
JScE, Vol.9, 2021 Bhandari et al.

49

NEPALI HANDWRITTEN LETTER GENERATION USING GAN

Basant Babu Bhandari1, Aakash Raj Dhakal1, Laxman Maharjan1, Asmin Karki1

1Department of Computer Engineering, Khwopa College of Engineering, Bhaktapur, Nepal

Abstract

The generative adversarial networks seem to work very effectively for training generative deep neural networks.
The aim is to generate Nepali Handwritten letters using adversarial training in raster image format. Deep
Convolutional generative network is used to generate Nepali handwritten letters. Proposed generative adversarial
model that works on Devanagari 36 classes, each having 10,000 images, generates the Nepali Handwritten Letters
that are similar to the real-life data-set of total size 360,000 images. The generated letters are obtained by
simultaneously training the generator and discriminator of the network. Constructed discriminator networks and
generator networks both have five convolution layers and the activation function is chosen such that generator
networks generate the image and discriminator networks check if the generated image is similar to a real-life image
dataset. To measure the quantitative performance, Frechet Inception Distance (FID) methodology is used. The FID
value of 18 random samples, generated by networks constructed, is 38413677.145 . For a qualitative measure of
the model let the reader judge the quality of the image generated by the generator trained model. The Nepali letters
were generated by the adversarial network as required. The evaluation helps the generative model to be better and
further enables a better generation that humans have not thought of.

Keywords: Nepali Handwritten Letter Generation, Neural Network, Machine Learning, Deep Convolutional
Generative Adversarial Network

1. Introduction

A generative adversarial network (GAN) is a class of
machine learning frameworks designed by Ian
Goodfellow (Goodfellow, 2014) and his colleagues in
2014. Two neural networks contest with each other
in a game. Given a training set, this technique learns
to generate new data with the same statistics as the
training set. For example, a GAN trained on
photographs can generate new photographs that look
at least superficially authentic to human observers,
having many realistic characteristics.

Though originally proposed as a form of generative
model for unsupervised learning, GANs have also
proven useful for semi-supervised learning, fully
supervised learning, and reinforcement learning.

We use unsupervised learning; one trains the

machine with unlabeled data. This allows for
producing output based on previous experience. This
implementation maps the input variables to an output
variable and uses an algorithm to learn the
relationship between them. This involves learning to
generate image data that is similar to the real dataset
of image. In this implementation, Devanagari
characters' image dataset are fed into the GAN as
input. The network will then try to generate the
characters as accurately as possible.

2. Literature Review
The major research paper for GANs was submitted
by Ian Goodfellow (Goodfellow, 2014) in 2014. In
this paper, he used the MNIST (Modified National
Institutes of Standards and Technology) dataset for
testing his proposed framework and generated the
handwritten digits. The basic structure of GAN that
he proposed is shown in Fig. 1. In which, there is
simultaneous training of generator and discriminator
networks. The generator network is responsible for
generation of image and discriminator network
estimates the probability of generated samples are

*Corresponding author: Basant Babu Bhandari
Department of Computer Engineering, Khwopa College of
Engineering, Bhaktapur, Nepal
Email: basantbhandari2074@gmail.com
(Received: June 5, 2021, Accepted: August 2, 2021)

JScE, Vol.9, 2021 Bhandari et al.

50

similar to real dataset. This project's basic principle
inspired from two player game theory. In his result,
he made no claim that the resulting samples are better
than samples generated by existing methods, but
believed that these samples are at least competitive
with the better generative models.

Fig. 1 Basic GAN Model.

Another paper that actually uses deep convolution in
generative adversarial training to overcome
drawbacks of simple GAN and to show different new
things that are possible CNN with unsupervised
learning. They observed the huge adoption of
convolution networks in supervised learning
applications. In order to fill the gap between CNN
and unsupervised learning, they proposed a model
called DCGAN (Radford et al., 2015) that has certain
architecture constraints. They analyzed and
explained why GAN is known for being unstable to
train.

Generation of Bangla Handwritten Digit using the
DCGAN architecture was carried out by Mustapha et
al. (2021). In this paper, to achieve the goal they used
the three most popular Bangla handwritten datasets
CMATERdb, BanglaLekha-Isolated, ISI and their
own dataset Ekush. The proposed DCGAN that
successfully generates Bangla digits with higher
efficiency, which makes it a robust model to generate
Bangla handwritten digits from random noise. The
losses in each dataset are shown below along with the
output. Our project is inspired from this work. The
paper is about generating Arabic Letters using
DCGAN architecture. The dataset is composed of
pictures for 33 alphabets from ’alef’ to ’yeh’, 480
images per character handwritten with image size of
32x32.

Wu et al. (2020) uses DCGAN architecture to
generate the Tomato leaf disease image using a given
real Tomato leaf diseases dataset so that the total
dataset of diseased leaf dataset becomes large. This
technique is called dataset augmentation using
DCGAN. The traditional augmentation techniques

like flip, translation and rotation. Sometimes do not
generalize the dataset. They proposed a new method
called DCGAN based augmentation. Using this
technique, they obtained high model identification
accuracy then while using dataset with traditional
augmentation methods. They observed that DCGAN
gives better convincing results than the t-Distributed
Stochastic Neighbor Embedding and visual Turing
Test.

Another approach is the conditional version of
generative adversarial networks (Mirza & Osindero,
2014). They feed the condition value to the generator
and discriminator network. Class labels condition is
used in this. The network is forced to train the
network such that only conditioned values are
generated.

Nvidia scientists (Karras et al., 2017) found a new
way to control the generator output. They use a little
different approach for training the GAN network.
They use the idea in which the generator and
discriminator network is progressively growing.
Initially they train the computer to learn lesser
complex patterns, progressively the complexity
increases. They use low resolution image generation
techniques and as iteration goes on the network such
that the generator network can generate high
resolution images.

Although we can generate data that is similar to the
real dataset using GAN, we have no control over
generator output. The styleGAN (Karras, 2017) based
approach uses progressive training GAN and gives
fine control over generator output. Although the
styleGAN is a great research in the field of GAN,
styleGAN2 (Karras et al., 2020) was published in
2020 that discusses more details about improvement
of generator output and shows application of such a
model. The styleGAN2 is an improvement on
styleGAN1. Ian Goodfellow proposed another paper
(Goodfellow, 2016) that gives the answer of why
GAN is worth studying, how the GAN generative
model works, comparison with other models,
research frontiers in GAN, state-of-the-art image
model and more.

There is plenty of research in the area of GAN.
However, it has a limitation when the goal is for
generating a sequence of tokens. SeqGAN (Yu et al.,
2017) is responsible for sequential data generative
GAN.

A learn transformation between two image
distributions, another GAN approach is used called

JScE, Vol.9, 2021 Bhandari et al.

51

cycleGAN (Chu et al., 2017). This GAN learns to
transfer information from one source distribution into
another source distribution dataset and can be
retrieved back and form a cycle thus called
cycleGAN. GlyphGAN (Hayashi et al., 2019)
approach is used for the different font generation.
Using this technique, generation of different
consistent fonts becomes easier.

A new GAN is proposed to upsample images from
lower resolution to high resolution is called NU-GAN
(Kumar et al., 2020). Another GAN (Kovalenko,
2017) was proposed to resample the audio from lower
sampling rate to higher sampling rate. Many other
techniques that help in the tuning of the GAN
networks are also proposed there (Shmelkov et al.,
2018). Ian Goodfellow (Goodfellow, 2016) shows all
the possible things that are necessary to perform with
GAN and shows plenty of applications of GAN in
near future.

There are various drawbacks of AI and GAN which
are also there and are a serious concern for many
scientific researchers explained in the paper
(Brundage et al., 2018) and paper (Maas et al., 2013).
Using the GAN architecture, there is audio
generation (Liu et al., 2020) and video generation
techniques are also available.

3. Problem Description

The main objective is to generate Nepali Handwritten
letters using a generative adversarial network (GAN).
There is lots of work going in the field of
unsupervised learning. Different scientists from
different countries use DCGAN architecture to
generate their own alphabets for different languages.
So, we decided to apply the GAN architecture on
Nepali Handwritten characters.

4. Dataset
We found the dataset of Nepali handwritten letters on
the internet prepared by Ashok Kumar Pant and his
colleague in the UCI machine learning repository
(Acharya et al., 2015). This consists of 46 classes
each class having 10000 images of resolution 32X32.
We upsample the resolution with the cv2 library to
make the resolution 64X64 then we perform some
transformation on it to make it usable and
understandable for our model.

5. Methodology

We developed a Nepali Handwritten letter Generator

by building the GAN model. Then we pass the
training data-set into the model and finally, after
training it can output the realistic Nepali Handwritten
letter. Here, the diagram consists of the discriminator
model and generator model as represented by gray
red and light blue color respectively.

Fig. 2 Discriminator model used for the present

study

Fig. 3 Generator model used for present study

Fig. 2 is the discriminator model architecture and Fig.
3 represents generator model architecture.
Discriminator consists of five convolution layers and
the generator network also consists of five
convolution layers. Following topics describe all the
algorithms and models used in the project in detail.

5.1. Model Development

We attempted to make the model through the GAN
model which was based on the Ian Godfellow model,
but due to the failure in expectation of desired output
using this model. We decided to use convolution
techniques to build the network since we have seen
its great results with image dataset. We chose
DCGAN that used a convolutional neural network
rather than a densely connected artificial neural
network. PyTorch library is used in the process of
developing the GAN model. Pickle is used for data
storage and retrieval. The generator and discriminator

JScE, Vol.9, 2021 Bhandari et al.

52

are defined to train the model. Firstly, the
discriminator is defined with five layers. Along all
the layers, they have kernel size of four, stride two
and padding of one for all. Leaky-ReLU is used as an
activation function for the first four layers and
sigmoid is used for the last layer. The layer is
obtained as (Nx1x1x1). Secondly, the generator is
defined with five convolutional layers. Along all the
layers, they have kernel size of four, stride two and
padding of one for all except the first. ReLU is used
as an activation function for the first four layers and
tanh is used for the last layer. We obtain the output in
the form of (N x channels_img x 64 x 64). Then the
hyper parameters are defined. The hyper parameters
are learning rate, batch_size, image_size,
channel_image, channel_noise, number_of_epochs
and number_of_pixels. The channels for
discriminator and generator are defined

Afterwards, datasets are loaded. And the numpy array
is converted to tensor form. The datasets are filtered.
And feature scaling is done to get the required
dimension of the image. The optimizers are set up as
Adam optimizers and training is done to get the
model to perform the desired work. Then the loaded
model is saved to get the desired output

5.2. Model Architecture

Fig. 4 DCGAN architecture in code

For model development of DCGAN we need to
develop two CNN networks called discriminator
network and generator network. In the discriminator
network with five convolution layers, Leaky-ReLU
has an activation function except at the final layer to
avoid a vanishing gradient problem. For the output
layer of the discriminator network we use sigmoid as
activation function and for generator network we use
tanh as activation function for last layer output. The

generator network consists of a five convolution
layer. The summary of our model architecture we
used is shown in Fig. 4.

5.2.1. Generative model

The input to the generator is typically a vector or a
matrix which is used as a seed for generating an
image particularly size of 256. Once again, to keep
things simple, we’ll use a feed forward neural
network through the generator CNN layers, and the
output will be a batch of 64 images, which consist of
each image of size 64×64 pixels image. Since,
training in deep learning works with a batch of
images, we send a batch of image data to the model
for training. This is the random input to the Generator
model and output is an image of dimension 64x64.
This is a Generator Network Model. We use the
tanh() activation function for the output layer of the
generator. Note that since the outputs of the tanh()
activation lie in the range [-1,1], we have applied the
same transformation to the images in the training
dataset. Let’s generate an output vector using the
generator and view it as an image by transforming
and de-normalizing the output.

𝐿(𝐺) = min[𝑙𝑜𝑔-𝐷(𝑥)] + 1 − 𝑙𝑜𝑔-𝐷[𝐺(𝑧)] (1)

Equation (1) is the loss function for the generator
network based on the discriminator output. And
generators need to minimize its value as training goes
on. That tells us that the generator is learning to
generate the image that is similar to the real image.
This formula tells us the difference between the
discriminator output for real and synthesized images
should be minimum.

The ReLU activation is used in the generator except
for the output layer which uses the Tanh function. We
observed that using a bounded activation allowed the
model to learn more quickly to saturate and cover the
colour space of the training distribution.

Within the discriminator we found the leaky rectified
activation to work well, especially for higher
resolution modelling.

In between each convolution layer we call the
normalization function that is standard practice to get
better and less failure case outcomes.

5.2.2. Discriminative model

The discriminator takes an image as input, and tries

JScE, Vol.9, 2021 Bhandari et al.

53

to classify it as “real” or “generated”. In this sense,
it’s like any other neural network. While we can use
a CNN for the discriminator, we’ll use a simple feed
forward network through the CNN layers to get the
discriminated output value. We send a batch of
images of size 64x64 to the discriminator. Input for
the discriminator model will be of 64 images. This is
a Discriminator Network Model. We use the Leaky
ReLU activation for the discriminator. The output of
the discriminator is a single number between 0 and 1,
which can be interpreted as the probability of the
input image being fake, i.e. generated.

𝐿(𝐷) = max[𝑙𝑜𝑔-𝐷(𝑥)] + 1 − 𝑙𝑜𝑔-𝐷[𝐺(𝑧)] (2)

Here the discriminator needs to maximize Equation
(2) function. And based on this value the model
knows how to learn about generation of images.
Unlike the regular ReLU function, Leaky ReLU
allows the pass of a small gradient signal for negative
values. As a result, it makes the gradients from the
discriminator flow stronger into the generator.
Instead of passing a gradient of 0 in the back-prop
pass, it passes a small negative gradient.

5.3. Training

Finally, now that we have all the necessary parts of
the GAN framework defined, we can train it. The
training GANs is somewhat of an art form, as
incorrect hyperparameter settings lead to mode
collapse with little explanation of what went wrong.
Here, we will closely follow Algorithm 1 from
Goodfellow’s paper (Goodfellow, 2014), while
abiding by some of the best practices shown in
ganhacks. Namely, we will construct different mini-
batches for real and fake images, and adjust G’s
objective function to maximize 𝑙𝑜𝑔-7𝐷[𝐺(𝑧)]8.
Training is split up into two main parts. Part 1 updates
the Discriminator and Part 2 updates the Generator.

The goal of training the discriminator is to maximize
the probability of correctly classifying a given input
as real or fake. In terms of Goodfellow (Goodfellow,
2014), we wish to “update the discriminator by
ascending its stochastic gradient”. Practically, we
want to maximize 𝑙𝑜𝑔-𝐷(𝑥) + 𝑙𝑜𝑔-(1 − 𝐷[𝐺(𝑧)].
Due to the separate mini-batch suggestion from
ganhacks, we will calculate this in two steps. First,
we will construct a batch of real samples from the
training set, forward pass through D, calculate the
loss 𝑙𝑜𝑔-𝐷(𝑥), then calculate the gradients in a
backward pass. Secondly, we will construct a batch

of fake samples with the current generator, forward
pass this batch through D, calculate the loss
𝑙𝑜𝑔-71 − 𝐷[𝐺(𝑥)]8, and accumulate the gradients
with a backward pass. Now, with the gradients
accumulated from both the all-real and all-fake
batches, we call a step of the Discriminator optimizer.

As stated in the original paper (Goodfellow, 2014),
we want to train the Generator by minimizing
𝑙𝑜𝑔-71 − 𝐷[𝐺(𝑧)]8 to generate better fakes. As
mentioned, this was shown by Goodfellow
(Goodfellow, 2014) to not provide enough gradients,
especially early in the learning process. As a fix, we
instead wish to maximize 𝑙𝑜𝑔-7𝐷[𝐺(𝑧)]8.

In the code we accomplish this by: classifying the
Generator output from Part 1 with the Discriminator,
computing G’s loss using real labels as GT,
computing G’s gradients in a backward pass, and
finally updating G’s parameters with an optimizer
step. It may seem counterintuitive to use the real
labels as GT labels for the loss function, but this
allows us to use the log(x) part of the BCELoss
(rather than the 𝑙𝑜𝑔-(1 − 𝑥) part) which is exactly
what we want.

Fig. 5 Loss graph of generator and discriminator

A GAN can have two loss functions: one for
generator training and one for discriminator training.
In the loss schemes we'll look at here, the generator
and discriminator losses derive from a single measure
of distance between probability distributions. In both
schemes, however, the generator can only affect one
term in the distance measure: the term that reflects
the distribution of the fake data. So, during generator
training we drop the other term, which reflects the
distribution of the real data.

The most popular graph in GAN based networks is
loss graph, where we plot discriminator loss (orange)
and generator loss (blue) while training the network.
Here we use the Binary Cross Entropy Loss function.
We can clearly observe in Fig. 5, initially for
untrained networks the generator has highest loss
because it is not trained yet. But as iteration goes on,

JScE, Vol.9, 2021 Bhandari et al.

54

the generator network learns how to generate images
which are similar to the real data-set, the loss of the
generator gradually decreases. In case of a
discriminator the loss lies between 0 to 1.

6. Results and Discussions

Fig. 6 Synthesized “म”

Fig. 7 Synthesized Nepali handwritten letters

The Nepali letters were generated as required. Those
Nepali letters were clear and understandable. We use
the Frechet Inception Distance (FID) method to do
quantitative analysis. Using this method, we get the
FID distance of 18 random samples is 38413677.145.
We obtained the exact output of the Nepali write text
generation. Fig. 6 is an image of “म” generated by
our generator network.

Fig. 7 shows 18 random samples generated by
generator while Fig. 8 is 18 random real Nepali
Handwritten letters. The result shows that the

generated sample is quite similar to the handwritten
real sample. That means our generator network is
well trained.

Fig. 8 Real Nepali handwritten letters

7. Conclusions and Recommendations

We demonstrated that generative adversarial
networks, and, their deep convolutional variants,
function exceptionally well as generative models. We
described DCGAN model implementations and
showed the realistic Nepali handwritten letter
generation.

This study successfully demonstrates the
implementation of DCGAN model on real-life
datasets. Even though the generated characters were
noisy, further fine tuning can be done to give
significantly better results. Furthermore, our model
architecture can be modified and trained to generate a
new kind of Nepali calligraphy. The DCGAN model
was trained for 5625 iterations. At each iteration, the
output of the model was stored. Despite the noise, the
generated characters were readable to the human eye.

Therefore, generative models offer more
representational power than their discriminative
counterparts. We foresee great future success with
GANs, DCGANs, and generative models in general.
Our recommendation after doing hand written letter
generation using DCGAN project are:

• Generation of high-quality handwritten letters

with SeqGAN
• Font generation using GlyphGAN on Nepali

Handwritten letters.
• Recognition of generated letters by a child so that

we can test the child on generated character.
• Development of other artistic DCGAN models by

replacing the dataset.

JScE, Vol.9, 2021 Bhandari et al.

55

• DCGAN based Data Augmentation technique
• Realistic result can be possible with Progressive

GAN, etc.

References
[1] Acharya, P., & Gyawali. (2015). Deep Learning based

large-scale handwritten Devanagari character
recognition. In Proceedings of the 9th International
Conference on Software, Knowledge, Information
Management and Applications (SKIMA), (pp.121-126).

[2] Brundage, M. et al., (2018). The malicious use of artificial

intelligence: Forecasting, prevention, and mitigation.
arXiv preprint arXiv:1802.07228.

[3] Chu, C., Zhmoginov, A., & Sandler, M. (2017). Cyclegan,

a master of steganography. arXiv preprint
arXiv:1712.02950.

[4] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,

Warde-Farley, D., Ozair, S., Courville, A., & Bengio,
Y. (2014). Generative adversarial nets. Advances in
neural information processing systems, 27.

[5] Goodfellow, I. (2016). Nips 2016 tutorial: Generative

adversarial networks. arXiv preprint
arXiv:1701.00160.

[6] Hayashi, H., Abe, K., & Uchida, S. (2019). GlyphGAN:

Style-consistent font generation based on generative
adversarial networks. Knowledge-Based Systems, 186,
104927

[7] Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017).

Progressive growing of GANs for improved quality,
stability, and variation. arXiv preprint
arXiv:1710.10196.

[8] Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J.,

& Aila, T. (2020). Analyzing and improving the image
quality of stylegan. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition, (pp. 8110-8119).

[9] Kovalenko, B. (2017). Super resolution with generative

adversarial networks. cs231n. stanford. edu/reports.

[10] Kumar, R., Kumar, K., Anand, V., Bengio, Y., &
Courville, A. (2020). NU-GAN: High resolution neural
upsampling with GAN. arXiv preprint
arXiv:2010.11362.

[11] Liu, J. Y., Chen, Y. H., Yeh, Y. C., & Yang, Y. H. (2020).

Unconditional audio generation with generative
adversarial networks and cycle regularization. arXiv
preprint arXiv:2005.08526.

[12] Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013, June).

Rectifier nonlinearities improve neural network
acoustic models. In Proc. icml (Vol. 30, No. 1, p. 3).

[13] Mirza, M., & Osindero, S. (2014). Conditional generative

adversarial nets. arXiv preprint arXiv:1411.1784.

[14] Mustapha, I. B., Hasan, S., Nabus, H., & Shamsuddin, S.
M. (2021). Conditional Deep Convolutional Generative
Adversarial Networks for Isolated Handwritten Arabic
Character Generation. Arabian Journal for Science and
Engineering, 1-12.

[15] Radford, A., Metz, L., & Chintala, S. (2015).

Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434.

[16] Shmelkov, K., Schmid, C., & Alahari, K. (2018). How

good is my GAN?. In Proceedings of the European
Conference on Computer Vision (ECCV), (pp. 213-
229).

[17] Wu, Q., Chen, Y., & Meng, J. (2020). DCGAN-based data

augmentation for tomato leaf disease identification.
IEEE Access, 8, 98716-98728.

[18] Yu, L., Zhang, W., Wang, J., & Yu, Y. (2017). Seqgan:

Sequence generative adversarial nets with policy
gradient. In Proceedings of the AAAI conference on
artificial intelligence (Vol. 31, No. 1).

