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Abstract
The selection of dominant routes for transit-based evacuation planning problems mainly 
depends upon the structure and nature of the available network. To achieve efficient 
evacuation planning, the problem is not only on the selection of a route and a shelter for 
each route on the available network topology but also on the route-to-vehicle assignment 
and vice versa, which is more complex and challenging in real practice. The evacuation 
network adds complexity to the solution and impacts the problem. In this paper, the 
transit-based evacuation network has been revised from different perspectives focusing 
on the symmetric type networks with their dominant evacuation planning routes to have 
the minimum evacuation cost. 

Keywords: Evacuation planning problem, transit-based network, vehicle assignment, 
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Background
The most fundamental necessity of human beings is saving lives which should be the 
fundamental objective of planning for emergency evacuation during different natural 
or man-made disasters.  Most disasters cannot be predicted and are unavoidable, and 
the damages caused by them are severe if the evacuation strategies are not well-planned 
and well-implemented. Evacuation plans and mitigation strategies are followed by the 
response and recovery with necessary actions to normalize the situation. Bringing 
normalcy is one of the major challenges during a disaster.  One has to idealize the 
real-life problem by making some simplified hypotheses and different assumptions for 
its mathematical formulation, though such models seldom represent all the existing 
characteristics of real-life situations.  

In evacuation planning, auto-based evacuees and transit-based evacuees can be 
categorized as high and low-mobility populations, respectively. The former is supposed 
to withdraw from the hazardous area by using their own vehicles whereas the latter 
needs to be sent to the transit hubs for further evacuation. In large cities of developing 
countries, many people fall into the low-mobility population and are to be evacuated 
by using transit vehicles. The great loss of people during Hurricane Katrina was due 
to the lack of proper planning for the transit-based evacuees rather than the disaster 
itself, Litman (2006).
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Evacuation models can be classified into two broad categories microscopic and 
macroscopic. The former emphasizes individual parameters like walking speed, 
physical ability, reaction time, and the interaction of each evacuee with other evacuees 
during the movement and are based mainly on simulation. Whereas, the macroscopic 
models treat the occupants as a homogeneous group and are taken account of their 
common characteristics only. So the macroscopic models are able to produce mainly 
the lower bounds of the evacuation time only whereas, the microscopic models work 
with a smaller degree of simplification than the macroscopic ones and the method of 
choice is mostly the simulation approach. These two aforementioned models can also 
be combined in an interactive solution process, where the output of one type of model 
is used as input to the other so that the output of both models remains stable and is 
named a sandwich method.

In this paper, different instances of transit-based evacuation planning (TEP) problems 
are revisited for the dominant evacuation routes with respect to evacuation cost (EC). 
Section 2 presents the state of the art of the problem. The formulation of the TEP 
problem is in Section 3. Section 4 includes the transit vehicle assignment on such a 
network. Their respective route dominances are in Section 5. Finally, in Section 6, it 
has been concluded.  

Literature Review 
Evacuation planning problems and their variants are based on vehicle routing problems 
(VRP). Such VRPs are for the efficient distribution of goods from different depots 
to the customers to design the least cost delivery whereas, in the TEP problems, the 
objectives are to minimize the duration of evacuation by routing and scheduling a fleet 
of homogeneous and capacitated vehicles like the buses, which were initially located at 
one or more depots. For more details about such problems and their variants, we refer 
to Adhikari & Dhamala (2020a), Adhikari & Dhamala (2020b), Dhamala & Adhikari 
(2018), Adhikari et al. (2020), Adhikari & Dhamala (2022), Adhikari (2023), and the 
references therein.

The performance and efficiency of the strategies for evacuation planning problems 
depend upon the nature of the road network, population density, the behavior of the 
population, and many other factors. It concentrates mainly to find the optimal use 
of vehicles and their appropriate assignment on the available network during their 
shifting from danger zones to safety as effectively as possible with utmost reliability, 
Dhamala & Adhikari (2018), and Adhikari (2020). 
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In real practice, the number of evacuees at each location can exceed the capacity of a 
bus. It demands the necessity for a split delivery (SD) service. Moreover, the number 
of available buses is insufficient to transport all the evacuees without multiple trips 
and each shelter has a capacity that limits the number of evacuees it can serve. Such 
situations also demand an SD service. In such situations, Bish (2011) proposes and 
analyzes two alternative models for the multi-depot, multi-trip, bus-based evacuation 
planning (BEP) problem, at which the first simultaneously identifies optimal route 
construction and assignment of the vehicle where the next identifies the optimal 
route assignment from a set of feasible routes. Goerigk et al. (2013) have developed a 
simplified version for the evacuation of a region from a set of collection points to a set 
of capacitated shelters with the help of buses in minimum time assuming that the bus 
pickups exactly the number of people that equals its capacity when visiting a source 
without SD service.

Simple examples of evacuation networks without and with SD service are shown in 
Figure 1, where D, {X1, X2, X3}, and {Z1, Z2, Z3 } stands for the bus depot, set of pick-up 
demands, and the sinks, respectively.

Figure 1. Transit-based evacuation networks: (a) without SD and (b) with SD. 

Assuming that the number of evacuees is not known exactly, the BEP is extended to 
the robustness by Goerigk et al. (2014) in which the exact number of evacuees is not 
known in advance however a set of likely scenarios is known and after some time, 
such uncertainty will be removed. In such instances, it is to decide whether the buses 
are better to send right now as the here-and-now bus under uncertainty or to wait as a 
wait-and-see bus until the exact scenario becomes known. 

Formulation of a TEP problem
For the formulation of such a problem, based on Bish (2011), consider the network to 
be N=(V,E) where V is the set of nodes/vertices and E is the set of arcs. N is composed 
of three subsets D, X, and Z where D stands for a depot at which buses are initially 
located and dispatched; X is a set of demand nodes representing pickup locations 
demanding evacuation services and Z is a set of shelter (sinks) where the evacuees 
are to be transported. Let B be the available transit-vehicles, say buses, each having a 
capacity Q, and the bus is initially located at the depot. Depot is only the initial location 
of the buses and does not play significant roles further in the evacuation process and 
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the buses do not return to the depot after the completion of the evacuation process. 
In fact, it could be risky to return to the depot under a threat. Moreover, such depots 
may not be the best places to store the buses during threats. Let the demand node i 
has a demand αi, i ∈ X and shelter j have a capacity  βj, j ∈ Z.  Then the arc (i, j) has a 
non-negative travel cost of τij for (i, j) ∈ E.  Travel cost is proportional to the travel time 
or distance; though we mainly use the term time, as our aim is to route and schedule 
the buses to minimize the evacuation duration. All costs in the network are taken 
symmetric and are supposed to satisfy the triangle inequality.

Let the number of evacuees at every source be known. Assume Q be the uniform bus 
capacity, as a unit. The movement between the pickup locations Y is ignored and the 
same situation in between the sinks Z. The set of tours of the buses cannot be changed 
anymore after they start. Let ∑i∈Y li and ∑j∈Z μj be the total number of evacuees 
and the total sink capacity, respectively. The maximum number of rounds R for the 
evacuation is given by ∑i∈Y li. The nonnegative travel cost of τij  on each edge e=(i, j) 
∈E are taken symmetric and satisfies the triangle inequality. The variables τto and τback 
give travel time for the bus b within the round r from source to sink, and from the sink 
to the next source, respectively. Let Τmax be the total duration of the evacuation. The 
problem can be formulated to minimize   Tmax s.t.

 

Constraint (1) needs Τmax to be greater than or equal to the maximal travel cost 
subject to all bus movements and is to be minimized on Tmax. Constraints (2) and (3) 
are the measure of travel time for the bus b within the round r from source to sink, and 
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from that sink to the next source, respectively. Constraint (4) tells that the tours are 
connected and can stop whenever they like. Constraint (5) allows a bus from a source 
to a sink per round. Also, (6) and (7) represent the bus and shelter capacity constraints, 
respectively. Constraint (8) represents whether the bus b travels from source i to sink j 
in round r. For details, we refer to Bish (2011).

Example 1. In this instance as in Figure 2, let the demands (3, 3, 1), capacities at the 
sinks are (3, 4, 3) with buses available is 3. The distance of the demands from the depot 

is (4, 3, 6) and the distances between X to Z are 

Figure 2. An instance of a BEP problem.
	
The BEP problem is formulated so as to choose the minimum evacuation cost of all 
possibilities. Here, the plan’s critical path is for bus 3 or bus 1 as in Table 1, which 
shows its feasible solution with the evacuation cost of 25.

Table 1. A feasible solution to the BEP problem
Trip 1 2 3 Route assignment EC

Bus 1 (1, 3) (3, 1) τ1, τ13, τ33, τ31 25
Bus 2 (2, 1) (2, 3) τ2, τ21, τ21, τ23 21
Bus 3 (1, 1) (1, 2) (2, 3) τ1, τ11, τ11  ,τ12, τ22, τ23 25

Transit-vehicle assignment on the evacuation network 
Let X and Z denote the pickup demands and sink respectively. Let them be connected 
by different paths having different capacities, and transit times.  Let T be the travel 
time of the path, as the sum of the travel time of edges, C be the capacity of the path 
as the minimum capacity of the edges and ξ be the number of evacuees at the source 
or the pickup demands, then the EC is calculated as in Min & Neupane (2011) by 

As far as the quickest path is concerned, path Xi  is said to be the quickest path if and 
only if 
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Let  { X_1^*,X_2^*,X_(3 )^*,…,X_k^* } be k edge-disjoint paths from X to Z, with 
C_i and T_i be the capacity and transit times of paths Xi and ξ be the number of 
evacuees at X, then the combined evacuation cost (CEC) becomes

Example 2. Consider three possible paths X1, X2 and X1 in between demand node 
X and the sink Z with their respective travel time T and capacity C as in Figure 3. 
Suppose the evacuees at the demand nodes are 52 then the EC through these paths 
can be calculated by using Equation (9) which are  23, 20, and 17,  respectively among 
them EC (X3

*) be chosen as the quickest path. But if the next path X1
*  is added on 

the evacuation route then the CEC as in Equation (10) is  CEC(X1
*, X2

* )=16, which 
is shorter than the current EC. Moreover, by adding the next path X2

* their CEC 
becomes CEC (X1

*, X2
*, X3

*)=13, further improved, which is smaller even than the 
route X1

* with the longest travel time. Hence, the route X1
* having longer travel time 

can be removed from the evacuation route, in such edge-disjoint paths since CEC (X1
*, 

X2
*)=11<CEC(X1

*,X2
*, X3* ), and the EC be reduced even more by 2. 

Figure 3. A simple evacuation network.

5. Route dominance in the transit-based evacuation system 
The route p is said to dominate the route p', and is named the dominant route, if it does 
not have a longer evacuation duration, it doesn’t have more cost for the demand nodes 
considered and every unreachable demand node on route p is also unreachable for p', 
among all the feasible routes on the evacuation network. If different paths lead to the 
same shelter and neither of them is better than the other overall criteria, then neither 
of the paths is dominating. The selection of such dominant routes mainly depends 
upon the nature of the available network. In the case of evacuation planning problems 
on the available network, the problem is not only on the selection of a route and the 
selection of a shelter for each route but also on the route-to-vehicle assignment and 
vice versa, which is more complex, in practice. During the vehicle assignment on the 
secondary network, a tour of vehicles are to be assigned in an optimal way.  We are 
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here to see their dominance with respect to their evacuation duration for different 
approaches to vehicle assignments in the evacuation network. 
	
In the single objective optimization problem the superiority of a solution over the other 
solutions is easily determined by comparing their objective function values whereas, 
in multi-objective optimization problems, the goodness of a solution is determined by 
the dominance.

The solution x1 is said to dominate the solution x2 if, (i) solution x1 is no worse than x2  
in all objectives, and (ii) solution x1 is strictly better than x2 in at least one objective. 
Hence, there are three possibilities that can be the outcomes of dominance between 
two solutions x1 and x2 of a bi-objective function, (i) solution x1 dominates solution x2, 
(ii) solution x1 gets dominated by solution x2, and (iii) neither of them dominates nor 
dominated by each other. Some of their properties are as follows: 

•	 Not reflexive: The dominance relation is not reflexive, i.e., x1 does not dominate 
x1.

•	 Not symmetric: The dominance relation is not symmetric. In other words, 
if x1 dominates x2 then x2 does not dominate x1. So the dominance relation is 
asymmetric.  

•	 Not antisymmetric: Since the dominance relation is not symmetric, it cannot be 
antisymmetric as well. 

•	 Transitive: The dominance relation is transitive. That is, if  x1  dominates x2  and  
x2  dominates x3  then  x1  dominates x3. 

Example 3. Consider a bi-objective optimization problem with six different solutions 
with respect to their different objective function values in their objective spaces as 
shown in Figure 4. Let the function f1 be maximized and the function f2 be minimized.  
In such a situation, it is usually difficult to find a single solution that is better with 
respect to both objectives, however, we can choose the better one among them in terms 
of both objectives by using the principle of dominance. Here, solution x1 dominates 
solution x2 for both objectives. But, solution x5 is better than solution x1 with respect 
to f1  whereas solution x5 is no worse than solution x1 in the next objective f2. Hence, 
solution  x5  dominates solution x1.  However,  x3  and x5 are non-dominated to each 
other, as either of them is better than the next in one objective but the worst in the 
next.    

Route dominance on symmetric type transit-based evacuation network 
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Figure 4. Solution space of a simple bi-objective function.

The nature of the evacuation network highly affects the proper choice of evacuation 
planning strategies and the resource assignment in the network.  The problem itself 
is an NP-complete problem and its exact solution is imperative for that different 
heuristics are designed for better and approximate solutions. Here, we are presenting 
different instances of vehicle assignments in the different evacuation-type networks 
with the help of some examples.  

Example 4. 

Figure 5. Different scenarios of vehicle assignment on evacuation routes.

(a) Consider a simple instance as in Figure 5 (a) where X and Z are simply the source 
and sink respectively, with   X1,  X2, and X3 be three different pickup nodes which are 
supposed to be at the evacuation cost of  τ  from X and Z   both. Let the pickups be 
near enough to each other at the evacuation cost (EC) of apart. The evacuation cost 
with and without SD in such given instances and their respective bounds, as the ratio 
of their EC without SD to with SD are shown in Table 2, where the vehicles were 
scheduled simultaneously from X to Z. Let |B| denote the number of vehicles.  It is 
observed that the EC is 2τ for |B|=3 with and without SD in the network. This instance 
signifies that the evacuation route with split delivery need not be beneficial always.
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Table 2. EC with and without SD showing the respective EC and bound.
|B| EC with SD EC without SD Bound Remarks 
1 4τ+ϵ 6τ 1.5 Improved 
2 2τ+ϵ 4τ 2 Improved 
3 2τ 2τ 1 Not improved 

(b) Consider the network as in Figure 5 (b). Let a vehicle that has picked up a full 
load of evacuees at X1 can still pick up a full load at X2 and the sinks Z1 and Z2 are 
with sufficiently high capacity. If the sink closest to its last pickup is assigned, then the 
vehicle would be routed on X1-Z1-X2-Z2 with the evacuation duration 27, whereas the 
optimal solution would be on the route X1-Z2-X2-Z2  with evacuation duration 18. It 
means, sending each vehicle to its closest sink to the last pickup node is not always the 
appropriate route to be assigned for optimal routing.

(C) Consider the fixed demand at X to be 60 with the vehicles and shelters with a 
capacity of 40 and 20 respectively as represented in Figure 5(c). Then the evacuation 
cost (EC) for different vehicle assignment scenarios with |B| as the number of vehicles 
can be obtained in Table 3. It indicates that more vehicles seem to be beneficial in 
considering the EC to some extent. 

Table 3. Table showing the route assignments and the EC

|B| Vehicle route assignments  EC

1 D-X-Z1-X-Z2-X-Z3  6τ

2 (i)D-X-Z1,(ii)  D-X-Z2-X-Z3 4τ

3 (i)D-X-Z1,(ii)  D-X-Z2  ,(iii)  D-X-Z3    2τ

Example 5.  Consider an evacuation network. Let it be with one, two, three, and four 
vehicles as in Figure 6 where vehicles start from the depot D assigned to the demands 
Xi and finally return to the depot. Let all the unmarked arcs be with length unity. The 
number of vehicles |B| assigned and the respective maximum route length τ are also 
shown in Figure 7. Their relationship is also shown in Figure 6 and also in Figure 7.  
Here, some useful results on BEP problems regarding the fleet size can also be drawn,

•	 For the min-max objective there is an optimal threshold fleet size. Increasing the 
fleet size beyond this threshold does not impact optimality.

Route dominance on symmetric type transit-based evacuation network 



KANYA JOURNAL VOL-4 (2023)60

•	 The evacuation cost does not always decrease in a convex manner with the 
number of vehicles.

    
Figure 6. Evacuation network with a single depot and different demands.

Figure 7. Relation between τ and   |B|. 

Conclusion
Evacuation planning strategies, and their operations may vary due to their applicable 
geographical scales, total affected population size, transportation resources and traffic 
capacity, evacuation objectives, and the time spans.

Evacuation scheduling, traffic route guidance, destination optimization, and the 
optimal route choice are some of the prominent approaches to accelerate the 
evacuation process on dominant evacuation route for the efficient evacuation on such 
symmetric network. However, an integrated optimal evacuation approach to have a 
single comprehensive solution to the problem is always challenging and somewhat 
lacking for real case scenarios as the evacuation network topology adds complexity 
to the solution and impacts on the problem.  In real scenario, the evacuation network 
is almost asymmetric, and such assumptions are almost impracticable and are to be 
modified accordingly, which is one of the highly challenging issues in evacuation 
planning problems and strategies.
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