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Abstract
Flow maximization, time minimization, and cost minimization are three main aspects of 
mathematical optimization problems. The evacuation planning problems are about flow 
maximization and/or time minimization problems in different dynamic evacuation networks. 
The quickest transshipment problem in such a network is to send exactly the right amount 
of flow out of each source and into each sink in the minimum overall time. In evacuation 
planning problems, the term flow stands for either the evacuees or the evacuees carrying 
vehicles. Here, we use the quickest transshipment strategy in a prioritized evacuation network. 
It consists of a collection and an assignment sub-network as the primary and secondary 
sub-networks, respectively. Pick-up locations are prioritized in the collection network. By 
treating such pick-up locations as sources, the available set of transit buses is assigned 
in the assignment sub-network to shift the evacuees to the sinks to achieve the quickest 
transshipment. Such an evacuation planning strategy is better suited for the simultaneous 
collection, assignment, and evacuation process in the prioritized evacuation network. 
Keywords: Evacuation planning, evacuation network, lexicographic flow, prioritized
           network, transshipment

Introduction
 Problems with dynamic networks were introduced by Ford and Fulkerson [1, 2]. 
The quickest transshipment strategy corresponding to the evacuation planning problems is 
modeled in dynamic networks where each arc has a nonnegative flow capacity and integer 
transit time. It demands a minimum time limit such that all supplies can be sent to the sinks 
(safe places) from the sources (disastrous zones). There has been a fair amount of work 
regarding its different aspects, including the quickest transshipment, as referred by [3-9]. 
These problems are handled from different perspectives: transit-based, car-based, and 
pedestrian movements. The transit-based planning problems are to minimize the evacuation 
duration by routing and scheduling a fleet of vehicles, say buses. 
      
Copyright 2023 © the Author(s) and the Publisher
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 The NP-hard multi-depot, multi-trip bus-based evacuation planning problem (BEPP) 
was introduced and analyzed prominently in [10]. However, if there is only one bus depot, 
assuming that the bus pickups the same number of people that equals its capacity, the author 
in [11] has also proposed the BEPP for the evacuation of a region from a set of collection 
points to a set of capacitated sinks.  
 A solution to the maximum flow problem sends the maximal amount of flow from the 
sources to the sinks for the fixed integer time horizon T.  Lexicographically maximum (Lex-
max) flow problem with many sources and many sinks was introduced and many efficient 
algorithms were presented from different aspects in [12, 13]. In such a problem, the 
terminals (sources and/or sinks) are ordered with a certain priority for a Lex-max flow 
respecting the priority. The partial contraflow with path reversals leads to a significant 
improvement in increasing the flow values, decreasing the evacuation time, and utilization 
of the unused capacities of paths for humanitarian logistics and vehicle movements [14]. 
Such problems have been studied with the help of the Lex-max dynamic flow problem by 
applying the minimum cost flow computations as a tool [15]. An algorithm to find the 
universally quickest transshipment has been presented [16]. They also used the minimum 
cost flow computations. 
 Here, evacuees are collected from the disaster zone to the pickup locations of the 
collection sub-network in minimum time as the quickest transshipment by using the Lex-
max flow approach. Considering such pickup locations as the sources, available transit 
buses are also assigned in the network to evacuate the evacuees safely to the sinks to 
achieve the minimum clearance time.  Such a strategy is better suited for simultaneous 
evacuation in an integrated network.  
 The structure of the paper is designed in six sections: an explanation of an integrated 
evacuation network is in Section 2. Collection of evacuees at the collection sub-network is 
in Section 3. The assignment of vehicles in the assignment sub-network is in Section 4. An 
integrated solution approach is in Section 5. Section 6 concludes the paper. 

2. An Integrated Evacuation Network 
 Consider two separate dynamic networks N! and N" as collection and assignment sub-
networks, respectively, to form an integrated evacuation network	𝑁𝑁 = N! ∪ N". Here,  𝑁𝑁! is 
a directed two-way network and 𝑁𝑁" is the mixed network having directed one-way arcs and 
undirected edges. 

2.1. The collection sub-network 
 Let 𝑁𝑁! = (𝑆𝑆, 𝑉𝑉, 𝐴𝐴, 𝑢𝑢# , 𝜏𝜏# , 𝑌𝑌) be a collection sub-network,	𝑆𝑆 = {𝑠𝑠!, 	𝑠𝑠", … , 𝑠𝑠$}, 𝑉𝑉 =
(𝑣𝑣!, 𝑣𝑣", … , 𝑣𝑣$)	and 𝑌𝑌 = (𝑦𝑦!, 𝑦𝑦", … , 𝑦𝑦$) denote the sets of sources, auxiliary nodes, and 
pickup locations, respectively. The set of arcs joining any two nodes in 𝑁𝑁! is denoted by 𝐴𝐴 
where the capacity and transit time are denoted by 𝑢𝑢# and	𝜏𝜏#, respectively. The capacity 
𝑢𝑢#: 𝐴𝐴 → ℤ%& restricts the amount of flow on the arc and the transit time 𝜏𝜏#: 𝐴𝐴 → ℤ%& 
represents the time required for the flow to transverse through the respective arc. During 
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evacuee arrival at the pickup location 𝑌𝑌 from	𝑆𝑆, the set of pickup locations works as the set 
of sinks. 

2.2. The assignment sub-network 
 Let 𝑁𝑁" = (𝑑𝑑, 𝑌𝑌, 𝐸𝐸, 𝜏𝜏' , 𝑍𝑍) be an assignment sub-network, where 𝑑𝑑 and 𝑍𝑍 =
{𝑧𝑧!, 𝑧𝑧", … , 𝑧𝑧$}	are the bus depot and sink, respectively. A set of transit-buses 𝐵𝐵 =
{𝑏𝑏!, 𝑏𝑏", … , 𝑏𝑏$} with uniform capacity are located initially at the bus depot 𝑑𝑑 and are 
assigned as required, during the evacuation procedure. Buses do not return to 𝑑𝑑 even after 
the completion of the evacuation process as it is risky to return to it under such threats. So, 
it does not play a significant role further in the system. The set 𝐸𝐸 consists of the one-way 
arcs 𝑒𝑒 = (𝑑𝑑, 𝑦𝑦) with 𝑦𝑦	𝜖𝜖	𝑌𝑌 and the undirected edges 𝑒𝑒 = [𝑦𝑦, 𝑧𝑧], with 𝑦𝑦 ∈ 𝑌𝑌, 𝑧𝑧 ∈ 𝑍𝑍. Transit 
times of the respective arcs and edges are denoted by 𝜏𝜏' ∈ 	ℤ( as 𝜏𝜏)* and	𝜏𝜏*+, respectively.  

2.3. An Embedding of the Integrated Network 
 In an embedding  𝑁𝑁 = 𝑁𝑁! ∪ 𝑁𝑁", capacity, transit times, and other related attributes for 
𝑁𝑁 are carried over from their respective sub-networks, as in Figure 1. The node 𝑌𝑌 works as 
the sink concerning 𝑁𝑁! but as the supply for 𝑁𝑁". Transit buses are assigned in 𝑁𝑁" from 𝑑𝑑, 
which are sufficiently closer to it, on a first-come-first-serve basis, i.e., the evacuees 
collected earlier will be assigned earlier to the appropriate sink and will be continued till the 
supply is available at Y respecting the capacity of the sink. For details, we refer to [7-8]. 

 
Figure 1. An integrated evacuation network 

3. Collection of Evacuees  
 Mostly, the evacuees collected at pickup locations are to wait a long time for being 
assigned to transit buses in the network. On the other hand, the nature of the pickup 
locations may differ. So, the network is better to be prioritized. If any two or more pickup 
locations are with the same priority, they can be ordered either way.  For such formulations, 
the lexicographic approach is better suited. Such an approach can be applied to achieve the 
quickest transshipment with several sources and sinks, provided with the given supply and 
demand [15]. 
 The 𝑠𝑠 − 𝑦𝑦 flow of evacuees over time is a non-negative function 𝑓𝑓 on 𝐴𝐴 × 𝑇𝑇 for given 
𝑇𝑇 = {0,1, … , 𝑇𝑇} satisfying the flow conservation and capacity constraints (1-3). The 
inequality flow conservation constraints allow it to wait for flow at intermediate nodes, 
however, the equality flow conservation constraints force that flows entering an 
intermediate node must leave it.  
∑ 	∑ 𝑓𝑓,

-./!#0	2"
"#	 	(𝑎𝑎, 𝜎𝜎 − 𝜏𝜏#) −	∑ 	∑ 	𝑓𝑓,

-.&#0	2"
%&'	 	(𝑎𝑎, 𝜎𝜎) 	= 0, ∀	𝑖𝑖 ∈ 𝑉𝑉\(𝑆𝑆 ∪ 𝑌𝑌) (1) 
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 Mostly, the evacuees collected at pickup locations are to wait a long time for being 
assigned to transit buses in the network. On the other hand, the nature of the pickup 
locations may differ. So, the network is better to be prioritized. If any two or more pickup 
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inequality flow conservation constraints allow it to wait for flow at intermediate nodes, 
however, the equality flow conservation constraints force that flows entering an 
intermediate node must leave it.  
∑ 	∑ 𝑓𝑓,

-./!#0	2"
"#	 	(𝑎𝑎, 𝜎𝜎 − 𝜏𝜏#) −	∑ 	∑ 	𝑓𝑓,

-.&#0	2"
%&'	 	(𝑎𝑎, 𝜎𝜎) 	= 0, ∀	𝑖𝑖 ∈ 𝑉𝑉\(𝑆𝑆 ∪ 𝑌𝑌) (1) 

∑ 	∑ 𝑓𝑓3
-./!#0	2"

"#	 	(𝑎𝑎, 𝜎𝜎 − 𝜏𝜏#) −	∑ 	∑ 	𝑓𝑓3
-.&#0	2"

%&'	 	(𝑎𝑎, 𝜎𝜎) 	≥ 0, ∀	𝑖𝑖 ∈ 𝑉𝑉\(𝑆𝑆 ∪ 𝑌𝑌), 𝜃𝜃 ∈ 𝑇𝑇	(2) 
0 ≤ f	(a, θ) ≤ 𝑢𝑢#	∀	𝑎𝑎 ∈ 𝐴𝐴, 𝜃𝜃 ∈ 𝑇𝑇	(3) 
 The sets of outgoing and incoming arcs for the node 𝑖𝑖	𝜖𝜖	𝑉𝑉 are denoted by, 𝐴𝐴*

456 =
{𝑎𝑎 = (𝑖𝑖, 𝑗𝑗)	𝜖𝜖	𝐴𝐴} and	𝐴𝐴*

*$ = {𝑎𝑎 = (𝑗𝑗, 𝑖𝑖)	𝜖𝜖	𝐴𝐴}, respectively. Not stated otherwise, for all 𝑦𝑦	𝜖𝜖	𝑌𝑌 
and𝑠𝑠	𝜖𝜖	𝑆𝑆, we assume that 𝐴𝐴*

456 = 𝐴𝐴*
*$ = ɸ in the case without arc reversals. However, for the 

source node 𝑠𝑠 and sink node	𝑦𝑦, we get the flow value	υ7	(s) > 0 and υ7	(y) < 0,  
respectively, where ∑ 	υ7	(i) = 0*	0	8 . 

Problem 1.  
 Given a collection sub-network 𝑁𝑁! = (𝑆𝑆, 𝑉𝑉, 𝐴𝐴, 𝑢𝑢# , 𝜏𝜏# , 𝑌𝑌) with supplies at   𝑆𝑆, demands 
at 𝑌𝑌 auxiliary nodes	𝑉𝑉, arc capacity	𝑢𝑢#, and arc transit time 𝜏𝜏# for 𝑎𝑎	𝜖𝜖	𝐴𝐴. The quickest 
partial arc reversal transshipment problem is to find the quickest arrival of evacuees at 𝑌𝑌 
with partial arc reversals capability. 
 Let the reversals of an arc 𝑎𝑎 = (𝑖𝑖, 𝑗𝑗) be denoted by 𝑎𝑎′ = (𝑗𝑗, 𝑖𝑖). The transformed 
network of 𝑁𝑁! is with modified arc capacities and constant transit times, 
𝑢𝑢#9	 =	𝑢𝑢# +	𝑢𝑢#( 	and 𝜏𝜏#9	.𝜏𝜏# if 𝑎𝑎 ∈ 𝐴𝐴 and is 𝜏𝜏#: for 𝑎𝑎 ∉ 𝐴𝐴 (4) 
 Here, an edge 𝑎𝑎_ ∈ �̅�𝐴 in transformed network 𝑁𝑁!___ if 𝑎𝑎 ∨ 𝑎𝑎: ∈ 𝑁𝑁!. Concerning the 
auxiliary reconfiguration, it is allowed to redirect the arc in any direction with the modified 
increased capacity but with the same transit time in either direction. The remaining graph 
structure and data are unaltered.  
 Consider the set of sources and sinks to be prioritized as {𝑠𝑠!, 𝑠𝑠", … , 𝑠𝑠$} and  
{y!, y", … , y;}, respectively.  
 Let 𝑠𝑠∗ be the super source connected to such 𝑠𝑠* with arcs having infinite capacity and 
zero transit time. 
 Let the sinks in 𝑁𝑁! be prioritized with the highest priority to the nearest by 
determining their shortest distances concerning	𝑠𝑠∗. The lex-max flow within the specified 
time horizon T entering the sinks 𝑌𝑌 in 𝑁𝑁! in that order can be computed in polynomial-time, 
as in Algorithm 1, based on [15] 
 As a mutatis mutandis to the results in [15], we are here with two more result 
Algorithm 1. Lex-max dynamic flow of evacuees in   𝑵𝑵𝟏𝟏. 
Input: A dynamic collection network  𝑁𝑁! = (𝑆𝑆, 𝑉𝑉, 𝐴𝐴, 𝑢𝑢# , 𝜏𝜏# , 𝑌𝑌). Let 𝑉𝑉 = 𝑉𝑉 ∪ {𝑠𝑠∗} and 
𝐴𝐴>(! = 𝑉𝑉 ∪ {(𝑠𝑠∗, 𝑠𝑠*)}: 𝑠𝑠* ∈ 𝑆𝑆, where 𝑢𝑢#(𝑠𝑠∗, 𝑠𝑠*) = ∞ and 𝜏𝜏#(𝑠𝑠∗, 𝑠𝑠*) = 0 for {𝑠𝑠∗} be the 
super source. Let 𝑁𝑁!

>(!	 denotes the resulting network with 𝑔𝑔&
>(!	 = 0 be the zero flow 

and the set of chains be Γ>(!	 = 𝜙𝜙. 
1. For 𝑖𝑖 = 𝛿𝛿,… , 1, set the arc be 𝐴𝐴* = 𝐴𝐴*(!, 
a. If 𝑠𝑠* is sink, add the arc 𝑠𝑠*𝑠𝑠∗ with 𝑢𝑢#(𝑠𝑠∗, 𝑠𝑠*) = ∞ and 𝜏𝜏#(𝑠𝑠∗, 𝑠𝑠*) = −(𝑇𝑇 + 1). Then get 
𝑓𝑓* = minimum cost circulation in the resulting network using 𝜏𝜏# as the arc cost. 
b. If 𝑠𝑠* is source, delete the arc 𝑠𝑠*𝑠𝑠∗ from 𝐴𝐴* and get 𝑓𝑓* = minimum cost maximum 𝑠𝑠∗𝑠𝑠* – 
flow in the resulting network using 𝜏𝜏# as the arc cost. 
2. Update the dynamic flow 𝑔𝑔* = 𝑔𝑔*(!	 + 𝑓𝑓*. 
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3. Let Δ* = standard chain decomposition of 𝑓𝑓*,  the chain decomposable set, Γ*	 =
Γ*(!	 + Γ*. 
4. Finally, return Γ	 = Γ!. 

 
Theorem 1. Algorithm 1 constructed for the Lex-max dynamic flow in 𝑁𝑁! gives the feasible 
solution for the Lex-max number of evacuees at 𝑌𝑌. 
 
Theorem 2.  For any Lex-max dynamic flow problem, such a flow can be computed via 𝑘𝑘 
minimum cost flow (MCF) computations in 𝑂𝑂(𝑘𝑘(𝑀𝑀𝑀𝑀𝑀𝑀)(𝑚𝑚, 𝑛𝑛)), where 
𝑂𝑂p	𝑘𝑘(𝑀𝑀𝑀𝑀𝑀𝑀)(𝑚𝑚, 𝑛𝑛)q = 𝑂𝑂(𝑚𝑚	𝑙𝑙𝑙𝑙𝑙𝑙	𝑛𝑛	(𝑚𝑚 + 𝑛𝑛)) [16]. 
The Lex-max flow problem in dynamic networks by applying the MCF computations is 
presented in [15]. Now, we are presenting the quickest partial arc reversal transshipment 
algorithm to get the quickest arrival of evacuees at 𝑌𝑌 in 𝑁𝑁! corresponding to the arc reversal 
capability. 
 
Theorem 3. Algorithm 2 constructed gives the optimal solution for the quickest arrival of 
evacuees at 𝑌𝑌 and saves the unused capacity. [7, 8] 
Algorithm 2. Quickest partial arc reversal transshipment algorithm. [7, 8] 
Input: A dynamic collection network	𝑁𝑁! = (𝑆𝑆, 𝑉𝑉, 𝐴𝐴, 𝑢𝑢# , 𝜏𝜏# , 𝑌𝑌), with the supply and 
demand. 
Construct a transformed dynamic collection network 𝑁𝑁!___ as in Equation (4). 
Solve the quickest transshipment problem [15] in the transformed network of Step 1. 
For each 𝜃𝜃 ∈ T and reverse 𝑎𝑎: ∈ 𝐴𝐴 up to capacity 	𝑐𝑐# − 𝑢𝑢# iff 𝑐𝑐# > 𝑢𝑢#, 𝑢𝑢# replaced by 0 
whenever 𝑎𝑎 ∉ 𝐴𝐴, in 𝑁𝑁!, where 𝑐𝑐# denotes the static 𝑠𝑠 −	y flow value in each 𝑎𝑎 ∈ 𝐴𝐴. 
For each 𝜃𝜃 ∈ T and 𝑎𝑎 ∈ 𝐴𝐴, if 𝑎𝑎 is reversed, 𝑘𝑘# = 𝑢𝑢#9	– 𝑐𝑐#: and 𝑘𝑘#: = 0. If neither 𝑎𝑎 nor 𝑎𝑎: 
is reversed, 𝑘𝑘# = 𝑢𝑢#– 𝑐𝑐# where 𝑘𝑘# is saved capacity of 𝑎𝑎, [14]. 
Output: The quickest arrival of evacuees at 𝑌𝑌 in 𝑁𝑁! with partial arc reversal. 

 
Theorem 4. For the quickest partial arc reversal transshipment in 𝑁𝑁!, the quickest evacuee 
arrival problem can be computed in polynomial-time complexity via 𝑘𝑘 minimum cost flow 
(MCF) computations in 𝑂𝑂(𝑘𝑘(𝑀𝑀𝑀𝑀𝑀𝑀)(𝑚𝑚, 𝑛𝑛)) time, where 𝑀𝑀𝑀𝑀𝑀𝑀(𝑚𝑚, 𝑛𝑛) = 𝑂𝑂(𝑚𝑚	𝑙𝑙𝑙𝑙𝑙𝑙	𝑛𝑛	(𝑚𝑚 +
𝑛𝑛 log 𝑛𝑛)). [7,8] 
4. Vehicle assignments  
 Here, we investigate the BEPP for an integrated evacuation planning approach. 

4.1. Bus-based Evacuation Planning Problem 
  Let 𝑖𝑖 ∈ 𝑌𝑌, 𝑗𝑗 ∈ 𝑍𝑍 with 𝜏𝜏*+ as the source-sink travel times. Let 𝜏𝜏)*, 𝑙𝑙*,  𝜇𝜇+ be the depot-
source travel times, the number of evacuees, and sink capacities, respectively. Then the 
BEPP is to find a tour plan to minimize the maximum travel times overall buses such that 
all the evacuees be transported to the sink. 
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3. Let Δ* = standard chain decomposition of 𝑓𝑓*,  the chain decomposable set, Γ*	 =
Γ*(!	 + Γ*. 
4. Finally, return Γ	 = Γ!. 

 
Theorem 1. Algorithm 1 constructed for the Lex-max dynamic flow in 𝑁𝑁! gives the feasible 
solution for the Lex-max number of evacuees at 𝑌𝑌. 
 
Theorem 2.  For any Lex-max dynamic flow problem, such a flow can be computed via 𝑘𝑘 
minimum cost flow (MCF) computations in 𝑂𝑂(𝑘𝑘(𝑀𝑀𝑀𝑀𝑀𝑀)(𝑚𝑚, 𝑛𝑛)), where 
𝑂𝑂p	𝑘𝑘(𝑀𝑀𝑀𝑀𝑀𝑀)(𝑚𝑚, 𝑛𝑛)q = 𝑂𝑂(𝑚𝑚	𝑙𝑙𝑙𝑙𝑙𝑙	𝑛𝑛	(𝑚𝑚 + 𝑛𝑛)) [16]. 
The Lex-max flow problem in dynamic networks by applying the MCF computations is 
presented in [15]. Now, we are presenting the quickest partial arc reversal transshipment 
algorithm to get the quickest arrival of evacuees at 𝑌𝑌 in 𝑁𝑁! corresponding to the arc reversal 
capability. 
 
Theorem 3. Algorithm 2 constructed gives the optimal solution for the quickest arrival of 
evacuees at 𝑌𝑌 and saves the unused capacity. [7, 8] 
Algorithm 2. Quickest partial arc reversal transshipment algorithm. [7, 8] 
Input: A dynamic collection network	𝑁𝑁! = (𝑆𝑆, 𝑉𝑉, 𝐴𝐴, 𝑢𝑢# , 𝜏𝜏# , 𝑌𝑌), with the supply and 
demand. 
Construct a transformed dynamic collection network 𝑁𝑁!___ as in Equation (4). 
Solve the quickest transshipment problem [15] in the transformed network of Step 1. 
For each 𝜃𝜃 ∈ T and reverse 𝑎𝑎: ∈ 𝐴𝐴 up to capacity 	𝑐𝑐# − 𝑢𝑢# iff 𝑐𝑐# > 𝑢𝑢#, 𝑢𝑢# replaced by 0 
whenever 𝑎𝑎 ∉ 𝐴𝐴, in 𝑁𝑁!, where 𝑐𝑐# denotes the static 𝑠𝑠 −	y flow value in each 𝑎𝑎 ∈ 𝐴𝐴. 
For each 𝜃𝜃 ∈ T and 𝑎𝑎 ∈ 𝐴𝐴, if 𝑎𝑎 is reversed, 𝑘𝑘# = 𝑢𝑢#9	– 𝑐𝑐#: and 𝑘𝑘#: = 0. If neither 𝑎𝑎 nor 𝑎𝑎: 
is reversed, 𝑘𝑘# = 𝑢𝑢#– 𝑐𝑐# where 𝑘𝑘# is saved capacity of 𝑎𝑎, [14]. 
Output: The quickest arrival of evacuees at 𝑌𝑌 in 𝑁𝑁! with partial arc reversal. 

 
Theorem 4. For the quickest partial arc reversal transshipment in 𝑁𝑁!, the quickest evacuee 
arrival problem can be computed in polynomial-time complexity via 𝑘𝑘 minimum cost flow 
(MCF) computations in 𝑂𝑂(𝑘𝑘(𝑀𝑀𝑀𝑀𝑀𝑀)(𝑚𝑚, 𝑛𝑛)) time, where 𝑀𝑀𝑀𝑀𝑀𝑀(𝑚𝑚, 𝑛𝑛) = 𝑂𝑂(𝑚𝑚	𝑙𝑙𝑙𝑙𝑙𝑙	𝑛𝑛	(𝑚𝑚 +
𝑛𝑛 log 𝑛𝑛)). [7,8] 
4. Vehicle assignments  
 Here, we investigate the BEPP for an integrated evacuation planning approach. 

4.1. Bus-based Evacuation Planning Problem 
  Let 𝑖𝑖 ∈ 𝑌𝑌, 𝑗𝑗 ∈ 𝑍𝑍 with 𝜏𝜏*+ as the source-sink travel times. Let 𝜏𝜏)*, 𝑙𝑙*,  𝜇𝜇+ be the depot-
source travel times, the number of evacuees, and sink capacities, respectively. Then the 
BEPP is to find a tour plan to minimize the maximum travel times overall buses such that 
all the evacuees be transported to the sink. 

 Let the number of evacuees at every source be known. Assume 𝑄𝑄 be the uniform bus 
capacity, as a unit. The movement between the pickup locations 𝑌𝑌 is ignored and the same 
situation in between the sinks 𝑍𝑍. The set of tours of the buses cannot be changed anymore 
after they start. Let ∑ 𝑙𝑙**∈@  and ∑ 𝜇𝜇++∈A  be the total number of evacuees and the total sink 
capacity, respectively. The maximum number of rounds 𝑅𝑅 for the evacuation is given by 
∑ 𝑙𝑙	**∈@ . The nonnegative travel cost of 𝜏𝜏*+ 	on each edge 𝑒𝑒 = (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 are taken symmetric 
and satisfies the triangle inequality. The variables 𝜏𝜏64BC and 𝜏𝜏B#DEBC  give travel time for the bus 
𝑏𝑏 within the round 𝑟𝑟 from source to sink, and from the sink to the next source, respectively. 
Let ΤF#G be the total duration of the evacuation. The problem can be formulated to 
minimize   𝑇𝑇HIJ	 such that, 

 𝑇𝑇F#G ≥ ∑ ∑ 𝜏𝜏)*		𝑥𝑥*+B! + ∑ 𝜏𝜏64BCC∈K +	∑ 𝜏𝜏B#DE	BC
C∈K , ∀	𝑏𝑏	 ∈ 	𝐵𝐵,*∈A	*∈@   (5) 

𝜏𝜏64BC =	∑ ∑ 𝜏𝜏*+		𝑥𝑥*+BC , ∀	𝑏𝑏	 ∈ 	𝐵𝐵, 𝑟𝑟 ∈ 𝑅𝑅,*∈A	*∈@            (6) 
𝜏𝜏B#DEBC ≥ ∑𝜏𝜏*+Ä	∑ 𝑥𝑥E+BC + ∑ 𝑥𝑥*L

B,C(! − 1L∈A	E∈@ Å, ∀	𝑏𝑏 ∈ 𝐵𝐵, 𝑟𝑟 ∈ 𝑅𝑅 − 1,	     (7) 
∑ ∑ 	𝑥𝑥*+BC ≥	∑ ∑ 	𝑥𝑥*+

B,C(!, ∀	𝑏𝑏	 ∈ 	𝐵𝐵, 𝑟𝑟 ∈ 𝑅𝑅,*∈A	*∈@ 	*∈A	*∈@            (8) 
∑ ∑ 	𝑥𝑥*+BC ≤ 1, ∀	𝑏𝑏 ∈ 𝐵𝐵, 𝑟𝑟 ∈ 𝑅𝑅 − 1,*∈A	*∈@     (9) 
∑ ∑ 	∑ 𝑥𝑥*+BCC∈K ≥	 𝑙𝑙* , ∀	𝑖𝑖 ∈ 𝑌𝑌,*∈A	*∈@     (10) 
∑ ∑ 	∑ 𝑥𝑥*+BCC∈K ≤	𝜇𝜇+ , ∀	𝑗𝑗 ∈ 𝑍𝑍,B∈N*∈@        (11) 
𝑥𝑥*+	BC	 ∈ {0,1}, ∀	𝜏𝜏64BC	, 𝜏𝜏B#DE	BC	 , ΤF#G 	 ∈ 	ℝ.   (12) 

Constraint (5) needs ΤF#G to be greater than or equal to the maximal travel cost subject to 
all bus movements and is to be minimized on 𝑇𝑇HIJ. Constraints (6) and (7) are the measure 
of travel time for the bus 𝑏𝑏 within the round 𝑟𝑟 from source to sink, and from that sink to the 
next source, respectively. Constraint (8) tells that the tours are connected and can stop 
whenever they like. Constraint (9) allows a bus from a source to a sink per round. Also, (10) 
and (11) represent the bus and shelter capacity constraints, respectively. Constraint (12) 
represents whether the bus 𝑏𝑏 travels from source 𝑖𝑖 to sink 𝑗𝑗 in round 𝑟𝑟. For details, we refer 
to [11]. 

4.2. An Integrated Evacuation Planning Approach 
 Transit buses having uniform capacity 𝑄𝑄 are assigned from 𝑑𝑑 which are sufficiently 
nearer to 𝑌𝑌 in 𝑁𝑁" on a first-come-first-serve basis. Such an assignment begins only after 
𝛼𝛼! ≥ Q to 𝛼𝛼! be the number of evacuees who arrived at the highest pickup demand. For the 
subsequent assignments, the effective waiting instance 𝜉𝜉 is almost negligible. However, 
waiting at pickup locations is comparatively better than waiting at the disaster zone itself. 
Buses are assumed to pick up their full capacities. For this, the potential demands of the 
pickup locations are adjusted to be the integral multiple of busloads. Let the potential 
demand of the pickup location 𝑦𝑦E ∈ 	𝑌𝑌 be 	𝛼𝛼(𝑦𝑦E). Then the demands can be adjusted to be 
𝛼𝛼:(𝑦𝑦E) by using the following demand adjustment, 
𝛼𝛼:(𝑦𝑦EO!) = ⌊{	𝛼𝛼(𝑦𝑦EO!) + 𝛼𝛼(𝑦𝑦EO") −	𝛼𝛼:(𝑦𝑦EO") + ⋯+ 𝛼𝛼(𝑦𝑦!) −	𝛼𝛼:(𝑦𝑦!)}	/𝑄𝑄⌋. 𝑄𝑄        (13) 
But if the 𝑘𝑘6P pickup location is the last one with the least priority, then it is taken as, 
𝛼𝛼:(𝑦𝑦E) = 𝛼𝛼(𝑦𝑦E) + 𝛼𝛼(𝑦𝑦EO!) −	𝛼𝛼:(𝑦𝑦EO!) + ⋯+ 𝛼𝛼(𝑦𝑦!) −	𝛼𝛼:(𝑦𝑦!)     (14) 
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With the constraints (5-12), the integrated problem can be reformulated to minimize  𝑇𝑇HIJ	 
such that: 

𝑇𝑇F#G ≥ 𝜉𝜉 +ä𝜏𝜏64	BC	 +	
C∈K

ä𝜏𝜏B#DEBC 	
C∈K

	∀	𝑏𝑏 ∈ 𝐵𝐵.													(15) 

5. An Integrated Solution Approach   
Here, we design an algorithm for the quickest transshipment in the integrated evacuation 
network. 
Algorithm 3. Evacuation planning algorithm in an integrated network topology  
[7, 8]. 
Input:  𝑁𝑁 = (𝑆𝑆, 𝑉𝑉, 𝐴𝐴, 𝑢𝑢# , 𝜏𝜏# , 𝑌𝑌, 𝑑𝑑, 𝑢𝑢' , 𝜏𝜏' , 𝑍𝑍), with given supply and demand. 
1. 𝑁𝑁! = (𝑆𝑆, 𝑉𝑉, 𝐴𝐴, 𝑢𝑢# , 𝜏𝜏# , 𝑌𝑌) with their pickup locations be 𝑌𝑌. 
2. Construct a priority on 𝑌𝑌 assigning the highest priority to the nearest. If any two or 
more are with the same priority, they are to be prioritized consecutively in either order.   
3. Determine the arrival of evacuees at 𝑌𝑌 of 𝑁𝑁! from 𝑆𝑆 using Algorithm 2. 
4. Assign the transit buses from 𝑑𝑑 to 𝑌𝑌 in 𝑁𝑁" = (𝑑𝑑, 𝑌𝑌, 𝑢𝑢' , 𝜏𝜏' , 𝑍𝑍) for the supplies obtained 
in Step 3, to the nearest sink 𝑍𝑍, on the first-come-first-serve basis. 
5.  Begin the assignment with 𝛼𝛼! ≥ 𝑄𝑄 for 𝛼𝛼! be the collection of evacuees at 𝑦𝑦! ∈ 𝑌𝑌 and 
𝑄𝑄 be the homogeneous transit bus capacity and is continued for the adjusted demands 
provided by Equation (13). 
6.   Stop, if all the supplies at each 𝑌𝑌 are fulfilled, respecting the capacity constraints of 𝑍𝑍. 
7.  Otherwise, return to Step 4.  
Output: Quickest transshipment of evacuees finally to 𝑍𝑍. 

 
Theorem 7. Algorithm 3 constructed for the evacuation planning problem in an integrated 
network gives the quickest transshipment of evacuees in the integrated evacuation network. 
[7-8] 
6. Conclusion 
 The quickest transshipment problem is to find the minimum clearance time to send a 
given amount of flow from multiple sources to multiple sinks network. The quickest 
transshipment problem in a dynamic network can be reduced to an equivalent Lex-max flow 
problem and is solved in polynomial-time complexity. Evacuees are collected at the 
prioritized pickup locations of the collection network following the quickest transshipment 
in the Lex-max flow approach and are assigned simultaneously to the homogeneous transit 
buses in the assignment network on a first-come-first-serve basis. The waiting delay at the 
pickup locations is almost negligible. On the other side, if there is some waiting, it is 
preferable to wait at such pickup locations rather than to be at the danger regions. The arc 
reversal capability is beneficial to improving the transshipment time of the evacuees in the 
integrated evacuation network where the saved unused arc capacities are useful for 
emergency facility locations and logistics. Such a strategy is better suited for the 
simultaneous evacuation process in the integrated evacuation network.  
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With the constraints (5-12), the integrated problem can be reformulated to minimize  𝑇𝑇HIJ	 
such that: 

𝑇𝑇F#G ≥ 𝜉𝜉 +ä𝜏𝜏64	BC	 +	
C∈K
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5. An Integrated Solution Approach   
Here, we design an algorithm for the quickest transshipment in the integrated evacuation 
network. 
Algorithm 3. Evacuation planning algorithm in an integrated network topology  
[7, 8]. 
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2. Construct a priority on 𝑌𝑌 assigning the highest priority to the nearest. If any two or 
more are with the same priority, they are to be prioritized consecutively in either order.   
3. Determine the arrival of evacuees at 𝑌𝑌 of 𝑁𝑁! from 𝑆𝑆 using Algorithm 2. 
4. Assign the transit buses from 𝑑𝑑 to 𝑌𝑌 in 𝑁𝑁" = (𝑑𝑑, 𝑌𝑌, 𝑢𝑢' , 𝜏𝜏' , 𝑍𝑍) for the supplies obtained 
in Step 3, to the nearest sink 𝑍𝑍, on the first-come-first-serve basis. 
5.  Begin the assignment with 𝛼𝛼! ≥ 𝑄𝑄 for 𝛼𝛼! be the collection of evacuees at 𝑦𝑦! ∈ 𝑌𝑌 and 
𝑄𝑄 be the homogeneous transit bus capacity and is continued for the adjusted demands 
provided by Equation (13). 
6.   Stop, if all the supplies at each 𝑌𝑌 are fulfilled, respecting the capacity constraints of 𝑍𝑍. 
7.  Otherwise, return to Step 4.  
Output: Quickest transshipment of evacuees finally to 𝑍𝑍. 

 
Theorem 7. Algorithm 3 constructed for the evacuation planning problem in an integrated 
network gives the quickest transshipment of evacuees in the integrated evacuation network. 
[7-8] 
6. Conclusion 
 The quickest transshipment problem is to find the minimum clearance time to send a 
given amount of flow from multiple sources to multiple sinks network. The quickest 
transshipment problem in a dynamic network can be reduced to an equivalent Lex-max flow 
problem and is solved in polynomial-time complexity. Evacuees are collected at the 
prioritized pickup locations of the collection network following the quickest transshipment 
in the Lex-max flow approach and are assigned simultaneously to the homogeneous transit 
buses in the assignment network on a first-come-first-serve basis. The waiting delay at the 
pickup locations is almost negligible. On the other side, if there is some waiting, it is 
preferable to wait at such pickup locations rather than to be at the danger regions. The arc 
reversal capability is beneficial to improving the transshipment time of the evacuees in the 
integrated evacuation network where the saved unused arc capacities are useful for 
emergency facility locations and logistics. Such a strategy is better suited for the 
simultaneous evacuation process in the integrated evacuation network.  
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