
Nepalese Linguistics, vol. 35, 2022, pp. 1-6. DOI: https://doi.org/10.3126/nl.v35i01.46553

PREPROCESSING OF NEPALI NEWS CORPUS FOR DOWNSTREAM TASKS

Sushil Awale, Suraj Prasai, Birodh Rijal & Santa B. Basnet

Text collected from online resources introduce a
lot of errors which results in incorrect learning
outcomes in automatic language learning tasks. In
this paper, we discuss a Nepali text preprocessing
pipeline to generate clean corpus. This pipeline is
tested using a language model to observe impact of
each steps in learning task. The relevancy of this
work lies in systematizing the procedure in the
development of standard Nepali corpus.

Keywords: Text processing, conjuncts, language
models, glyphs, Nepali corpus

1. Introduction

Text preprocessing is the first step in a Natural
Language Processing (NLP) pipeline and it is a
very important step. Text preprocessing is the
process of transforming raw textual data into a
normalized form suitable for numerical and
statistical operations in order to perform various
analyses.

In training Nepali NLP systems, text data is often
scraped from Nepali news sites, eBooks, pdfs,
blogs, and other online sources. The data from
these sources often contain words with glyph
errors, misspelled words, Non-Devanagari words,
typos. Glyph errors are mostly caused by poorly
built font conversion tools that are easily available

online. A common glyph error is in converting फ

from True Type Font (TTF) to Unicode. For

example, फेवा is translated as पेmवा. Typos and

misspelled words are also quite common in online
texts. Publishers make these mistakes due to
various reasons such as inability to write the word
correctly with available keyboards or lack of
Nepali spell knowledge. In NLP models, different
spellings for the same word result in different
representations of the words in the vector space. As
a result, the learning outcomes prove to be
inefficient.

In this paper, we introduce a text preprocessing
pipeline that addresses the above-mentioned

issues. We designed an NLP pipeline that filters
Non-Devanagari words using a simple heuristic-
based algorithm, repairs glyph errors, and corrects
misspelled words. We then run our text corpus
through the pipeline and train a language model.
Finally, we evaluated the language model for
sentence completion tasks. The goal of our
evaluation study is two-fold:

i. Evaluate the impact of each individual
preprocessing step in the result of the trained
model,

ii. Devise the best preprocessing pipeline for
cleaning large Nepali corpus.

2. Related work

Text content collected from various sources
contains different types of errors. Preprocessing the
text is the first step in the pipeline of natural
language processing (NLP) systems. The basic text
preprocessing steps that involves tokenization, stop
word removal, text normalization, stemming etc.
(Camacho-Collados and Taher, 2018) have used
lowercasing, lemmatizing, multiword grouping
etc. tasks in text categorization and sentiment
analysis which has better performance on
preprocessed text. Improved performance is
achieved while using text preprocessing and
dimension reduction techniques are applied in text
clustering systems (Kadhim et al., 2014). Deep
learning system often ignore the preprocessing of
collected text which has an impact on the
performance of the system.

There are chances of additional type of error in the
collected text for languages like Nepali. Most of
the publications and news houses use traditional
TTF fonts to produce the significant amount of text
on a daily basis. Internet browsers do not render
TTF fonts unless the font resources are provided in
the user’s machine. Before publishing the content
in the web most of the publisher use automatic font
conversion program to convert text in TTF format
to Unicode. Due to limitation of these automatic
converter, the converted text is erroneous. There is

2 / Preprocessing of Nepali…

high possibility of broken glyph and character
ordering in forming the character conjunct. Basnet
et al. (2017) have proposed finite state approach to
understand text encoding and utilize the character
mapping table, run time cache and the glyph re-
arrangement rules during conversion which shows
better performance in font conversion.

3. Preprocessing pipeline

The architecture of our pipeline, shown in Figure
1, is simple. We merge the text files into a single
large file and then feed it into the pipeline.

Figure 1: Text preprocessing pipeline architecture

3.1 Tokenizer

We tokenize the text based on Devanagari end-of-

sentence markers - the purnabiram (।), the question

mark (?), and the exclamation mark (!). Here, we

preserve the end-of-sentence markers.

3.2 Special character filter

Next, we filter out special characters that are not
used in the Nepali language but can be present in a
corpus scraped from online sources. However, we
do not remove punctuation and special characters

that are used in the Nepali language. Figure 2,
shows all the special characters that are filtered out.

←�…¬ = > < @ # $ ^ & * | \ / ` ~ _ { } []

Figure 2: Filtered special characters

3.3 Non-Devanagari filter

We filter non-Devanagari tokens using a
heuristics-based algorithm. The algorithm, shown
in Figure 3, categorizes a token as non-Devanagari
if the majority of the characters do not belong to
the Devanagari script and discards them.

Figure 3: Algorithm to filter non-Devanagari
tokens

3.4 Glyph and typo sanitizer

We repair the broken glyphs and typos in the text
by using a glyph and typo mapping table, shown in
Table 1. The broken glyphs and typos are identified
using regular expressions and replaced with the
corresponding replacement. We created the glyph
and typo mapping table by observation of the
corpus. Finally, we pass the repaired text into a
Unicode Character Tokenizer (UCT) (Singh and
Basnet, 2017). The UCT tokenizes a given word
into Unicode characters and returns glyph groups,
as shown in Figure 4. Glyph groups are groups of
characters that are manually categorized. The
grouping is based either on the position the
characters could appear during conjunct formation,
or whether the character could appear alone. We
then filter out tokens that do not belong to any

for token in sentence

 if majority of characters 𝜖 Non-Devanagari

 token is not in Devanagari script

else

 token is in Devanagari script

Text Files

Tokenizer

Spelling Corrector

Glyph & Typo Sanitizer

Non-Devanagari Filter

Special Character Filter

Cleaned Corpus

Awale et al. / 3

glyph groups and concatenate all the remaining
tokens.

Table 1: Glyph and typo mapping table

Rule Pattern Replacement

R1 तm / पm / भm क्त / फ / झ
R2 ¥ / ‰ / Œ / œ / ÷ र ्/ झ / ƣ ्/ त्र / /
R3 (C)« (C)◌्र
R4 (C)+ C
R5 t ◌ं(C) /◌ँ(C)
R6 अ + ◌ा / ◌ौ / ◌ो आ / औ / ओ
R7 आ + ◌े/◌ ै ओ / औ
R8 ◌ा + ◌ े/ ◌ ै ◌ो/ ◌ौ

Here, C refers to the set of consonants in the Nepali
language and c refers to the set of vowel conjuncts
in the Nepali language.

3.5 Spelling corrector

We correct the spelling in our corpus using a vector
distance based spell checking system (Rijal and
Basnet, 2017). It is currently the state-of-the-art
spell checking system for Nepali. The spell
checking system uses a font unification engine,
vector distance metric based on the tf-idf weighting
of character n-grams and language dependent
conjunct replacement list to generate candidate
suggestions. These suggestions are then ranked
using Levenshtein distance to provide the final list
of suggestions. Finally, the top most suggestions
from the list is selected as the correct replacement.

4. Evaluation

We evaluate 5 different corpora obtained from the
pipeline. The simplest way to perform this
evaluation is through use case of language

Sanitize
r

औषधी औषधी

पmलानो

औ{WV},
ष{WC},

धी{WC DV}

Sanitize
r

UCT

UCT फलानो
फ{WC},

ला{WC_DV},
नो{WC_DV},
◌े{ELSE}

Figure 4: Working of Unicode Character Tokenizer

In Figure 4(a), the word ‘औषधी’ has no typo errors or glyph errors and hence no replacement takes place.

Also, the output from the UCT assigns each token into valid groups. Hence, no tokens are removed. In

Figure 4(b), the word ‘पmलानो’ is a combination of प + m + ल + ◌ा + न + ◌ा + ◌े + ◌े characters. It

consists of both broken glyph (फ is shown as पm) and typo (नो is typed as न + ◌ा + ◌ े+ ◌े). The errors

are identified using regular expressions and replaced by referring to the Glyph and Typo Mapping table.

Also, the output from the UCT assigns each token into valid groups except for ◌े which is discarded, and

the remaining tokens are concatenated to give the final output ‘फलानो’.

(a)

(b)

4 / Preprocessing of Nepali…

modeling. Language model is built using the
cleaned corpus and the model is evaluated on a
sentence completion task for our experiment. In the
following sections, we discuss the dataset
preparation, our experimental setup, and the
evaluation results.

4.1 Dataset

For our dataset, we use 86,314 news articles
collected from various Nepalese news portals. The
corpus comprises of news articles in different
categories like society, politics, sports, education,
technology and other categories. We split the
corpus into two sets viz. training and test set, in the
ratio of 9:1. We passed the training set through the
pipeline and trained the language model using the
cleaned corpus while we build the sentence
completion task dataset using the cleaned test
corpus. We apply different settings in our pipeline
to produce five corpora using the same train
corpus:

Corpus I: using pipeline up to Special Character
Filter,

Corpus II: using pipeline up to non-Devanagari
filter,

Corpus III: using pipeline up to Glyph and Typo
Sanitizer,

Corpus IV: using pipeline up to Spelling Corrector
skipping Glyph and Typo Sanitizer,

Corpus V: using the complete pipeline.

4.2 Language model

In NLP, language modeling is the task of predicting
the nth word given a sequence of n-1 previous
words. It can be extended to predicting characters,
sentences, and phrases. We built a classical n-gram
language models for our evaluation using the
popular KenLM tool (Kenneth et al., 2013).
KenLM uses Kneser-Ney smoothing which is a
popular choice for language modeling due to its
relatively low perplexity. The KenLM tool also
allows for faster querying and low memory
consumption by using merge sort and interpolation.

We trained five 5-gram language models using the
five corpora. We then evaluated the trained
language models by performing extrinsic
evaluation on sentence completion tasks.

4.3 Sentence completion task

In a sentence completion task, sentences consist of
one or more blank spaces that need to be filled.
Options for the answer may or may not be given. A
suitable machine learning model is used to fill in
the blanks, and the model is evaluated on the
performance of the task. A study similar to ours
was conducted by Geoffrey et al. (2012), where
they used different language models on a
Scholastic Aptitude Test (SAT) sentence
completion task.

For our evaluation, we generate a test set 𝑆
consisting of 1700 sentences (~1% of test corpus)
which are selected from the test corpus using
stratified sampling where four strata were created
based on sentence length. We randomly remove a
word 𝑘௜ between the first and the last word position
in the sentence 𝑆௜. Next, we build a bigram
frequency distribution using the train corpus and
collect all the bigrams having the keyword
ሺ𝑘 െ 1ሻ௜ where ሺ𝑘 െ 1ሻ௜ is the word that appears
one position before 𝑘௜ in 𝑆௜. We use this collection
to generate a set of candidates 𝐶௜ for 𝑘௜. We also
build test bigram set 𝐵 from the bigram frequency
distribution using the test corpus, whose use case is
described below.

4.4 Evaluation

For evaluation of the 5 corpora obtained from
pipeline, we implement a sentence completion task
to form complete sentences with each candidate in
turn, and evaluate its probability under a language
model. The probability of a sentence in a language
model is calculated using the following formula

𝑃ሺ𝑊௡ሻ ൌ ෑ 𝑃൫𝑤௝ห𝑤௝ିଵ൯

௡

௝ ୀ ଵ

 ሺ4.4.1ሻ

In 4.1, we compute the joint probability by
calculating the conditional probability of a word 𝑤௝
given previous words 𝑤௝ିଵ.

For each sentence 𝑆௜, we create a set of top five
candidates (𝐶௜

ହ) from 𝐶௜ based on the probability
score given by the language model. We also create
a set of top five bigrams (𝐵ሺ௞ିଵሻ೔

ହ) from 𝐵 for
ሺ𝑘 െ 1ሻ௜. Finally, we evaluate the performance of
the language models on the sentence completion

Awale et al. / 5

task using Precision (P), Recall (R), and F-measure
(F). They are calculated using the following
formulas

𝑃 ൌ
𝐻

𝐻 ൅ 𝐼
 ሺ4.4.2ሻ

𝑅 ൌ
𝐻

𝐻 ൅ 𝐷
 ሺ4.4.3ሻ

𝐹 ൌ
2𝐻

2𝐻 ൅ 𝐼 ൅ 𝐷
 ሺ4.4.4ሻ

Here, a hit, H is the total number of words in 𝐶௜
ହ

having the same position as in 𝐵ሺ௞ିଵሻ೔
ହ . Similarly,

an insert, I is the total number of words in 𝐶௜
ହ that

are also in 𝐵ሺ௞ିଵሻ೔
ହ but not in the same position.

Finally, a delete, D is the total number of words in
𝐶௜

ହ that is not in 𝐵ሺ௞ିଵሻ೔
ହ .

5. Results

The results from the evaluation are shown in Table
2.

Table 2: Precision, Recall and F-Measure from
model evaluation

Our result shows the Corpus IV model and Corpus
V model significantly outperformed the other
models on the evaluation task. The addition of
spelling correction in the preprocessing pipeline

shows the biggest jump in recall. Here, the same
words having different syntactic representations
were converged by the spelling corrector
explaining the increase in recall. Interestingly,
adding the glyph and typo sanitizer in the pipeline
did not show huge improvements, highlighting the
importance of spelling correction in preprocessing.
On the other hand, combining the glyph and typo
sanitizer and the spelling corrector in the pipeline,
the model achieves the highest score and improves
on the score having only the spelling corrector.

6. Conclusion

In this paper, we have presented a text
preprocessing pipeline to clean online scrapped
Nepali text corpus. We have shown how each
preprocessing step affects the learning outcome of
an n-gram language model on the sentence
completion task. The study shows the importance
of fixing broken glyphs, correcting typos, and
replacing misspelled words in the preprocessing
phase. However, our evaluation is not complete as
there are many preprocessing steps to consider.
But, we hope that our findings will encourage
future researchers to carefully select and report
these preprocessing decisions when evaluating or
comparing different models.

References

Trishna Singh and Santa B. Basnet. 2017.
Unification of fonts encoding system of
devanagari writing in Nepali. Nepalese
Linguistics, Vol. 32, 2017, pp. 130-136.

Birodh Rijal and Santa B. Basnet. (2018, August
3–5). Vector distance based spelling checking
system in Nepali with language-dependent
heuristics. Fifth International Conference on
IT4D, Kathmandu, Nepal.

Kenneth H. et al. 2013. Scalable modified Kneser-
Ney language model estimation. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics: Short Papers-
Volume 2, pp. 690–696.

Geoffrey Z. et al. 2012. Computational approaches
to sentence completion. In Proceedings of the
50th Annual Meeting of the Association for
Computational Linguistics: Long Papers-
Volume 1, pp. 601–610.

A. I. Kadhim, Y. Cheah and N. H. Ahamed. 2014
Text Document Preprocessing and Dimension

Models Precision
(P)

Recall
(R)

F-Measure
(F)

Corpus I 43.94 27.92 31.15

Corpus II 43.36 27.56 33.7

Corpus
III

44.62 28.68 34.92

Corpus
IV

48.73 41.06 44.57

Corpus V 51.22 42.57 46.49

6 / Preprocessing of Nepali…

Reduction Techniques for Text Document
Clustering. 4th International Conference on
Artificial Intelligence with Applications in
Engineering and Technology, 2014, pp. 69-73.

J. Camacho-Collados and P. Mohammad Taher.
2018. On the Role of Text Preprocessing in
Neural Network Architectures: An Evaluation
Study on Text Categorization and Sentiment
Analysis Proceedings of the 2018 (EMNLP)
Workshop (B) lackbox(NLP): Analyzing and
Interpreting Neural Networks for (NLP). pp. 40-
46

