hand, combining the glyph and typo 
sanitizer and the spelling corrector in the pipeline, 
the model achieves the highest score and improves 
on the score having only the spelling corrector.  

6. Conclusion 

In this paper, we have presented a text 
preprocessing pipeline to clean online scrapped 
Nepali text corpus. We have shown how each 
preprocessing step affects the learning outcome of 
an n-gram language model on the sentence 
completion task. The study shows the importance 
of fixing broken glyphs, correcting typos, and 
replacing misspelled words in the preprocessing 
phase. However, our evaluation is not complete as 
there are many preprocessing steps to consider. 
But, we hope that our findings will encourage 
future researchers to carefully select and report 
these preprocessing decisions when evaluating or 
comparing different models.  
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