

LEC Journal 2022, 4(1): 38-42

ISSN: 2565-5205 (print)

© LEC, Pokhara University

Research Article

38

ANOMALY-BASED NETWORK INTRUSION DETECTION SYSTEM

1Anil Verma, 1Enish Paneru, 1Bishal Baaniya*

1Department of Electronics and Computer Engineering, Pulchowk Campus, Tribhuvan University, Pulchowk, Lalitpur, Nepal

*Corresponding author email: bishalbaaniya@gmail.com

ABSTRACT

Network security has been a really hot topic since the inception of the internet in the early ’80s. With millions of people entrusting

their life savings in the hands of an organization, it is really necessary to keep the network intruders out of the system. The most

alarming thing is that - even today, many organizations are detecting these intrusions through manual labour. Many researchers have

proven that these intrusions have a certain pattern i.e. they can be detected with an Artificial Intelligence (AI) based system with

enough training which can prove to be a really an effective substitute for manual labour. This paper explains the current trends in

Network Intrusion Detection and the technologies that have been implemented to detect them. CICIDS2017 dataset containing

around 3 million data points was used in this experiment. K-Nearest Neighbours (KNN) and Random Forest algorithms are used as

the AI tools and their performance has also been compared

Keywords—Network, Intrusion, Artificial Intelligence, Random Forest, KNN

I. INTRODUCTION

Computing technology has its roots in ny of the day-to- day
activities. It is a rapidly growing field with a lot of money
involved. This has attracted a lot of people to earn a lot of money
in a very short time in the form of cyber-crime. As the use of
information technology has increased, we have observed a
similar rising trend in terms of cyber-crimes. What’s more is
that, in this age of globalization, cyber criminals have found it
ever easier to increase their span of possible victims.
Unfortunately, most people are not aware of the disturbing
increase in cybercrimes and ways to prevent them which calls
for a new solution – an advanced system that can quickly detect
any anomalous behavior in the network and inform the network
manager about the criticality of the situation.

A. Cyber Attack

In short, cyber-attack is any type of malicious activity which
intends to illegally breach computer-based system in order to
gain access to information systems, network or data in general.
Some of the most recognizable cyber-crimes are:

1) Malware: Any type of software that is intended to disrupt or
gain unauthorized access to a computer-based system is known
as malware. These are mainly present in the form of worms,
viruses and trojan software which when installed on a computer
can provide access to the computer to the attacker.

2) Phishing: Also referred to as “social engineering attack”, it is a
kind of attack in which the attacker claims to be from a
reputable source and asks the victim about sprosensitive
information like login credentials, credit card numbers, etc.
This form of attack has been increasingly common over the last
decade.

3) DoS Attack: Denial-of-service (DoS) attack is a type of attack
in which the infiltrator renders the victim’s service unavailable
to its intended users by deliberately flooding the network with
exorbitant surge of requests consequently exhausting the
bandwidth of the server. If this same attack is done by

synchronizing multiple compromised computers, then this is
known as a distributed-denial-of-service (DDoS) attack.

5) SQL Injection: In this type of attack, the attacker uses
malicious SQL queries/statements in order to infiltrate data-
driven applications. The attacker uses this technique to carry out
CRUD operations on the system in order to gain advantage.

B. Intelligent NIDS

The main goal of an Intrusion Detection System (IDS) is to
monitor the network traffic and to report any malicious activities
to the network monitor (a human) so that the attackers can be
identified as soon as possible and corrective measures can be
taken. Though most traditional IDS can detect systems they are
trained to identify, they fail to give desired output when they are
exposed to an unknown attack. Machine Learning is a rapidly
emerging technology. It has found its place in security analysis.
Anomaly based IDS are very effective which can be created with
various machine learning algorithms like ANN, Random Forest,
SVM. Random Forest is a tree-based classifier that has good
accuracy in detecting intrusions. Artificial Neural Network
(ANN) is an algorithm that uses a neural network to filter the
incoming data and forwarded to the expert system. Support
Vector Machine (SVM) is a type of learning method that
attempts to find a global solution to the optimal value of non-
linear classification problems. From several studies showed that
ANN and SVM has a good detection accuracy on anomaly-based
IDS. Intrusion Detection System is one component of network
security that is used for monitoring data traffic and detect if there
is a specific activity which is recognized as an intrusion.

II. OBJECTIVES
The objectives of this research are as follows:

 Detect anomalies: to develop a system capable of
detecting attacks and anomalies as they occur in
real time

 Provide network traffic information: provide
traffic flow information and features for deeper
analysis of network traffic behavior

mailto:bishalbaaniya@gmail.com

Anomaly-Based Network Intrusion Detection System

39

III. METHODOLOGY

A. System Architecture

Fig. I: Block Diagram for model train

This is the baseline architecture for the research and with
the following sub-components:

1) Network Infrastructure: Network Infrastructure refers to any

source that can feed the system with raw TCP and UDP packets.

It can be a live computer network, any specific device

generating network traffic or an offline source of packet data.

This subsystem can be said to be the infrastructure under

analysis for the intrusion. For best results, it is desired to be the

gateway, so that maximum traffic can be interpreted.

2) Packet Sniffer/flow generator: Network traffic capture is the

subsystem responsible to sniff the network packet from the

network infrastructure. It consists of a computer program that

can intercept and log the network traffic that passes over a

network. This module is responsible for generating a flow from

the live TCP and UDP traffic and extracting flow features

necessary to feed into the system like backward packet

minimum length, mean of forwarding flow IAT, ACK flag

count, etc. These feature values are then fed into the system.

3) Preprocessing module: This module is responsible for

making the data ready for analysis as required by subsequent

subsystems. Its features overlap a little with the packet sniffer

module as it also selects/ calculates the required features from

the traffic flow/ connection. It also applies dimensionality

reduction algorithm on the extracted data so that it can be fed to

the intrusion detection engine.

4) Intrusion Detection Module: This is the core of the system,

responsible for classifying the flows captured as normal or

anomalous. During the training phase of the system, a Random

forest classifier model and a K nearest Neighbors classifier

model were trained and validated with the CICIDS2017

dataset. Those models were used to predict the behavior of any

traffic flow captured

5) DBMS: This is the core of the system, responsible for

classifying the flows captured as normal or

anomalous. During the training phase of the system, a

Random forest classifier model and a K nearest

Neighbors classifier model were trained and validated

with the CICIDS2017 dataset. Those models are used

to predict the behavior of any traffic flow captured.

B. System Implementation

The whole system development can be characterized in
the following subtasks:

Fig. II: System Architecture

1) Tasks during training:

a) Dataset Analysis: The dataset consists of around 3
million data points with a few anomaly labels ranging to
hundreds of thousands while some are even less than 100 in
number. All the others are of benign labels. There are more
than 85 features in the dataset. However, only TCP and UDP
protocols are available in the dataset.

b) Dataset Preparation: Data with missing label values
were dropped since they posed no advantage to the training.
Other missing values were taken as the average of the column
values. Infinite values were dropped or taken as the maximum
of the column values as per the characteristics of the feature.

Gini index = 1 - ∑j p2
j (1)

The data were fed into the Random forest classifier
and random forest regression. Then the feature importance of
each feature in the dataset was analyzed as per the impurity
reduction based on the Gini index and variance from the above
two models. This was done to filter out the most important
features from the whole dataset.

It was found that the most important features were
around the same ballpark as per the results from both models.

The data after this step was used as it is for the random
forest classifier model. But before feeding it to the K nearest
neighbor model, the dataset was first scaled with a standard
scaler and then principal component analysis (PCA) was
applied to it to reduce the feature set into 20 principal
components.

c) Standard Scaler: During standard scaling, features are scaled

based upon:

(𝑥0 − 𝑚(𝑥))/𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡(𝑥) (2)

The total explained variance ratio after the application
of PCA was obtained to be at 98.2 %.

d) Model Training: The models used for training were random
forest and K nearest neighbors. All the labels in the processed
dataset were grouped into two; benign and anomaly.

Then the data were fed into the model and thus trained
binary random forest and KNN classifiers were obtained.

For Random Forest classifier:

Three models for random forest classifier were developed
with 10, 20 and 30 trees respectively. The following were the
specifications for the random forest classifier.

 max_features: The number of features to consider
when looking for the best split was set as the square
root of total features.

Verma, Paneru & Baniya 2022

40

 min_samples_split: The minimum number of
samples required to split an internal node was set as
2.

 max_depth: No maximum depth was set for each
tree in the forest. Hence the nodes were expanded
until all leaves were pure or until all leaves contain
less than min_samples_split.

The predictions were done by taking majority votes from
classification trees.

For KNN:

Similarly, 3 models were used for the KNN classifier with
k= 10, 15 and 20. Following were the specifications for the
KNN classifier:

 Weights: All points in each neighborhood were
weighted equally.

 Algorithm: The algorithm used to compute the
nearest neighbors was set to auto so that the most
appropriate algorithm among BallTree, KDTree
and brute-force search was decided based upon the
data the model was fitted with.

 Leaf_size: The leaf size passed to BallTree or
KDTree was set to 30.

 Metric: Standard Euclidean metric was used as the
distance metric for the tree.

2) Flow Generation:

Even though the model has been trained it is still needed that
the features fed into the model should be extracted from a live
network.

During real-time traffic capture, TCP and UDP packets
are initially sniffed from the network. The captured packets
are then assigned to their corresponding traffic flows based on
their source and destination IPs and ports. After flow
establishment, whenever the flow closes, either due to a FIN
flag or timeout (set to 120 sec as default) all the
aforementioned features are extracted from the flow. Those
values are fed into the trained classifier model for behavior
prediction.

3) Database setup:

 MongoDB has been used for this research for storing all the
flow-based features along with its classified behavior and date
of capture. Whenever the analysis of the flow capture is to be
accessed the DBMS is invoked, whether it may be live capture
or reviewing the historical records.

4) Deployment:

 The system follows a client-server architecture. The
research has been currently deployed as a WSGI application
and been tested on a green unicorn server. The sessions, user
authentication, and all other middleware are custom made.

The processed dataset was cross-validated and split into
training and testing data in a 9:1 ratio. After the random forest
classifier and KNN models were trained, they were subjected
to predict upon both the training and testing data.

Fivefold cross-validation test was applied with the scoring
as a mean squared error. During the 5 fold cross-validation
test, the dataset is split into 5 parts with 4 parts used for
training and the remaining part for testing. This is repeated 5

times with the parts between training and testing
interchanged. During each fold negative mean square error is
calculated.

The model was cross-validated with random forest
classifiers with 10, 20 and 30 trees and similarly for KNN
with K=10, 15 and 20.

The cross-validation scores are given as:

TABLE I: Cross-validation Score for Random Forest Classifier

Number
of trees

1st fold 2nd fold 3rd fold 4th fold 5th fold

10 0.01155 0.01150 0.01175 0.01119 0.01167

20 0.01122 0.01148 0.01116 0.01143 0.01153

30 0.01130 0.01100 0.01135 0.01136 0.01291

TABLE II: Cross-validation Score for K Nearest Neighbours

K 1st fold 2nd fold 3rd fold 4th fold 5th fold

10 0.01384 0.01359 0.01362 0.01388 0.01388

15 0.01449 0.01445 0.01432 0.01426 0.01404

20 0.01429 0.01430 0.01445 0.01443 0.01441

6) EXPERIMENTS AND RESULTS

For both models, various evaluation metrics and
confusion matrices were tabulated for a vivid comparison and
performance analysis.

 True Positive: Anomalies identified as anomalies

 False Positive: Benign identified as anomalies

 True Negative: Benign identified as benign

 False Negative: Anomalies identified as benign

 Precision: Positive predictive value given as

PPV = TP/(TP+FP)

 Recall: True Positive Rate given as

TPR = TP/(TP+FN)

TABLE III: Training dataset for random forest classifier

Matrics Trees = 10 Trees = 20 Trees = 30

True positive 421618 422831 423353

False
positive

1336 1082 1072

True
Negative

2121538 2122005 2121922

False
Negative

2193 730 332

Precision 0.996 0.997 0.997

TABLE IV: Testing dataset for random forest classifier

Matrics Trees = 10 Trees = 20 Trees = 30

Anomaly-Based Network Intrusion Detection System

41

True positive 44808 45231 45094

False
positive

1057 1082 1082

True
Negative

234949 234674 234804

False
Negative

2152 1979 1986

Precision 0.976 0.976 0.976

TABLE V: Training dataset for KNN

Matrics K = 10 K = 15 K = 20

True positive 400101 400178 397671

False
positive

6176 8368 7127

True
Negative

2116869 2114570 2115719

False
Negative

23539 23569 26168

Precision 0.976 0.979 0.982

TABLE VI: Testing dataset for KNN

Matrics K = 10 K = 15 K = 20

True positive 44223 44084 43841

False
positive

933 1091 981

True
Negative

234902 234851 235053

False
Negative

2908 2940 3091

Precision 0.979 0.975 0.978

Recall 0.938 0.937 0.934

Mean square
error

0.013 0.014 0.014

Execution
time (sec)

33.69 38.05 41.8

For random forest classifier, high precision and recall
were observed in the training dataset which might point to the
model being over fitted. However, it can also be seen that the
evaluation metrics are very high for the testing datasets as
well which shows that the results are both highly useful and
complete. While considering the testing dataset, among
different models used, the one with 30 numbers of trees
proved to be slightly better in terms of accuracy, precision,
and recall. However, the execution time nearly tripled when
compared to the one with 10 trees in the forest. Hence,
performance-wise, the one with 10 trees can be considered
more useful and relevant.

For KNN classifier, the one with K=10 proved to be
superior while considering precision, recall, accuracy and
execution time. Hence this model was used as the ideal one
for the KNN classifier.

Fig. III: Bar Diagram for Model Comparison

But when the final selected models were analyzed,
random forest classifier matched the KNN classifier in
precision, showed better accuracy and recall and definitely
outmatched in execution time. Hence, considering the
analysis and evaluation upon testing dataset, random forest
proved to be superior. The system was then subjected to
various attack tools available. The performance of the system
was analyzed by using a local host device on the monitored
network as the victim the first time and testing on
example.com the other time. The results were averaged from
5 tests for each case. The performance of this system with
those tools is given below:

1) Slowloris: Python package for Slowloris was
download from pip and installed on a machine in
the network. Then Slowloris command was called
upon the target victim and the network was
monitored for 10 minutes. During this attack the
results from the system was observed as:

TABLE VII: Performance analysis for slowloris

Analysis
With local
victim host

With
example.com

RF
Classifier

Total flows
predicted as

anomaly
103 231

Total flows
involving

victim’s IP
426 791

2) Hulk: Python program for hulk was used to test the
target victim and the network was monitored for
10 minutes. The results were as follows:

TABLE VIII: Performance analysis for Hulk

Analysis
With local
victim host

With
example.com

RF
Classifier

Total flows
predicted as

anomaly
98 233

Total flows
involving

victim’s IP
392 703

KNN
Classifier

Total flows
predicted as

anomaly
125 357

Total flows
involving

victim’s IP
401 799

Verma, Paneru & Baniya 2022

42

3) Http Flooding: Apache Benchmark was used to
flood the target victim with loads of request and
the results were obtained as follows:

TABLE IX: Performance analysis for HTTP Flooding

Analysis With local
victim host

With
example.com

RF
Classifier

Total flows
predicted as

anomaly

101 132

Total flows
involving

victim’s IP

547 566

KNN
Classifier

Total flows
predicted as

anomaly

201 238

Total flows
involving

victim’s IP

643 627

4) Goldeneye: Lastly, goldeneye was used to test the
network and the results were analyzed for 10 minutes:

TABLE X: Performance analysis for GOLDENEYE

Analysis
With local
victim host

With
example.com

RF
Classifier

Total flows
predicted as

anomaly
86 201

Total flows
involving

victim’s IP
354 821

KNN
Classifier

Total flows
predicted as

anomaly
129 368

Total flows
involving

victim’s IP
377 857

As we can see in all the cases KNN classifier has shown
better results than random forest classifier as it has predicted
most anomalies. The weaker performance of random forest
classifier might be because of it being over fitted and thus
memorized the noise in the dataset. But the downfall with the
KNN classifier is that it takes much more time for execution
and thus random forest might overtake it when higher traffic
load is involved.

7) CONCLUSION

A random forest classifier and a KNN classifier model was
trained with the CICIDS2017 dataset and tested this system
against various attack tools. The system not only had excellent
evaluation metrics with testing datasets but also showcased good
performance against real-life attacks.

The network infrastructure of the system can be varying and
the point of implementation must be strategic to sniff out all the
packets in the network to be monitored. However, the generic
implementation remains the same as per given above. Based on
the application area, need, and complexity, the system should be
specialized to monitor all the relevant aspects of the network.

This system can be thus useful for network analysts to
monitor and secure a network and also to study the behavior of
the traffic flows. During the research, the crucial aspects
involved in the intrusion attacks and various measures that can
be taken upon those attacks were understood. The strength and
usefulness of machine learning in network security and the ways
it can support against the ever-growing threats of cyber- attacks
were also recognized.

References:

[1] B.Pfahringer, "Winning the KDD99 Classification
Cup: Bagged Boosting," in SIGKDD Explorations,
2000.

[2] Q. Yang, Li, F., "Support Vector Machine for
Intrusion Detection Based on LSI Feature Selection,"
Intelligent Control and Automation, WCICA, 2006.

[3] J. Ma and S. Perkins, “Online novelty detection on
temporal sequences” ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining (KDD), Washington, DC, Aug. 2003.

[4] A. Ihler, J. Hutchins, and P. Smyth, “Adaptive event
detection with time- varying Poisson processes” ACM
SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining (KDD), Philadelphia, PA, Aug. 2006.

[5] S. A. Hofmeyr, S. Forrest, “Architecture for an
artificial immune system” IEEE Trans. on
Evolutionary Computation, vol. 8, N4, 2000, pp. 443-
473

[6] S. Rawat, K. Pujari, and V. P. Gulati, "On the Use of
Singular Value Decomposition for a Fast Intrusion
Detection System", Views On Designing Complex
Architectures (VODCA-04), 2004.

[7] Y.H. Liao, V. R. Vemuri, "Use of K-Nearest Neighbor
classifier for intrusion detection", Computers &
Security, 21(5), pp 439448, 2002.

[8] Y. H. Liao, V. R. Vemuri, "Using Text Categorization

Techniques for Intrusion Detection", Proceedings of

the 11th USENIX Security Symposium, pp.51-59,

August, 2002.

[9] T. Liu, Z. Chen, B.Y. Zhang et al "Improving Text

Classification using Local Latent Semantic Indexing",

ICDM2004, pp. 162-169, 2004.

[10] S. Mukkamala, G. I. Janoski, and A. H. Sung,

"Intrusion Detection Using Support Vector Machines",

Proceedings of the High Performance Computing

Symposium (HPC 2002), pp. 178-183, San Diego,

2002.

