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Abstract 
Non-linear optimal control problem arises in many different areas, for example, engineering, medical sciences, 
economics, industries, etc. The solution of Hamilton-Jacobi-Bellman equation is connected with the non -linear optimal 
control problem. In this paper, we formulate the Hamilton-Jacobi-Bellman equation using nonlinear optimal control 
problem. We also discuss its solutions using Adomian decomposition method, Laplace transform-Homotopy perturbation 
method and variational iteration method. 
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1. Introduction 

Optimal control theory has been widely used in 
different sectors, for example, engineering, medical 
sciences, economics, industries, etc, see Li & 
Young (1995). However, optimal control of non- 
linear system is still supper challenging task for 
solving from decades. Solving methods of optimal 
control is mainly divided in two categories: direct 
method (optimization technique) and indirect method 
(calculus technique). Indirect method leads to 
Hamilton-Jacobi-Bellman (HJB) equation. The 
viscosity solution of HJB equation is called value 
function. A value function is connected to 
nonlinear optimal control problem (OCP). Some 
examples of optimal control problem and their 
corresponding HJB equations are as follows: 

 
• Infinite Horizon Problem (Bardi & Capuzzo–

Dolcetta, 1997): For any 𝑥 ∈ ℝ$ and 𝑟 ∈
(0,+∞) 
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𝑣(𝑥) = 𝑖𝑛𝑓
1∈𝕌(3,4)

56𝑒89:𝜑<𝑦>1(𝑠), 𝑢(𝑠)A	𝑑𝑠
4

D

+	 𝑒89:𝑣<𝑦>1(𝜏)AF			 

 
Suppose that the value functions are continuously 
differentiable then its HJB equation is given by 

𝛾𝑣(𝑥) + 𝐻<𝑥. ∇𝑣(𝑥)A = 0, 𝑥 ∈ ℝ$ with 
𝐻(𝑥, 𝑝) 	= 	𝑠𝑢𝑝{〈𝑓	(𝑥, 𝑢), 𝑝〉 −
	𝜑(𝑥, 𝑢)|𝑢	 ∈ 	𝑈	}. 
 

• Bolza Problem (Bardi & Capuzzo-Dolcetta 1997): 
For any 𝑥 ∈ ℝ$ and 𝜏 ∈ (𝑡, 𝑇), 

𝑣(𝑡, 𝑥) = 	 𝑖𝑛𝑓
1∈𝕌(3,4)

56𝜑<𝑠, 𝑦>1(𝑠), 𝑢(𝑠)A𝑑𝑠
4

3

+	 𝑣(𝜏, 𝑦>1(𝜏))F 

Its HJB equation can be formulated as  
−𝜕3𝑣(𝑡, 𝑥) + 𝐻<𝑡, 𝑥, ∇>𝑣(𝑡, 𝑥)A = 0,		 
(𝑡, 𝑥) ∈ (−∞, 𝑇) × ℝ$, with 

𝐻(𝑡, 𝑥, 𝑝)
= sup{−〈𝑓(𝑡, 𝑥, 𝑢), 𝑝〉 − 	𝜑(𝑡, 𝑥, 𝑢)|𝑢 ∈ 𝑈}. 
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• Minimum time problem (Bokanowski & Zidani 
2011): Suppose time is not fixed to reach a given 
target 𝕆 ⊆	ℝ$. For any 𝑥 ∈ ℝ$ and 𝜏 ∈
(0, 𝑇𝕆(𝑥)) 

𝑻𝕆(𝒙) = 	 𝑖𝑛𝑓
1∈𝕌(3,4)

^𝜏 + 𝑇𝕆<𝑦>1(𝜏)A_. 

 Its HJB equation is  
−1 + 𝐻a𝑥, ∇𝑇𝕆(𝑥)b = 0, 𝑥 ∈ 𝑖𝑛𝑡(𝑑𝑜𝑚	𝑇𝕆),	 with  

𝐻(𝑥, 𝑝) = sup{−〈𝑓(𝑥, 𝑢), 𝑝〉|𝑢 ∈ 𝑈}. 

Different methods have been proposed to solve the 
Hamilton-Jacobi-Bellman equation such as 
modification of variational iteration method using 
He’s polynomials for a class of nonlinear optimal 
control problems. Matinfar & Saeidy (2014) 
discussed that this method is very efficient and 
powerful technique in finding the solution to the 
nonlinear optimal control problems. Crandall et al. 
(1984) described two approximations of solutions 
of Hamilton-Jacobi equations. Atangana et al. 
(2014) described the homotopy perturbation 
method (HPM) for the HJB equation. For solving 
the problem of optimal portfolio construction, 
Kiliannova & Sevcovic (2013) proposed and 
analyzed a method for the Riccati transformation, 
which is known as transformation method for HJB 
equation. The problem of optimal reinsurance 
design has been studied by using risk measures 
such as the Valueat-Risk (VaR), Conditional 
Value-at-Risk (CVaR) and conditional tail 
expectation (CTE). Wen & Yin (2019) presented 
the optimal reinsurance strategy for insurers with a 
generalized mean-variance premium principle and 
obtained the closed form expression of the optimal 
reinsurance strategy and corresponding survival 
probability under proportional reinsurance. 
Yousefia et al. (2010) described the variational 
iteration method to find the optimal control of 
linear system and tested the example for the 
validity of solution with the exact solution. Jafari et 
al. (2013) applied the standard Adomian 
decomposition method and the homotopy 
perturbation method to obtain the solution of 
nonlinear functional equations and shown that the 
standard HPM provides exactly the same solutions 
as the standard Adomian decomposition method 
for solving functional equations. 

In the present work, we are going to use Adomian 
decomposition method (ADM), Laplace homotopy 
perturbation method (LHPM) and variational 
iteration method (VIM) to solve the HJB 

equations. These methods give approximate 
solution as an infinite series which are converging 
to the exact solution. Then we will analyze the 
error with its solution with the exact solutions. 
 
2. Notation and Assumption 

A control system is the output of the calculus of 
variation. When we use the controller in the 
differential equation then it will affect the evolution 
of the system. 

Consider 𝑈 as a family of admissible control 
functions defined by 

𝑈 ≔ {𝑢:ℝ	 ⟶ ℝh, 𝑢	𝑖𝑠	𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒	,
𝑢(𝑡) ∈ 𝑈(𝑡)	𝑓𝑜𝑟	𝑎. 𝑒. 𝑡}. 

Now, we consider non-linear control system in the 
form  

l𝑥̇
(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)), 𝑎. 𝑒	𝑡 ∈ <0, 𝑇no,
𝑥(0) = 𝑥D.																																																		

 

(2.1)          

Here we can see that the rate of change 𝑥̇(𝑡) 
depends not only on the state variables 𝑥 itself, but 
depends on some extra parameters, 𝑢 =
{𝑢p, 𝑢q, … , 𝑢h} also. Researchers often describe 
such problems in the form of a cost function that 
can represent time, energy and money costs or their 
respective combinations, see Evans (2010). The 
task of finding the controls relates to the 
minimization of the cost functional. 
 
The cost function in its general form is given by 

𝐽(𝑥(𝑡), 𝑢, 𝑡) = 	6 𝐿<𝑡, 𝑥(𝑡), 𝑢(𝑡)A𝑑𝑡 + ℎ a𝑥<𝑇nAb ,
vw

D
 

(2.2) 
where 𝑥(𝑡) ∈ ℝ$ and  𝑢(𝑡) ∈ ℝh represent state 
and control variables, respectively at time 
𝑡, 𝐿: [0, 𝑇n] × ℝ$ × ℝh ⟶ ℝ and ℎ:	ℝ$ ⟶ ℝ  
represents real valued functions defining the 
Lagrangian or running cost per unit time and 
terminal cost of the system, respectively. 
 
Bardi & Capuzzo-Dolcetta (1997) defined the OCP 
as 
inf
1∈𝕌

𝐽(𝑥(𝑡), 𝑢, 𝑡) = inf
1∈𝕌

}∫ 𝐿<𝑡, 𝑥(𝑡), 𝑢(𝑡)A𝑑𝑡 +vw
D

ℎ(𝑥(𝑇n))�,  
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Subject to l𝑥̇
(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)), 𝑎. 𝑒	𝑡 ∈ <0, 𝑇no,
𝑥(0) = 𝑥D.																																																		

 

(2.3) 
That means,  
Under which optimal control value of 𝑢 that 
minimize the cost function given by (2.2) that also 
satisfies the condition (2.1). 

Now, let us consider the value function 
𝑣: �0, 𝑇no × ℝ$ ⟶ 	ℝ defined by 

𝑣 ∶= 	 inf
1∈𝕌

𝐽(𝑥, 𝑢, 𝑡). 

We have, 
𝑣(𝑥(𝑡), 𝑡) = inf

1∈𝕌
aℎ<𝑥<𝑇nA, 𝑇nA +

	∫ 𝐿(𝑡, 𝑥(𝑤),			𝑢(𝑤), 𝑤)𝑑𝑤vw
3 b. 

(2.4) 
Therefore, we have 
𝑣(𝑥(𝑡), 𝑡) = inf

1∈𝕌
aℎ<𝑥<𝑇nA, 𝑇nA +	∫ 𝐿(𝑡, 𝑥(𝑤),vw

3��3

𝑢(𝑤), 𝑤)𝑑𝑤 +	∫ 𝐿(𝑡, 𝑥(𝑤), 𝑢(𝑤), 𝑤)𝑑𝑤3��3
3 	b, 

then by using Bellman’s Principle of Optimality 
(Bellman et al., 1965) given by the equation (2.4),  

𝑣(𝑥(𝑡), 𝑡) = inf
1∈𝕌

�	6 𝐿(𝑡, 𝑥(𝑤), 𝑢(𝑤), 𝑤)𝑑𝑤
3��3

3

+ 𝑣<𝑥	(𝑡 + 	𝛿𝑡), (𝑡 + 	𝛿𝑡)A� . 

 
Using Taylor series,  

𝑣(𝑥(𝑡), 𝑡) = inf
1∈𝕌

�	6 𝐿(𝑡, 𝑥(𝑤), 𝑢(𝑤), 𝑤)𝑑𝑤
3��3

3

+ 𝑣(𝑥	(𝑡),			𝑡) + 𝑣3𝛿𝑡

+ 𝑣>[𝑥(𝑡 + 𝛿𝑡) − 𝑥(𝑡)] + 𝑂(𝛿𝑡)� 

Suppose 𝛿𝑡	 → 0 then 𝑤	 → 𝑡 
𝑣(𝑥(𝑡), 𝑡) = 	 inf

1∈𝕌
<𝐿𝛿𝑡 + 𝑣(𝑥, 𝑡) + 𝑣3𝛿𝑡

+ 𝑣>𝑓(𝑥, 𝑢, 𝑡)𝛿𝑡 + 𝑂(𝛿𝑡)A. 
By dividing both sides by 𝛿𝑡, we have 

−
𝜕𝑣
𝜕𝑡 = 	 inf1∈𝕌

�𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑡) +	
𝜕𝑣
𝜕𝑥 𝑓(𝑥, 𝑢, 𝑡)� 

then  
𝜕𝑣
𝜕𝑡 + 𝐻

(𝑥(𝑡), 𝑢(𝑡), 𝑣>, 𝑡) = 0, 

where  
𝐻(𝑥(𝑡), 𝑢(𝑡), 𝑣>, 𝑡)

= 	 inf
1∈𝕌

�𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑡)

+	
𝜕𝑣
𝜕𝑥 𝑓(𝑥, 𝑢, 𝑡)� . 

This is called the HJB equation with the boundary 

condition 𝑣<𝑥<𝑇nA, 𝑇nA ≔	 inf
1∈𝕌

𝐽<𝑥<𝑇nA, 𝑇nA 

																					= ℎ<𝑥<𝑇nA, 𝑇nA. 
Our aim is to solve the HJB equation by Adomian 
decomposition method, Laplace transform-
Homotopy perturbation method and variational 
iteration method. 
 

3. Basic Concept of Adomian Decomposition 
Method 

Consider a nonlinear differential equation 
(Adomian, 1988) in the form of  

𝐷𝑣 + 𝐿𝑣 + 𝑁𝑣 = 𝑓(𝑥),                (3.1) 
where 𝐷 is the highest order derivatives which is 
considered as invertible, 𝐿 is the linear differential 
operator of lesser than 𝐷, 𝑁 represents the nonlinear 
terms and 𝑓 is the input terms or source terms. Then 
taking inverse operator 𝐷8p to the both side of (3.1), 
we get,  

𝑣 = 		𝑔(𝑥) − 𝐷8p(𝐿𝑣) − 𝐷8p(𝑁𝑣),	 
which is calculated after integration from 𝑓(𝑥) and 
using given initial conditions. Here integral operator 
𝐷8p is taken as definite integrals from 𝑡D to 𝑡. In the 
Adomian decomposition method (Adomian, 1988), 
nonlinear term 𝑁(𝑣) is defined by 

𝑁(𝑣) = 	�𝐴�.
�

��D

 

The components 𝑣D, 𝑣p, 𝑣q, … are determined by the 
recursive relation: 
𝑣D = 𝑔(𝑥), 𝑣$�p = 	−𝐷8p(𝐿𝑣) − 𝐷8p(𝐴$).	 

Here 𝐴$ is called Adomian Polynomial, and defined 
by 

𝐴$ = 	 �
1
𝑛!�

𝑑$

𝑑𝑝$ �𝑁 ��𝑣�𝑝�
�

��D

��
��D

, 𝑛 = 0, 1, 2, … 

(3.2) 
And finally, we consider the solution 𝑣(𝑥) by the 
series 𝑣(𝑥) = 	∑ 𝑣$.�

$�D  
 
4. Adomian Method for HJB Equation 
Consider HJB equation of the form: 

𝜕𝑣
𝜕𝑡 = 𝐻(𝑥(𝑡), 𝑢(𝑡), 𝑣>, 𝑡), 

with initial condition 
𝑣(𝑥(0), 0) = ℎ(𝑥(0), 0). 

Consider 𝐷3 = 	
�
�3
,	 then we have, 

𝐷3𝑣 = 𝐻(𝑥(𝑡), 𝑢(𝑡), 𝑣>, 𝑡). 
(4.1) 

Then separating right hand side of (4.1) as linear 
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and nonlinear term, 
i.e. 

𝐷3𝑣 = 𝐿(𝑣) + 𝑁(𝑣).                          (4.2) 
Now, taking inverse of operator 𝐷38p = 	∫ (. )𝑑𝑡

3
D  

On both sides of (4.2), we get 
𝐷8p𝐷3𝑣 = 𝐷38p𝐿(𝑣) + 𝐷38p𝑁(𝑣). 

Consider 

𝑣(𝑥, 𝑡) = 	∑ 𝑣$.�
$�D   

Then we have,  

�𝑣$ = 𝑣D + 𝐷38p𝐿 ��𝑣$

�

$�D

� + 𝐷38p ��𝐴$

�

$�D

� ,
�

$�D

 

(4.4) 

where  

𝑣D = ℎ(𝑥(0), 0). 

Now, we can compute 𝑣$� 	𝑠 as follows: 

𝑣p = 𝐷38p𝐿(𝑣D) + 𝐷38p𝐴D,	 

𝑣q = 𝐷38p𝐿(𝑣p) + 𝐷38p𝐴p, 

𝑣� = 𝐷38p𝐿(𝑣q) + 𝐷38p𝐴q, 

⋮ 

𝑣$�p = 𝐷38p𝐿(𝑣$) + 𝐷38p𝐴$, 

and Adomian Polynomial 𝐴$ is obtained by (3.2). 

 
5. Experimental Evaluation of ADM 
Consider the control problem 

𝑥̇ = 	−
1
2𝑢	 

𝐽 = 	6 �−𝑥q −
1
4𝑢

q� 𝑑𝑡.
p

D
 

Its Hamiltonian is  

𝐻 =	−𝑥q −
1
4𝑢

q −
1
2
𝜕𝑣
𝜕𝑥 𝑢. 

Its Hamiltonian-Jacobi-Bellman equation (Adomian, 
1988) is  

𝜕𝑣
𝜕𝑡 = 𝑥q −

1
4 �
𝜕𝑣
𝜕𝑥�

q

, 𝑣(𝑥(0), 0) = 0. 

(5.1) 
This can be written as 

𝐷3𝑣 = 𝑥q −
1
4
(𝑣>)q,	 

where	𝐷3 = 	
�
�3
	. 

Now, taking the inverse 𝐷38p = 	∫ [. ]𝑑𝑡
3
D  on both 

sides 

𝐷38p𝐷3𝑣 = 𝐷38p(𝑥q) −
1
4𝐷

8p(𝑣>)q. 

Here, 𝐷38p𝐷3𝑣 = 𝑣 − 𝑣(𝑥(0), 0) = 𝑣  and put 𝑣 =
	∑ 𝑣$�
$�D  we have 

∑ 𝑣$�
$�D = 𝑣D −

p
¢
∑ 𝐴$�
$�D , 

where 𝑣D is represented by 𝑣D = 𝐷38p(𝑥q) = 𝑥q𝑡 
and (𝑣>)q is the nonlinearity part which is replaced 
by 𝐴$ polynomials. The polynomials 𝐴$� 𝑠 for 𝑣q are 
defined by (3.2) 

𝐴D = 𝑣Dq; 
							𝐴p = 2𝑣D𝑣p; 

																		𝐴q = 𝑣pq + 2𝑣D𝑣q; 
⋮ 

And so on. 
Consequently,  

𝑣p = 	−
1
4𝐷3

8p(𝑣D>)q = 	−
1
4𝐷3

8p(2𝑥𝑡) = 	−
1
3𝑥

q𝑡�; 

𝑣q = 	−
1
4𝐷3

8p(2𝑣D>𝑣p>) = 	−
1
4𝐷3

8p �−
8
3𝑥

q𝑡¢�

= 	
2
15 𝑥

q𝑡§; 

𝑣� = 	−
1
4𝐷3

8p(2𝑣D>𝑣q> + (𝑣p>)q)

= 	−
1
4𝐷3

8p �
4
9 𝑥𝑡

© +
16
15𝑥

q𝑡©�

= 	−
17
315𝑥

q𝑡¬; 

⋮ 
and so on. 
Now, substituting these value in 𝑣 = 	∑ 𝑣$,�

$�D  we 
get 𝑣 = 𝑥q𝑡 −	p

�
𝑥q𝑡� +	 q

p§
𝑥q𝑡§ −	 p¬

�p§
𝑥q𝑡¬ + ⋯ 

is the required solution. It is obvious that a higher 
number of iterations make 𝑣(𝑥, 𝑡) converge to the 
exact solution. 
 
6. Basic Concept of Homotopy 

Perturbation Method. 
The combination of the perturbation method and the 
homotopy method is called homotopy perturbation 
method. This method is constructed in the following 
way: 
Consider the nonlinear differential equation in the 
form (Fakharian et al., 2010): 

𝐿𝑣 + 𝑁𝑣 − 𝑔(𝑥) = 0,				𝑥 ∈ Ω,	 
where 𝐿 is linear part and 𝑁 is nonlinear part, 𝑔(𝑥) 
is analytic function and Ω is bounded domain. 
In the homotopy technique, we construct the 
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homotopy 𝑢(𝑥, 𝑝) ∶ 	Ω	 × [0, 1] → 	ℝ which 
satisfies:  

𝐻(𝑢, 𝑝) = 𝐿(𝑢) − 𝐿(𝑣D) + 𝑝𝐿(𝑣D)
+ 𝑝[𝑁(𝑢) − 𝑔(𝑥)] = 0,	 

(6.1) 
where 𝑣D is initial approximation, 𝑝 ∈ [0, 1] is 
embedding parameter. So, we have  
 

𝐻(𝑢, 0) = 𝐿(𝑢) − 𝐿(𝑣D) = 0, 
𝐻(𝑢, 1) = 𝐿(𝑢) + 𝑁(𝑢) − 𝑔(𝑥) = 0. 

While 𝐿(𝑢) − 𝐿(𝑣D) and 𝐿(𝑢) + 𝑁(𝑢) − 𝑔(𝑥) are 
homotopy then the changing process of 𝑝 from zero 
to unity is 𝑢(𝑥, 𝑝) from 𝑣D to 𝑣(𝑥) is deformation. 
Now, we assume the solution of (6.1) is in the 
power series form in 𝑝: 

𝑢 = 𝑢D + 𝑝𝑢p + 𝑝q𝑢q + 𝑝�𝑢� +⋯∞. 
(6.2) 

In (6.2), assume 𝑝 tends to 1, we get  
𝑣 = 	 lim

�→p
𝑢 = 𝑢D + 𝑢p + 𝑢q +	⋯	 

This is the solution of the given nonlinear 
differential equation. 

 
7. Basic Concept of Laplace Transform-

Homotopy Perturbation Method (LT-
HPM) 

Consider a nonlinear non-homogenous partial 
differential equation with initial condition (Khan & 
Wu, 2011): 

𝜕𝑣
𝜕𝑡 + 𝑅𝑣

(𝑥, 𝑡) + 𝑁𝑣(𝑥, 𝑡) = 𝑔(𝑥, 𝑡),	 

𝑣(𝑥, 0) = 	𝛼(𝑥), 
(7.1) 

where 	𝑅 = 	 �
�>

 is the linear differential operator, 𝑁 
is the nonlinear differential operator and 𝑔(𝑥, 𝑡) is 
the source term. 
Now, taking the Laplace transform on both sides 
(7.1) and then using initial condition, we get 

𝐿[𝑣(𝑥, 𝑡)] = 	
1
𝑠
(𝛼(𝑥) + 𝐿[𝑔(𝑥)]) 	

+	
1
𝑠
(𝐿[𝑅𝑣(𝑥, 𝑡)]

+ 𝐿[𝑁𝑣(𝑥, 𝑡)]). 
(7.2) 

Taking inverse Laplace transform in (7.2), we have 
𝑣(𝑥, 𝑡) = 𝐺(𝑥, 𝑡) − 𝐿8p ´	p

:
(𝐿[𝑅𝑣(𝑥, 𝑡)] +

𝐿[𝑁𝑣(𝑥, 𝑡)])µ, 
(7.3) 

where 𝐺(𝑥, 𝑡) is prescribed from the source term 

and initial condition. Now, we apply homotopy 
perturbation given by 

𝑣(𝑥, 𝑡) = 	�𝑝$𝐻$(𝑥).
�

$�D

 

Using these coupling of the Laplace transform and 
the homotopy perturbation, we get 

�𝑝$𝑣$(𝑥, 𝑡) = 𝐺(𝑥, 𝑡)
�

$�D

− 𝑝	 ¶𝐿8p ·
1
𝑠 𝐿 �𝑅�𝑝$𝑣$(𝑥, 𝑡)

�

$�D

+	�𝑝$𝐻$(𝑣)
�

$�D

�¸¹ 

(7.4) 
where 𝐻$ is He’s polynomials and given by 

𝐻$ = 	�
1
𝑛!�

𝑑$

𝑑𝑝$ �𝑁	 ��𝑣�𝑝�
�

��D

��
��D

,			 

	𝑛 = 0, 1, 2,⋯ 
(7.5) 

Comparing the coefficients of like power of 𝑝 in 
(7.4), we have  

	𝑝D: 𝑣D(𝑥, 𝑡) = 𝐺(𝑥, 𝑡),	 
 𝑝p: 𝑣p(𝑥, 𝑡) = 	−𝐿8p a

p
:
𝐿[𝑅𝑣D(𝑥, 𝑡) + 𝐻D(𝑣)]b, 

𝑝q: 𝑣q(𝑥, 𝑡) = 	−𝐿8p �
1
𝑠 𝐿
[𝑅𝑣p(𝑥, 𝑡) + 𝐻p(𝑣)]�,	 

𝑝�: 𝑣�(𝑥, 𝑡) = 	−𝐿8p �
1
𝑠 𝐿
[𝑅𝑣q(𝑥, 𝑡) + 𝐻q(𝑣)]�, 

⋮ 
and so on. 

 
8. Experimental Evaluation for LT-HPM 

 
Consider the following example (5.1): 

𝜕𝑣
𝜕𝑡 = 𝑥q −

1
4�
𝜕𝑣
𝜕𝑥�

q

, 𝑣(𝑥(0), 0) = 0. 

Taking Laplace transform on both sides,  

𝐿[𝑣3(𝑥, 𝑡)] = 𝐿[𝑥q] −	
1
4 𝐿
[(𝑣>)q]. 

(8.1) 
Using initial condition in (8.1), we get 
𝑉 =	 p

:»
𝑥q − p

¢:
𝐿[(𝑣>)q].                                     (8.2) 

Taking inverse Laplace transform on (8.2), we get,  

𝑣(𝑥, 𝑡) = 𝑥q𝑡 − 𝐿8p ¼
1
4𝑠 𝐿

[(𝑣>)q]½. 

(8.3) 
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Using homotopy perturbation method in (8.3), we 
get 

�𝑝$𝑣$(𝑥, 𝑡) = 𝑥q𝑡
�

$�D

− 𝑝 ¾𝐿8p ·
1
4𝑠 𝐿 ��𝑝$𝐻$(𝑣)

�

$�D

�¸¿ , 

(8.4) 
where 𝐻$(𝑣) are He’s polynomials (7.5) and 
calculated  by 

𝐻D(𝑣) ∶ 	 [𝑣D(𝑥)]q	 = 4𝑥q𝑡q,	 
𝐻p(𝑣) ∶ 2𝑣D>𝑣p> =	-

À
�
	𝑥q𝑡¢,  

𝐻q(𝑣) ∶ 2𝑣D>𝑣q> + (𝑣p>)q = 	
68
45 𝑥

q𝑡©, 

⋮ 
and so on. 

And finally comparing the coefficients of like power 
of 𝑝 in (8.4) 

 𝑝D 	 ∶ 		 𝑣D(𝑥, 𝑡) = 𝑥q𝑡,	 

𝑝p ∶ 		 𝑣p(𝑥, 𝑡) = 	−𝐿8p ¼
1
4𝑠 𝐿

[𝐻D(𝑣)]½

= 	
1
3 𝑥

q𝑡�, 

𝑝q ∶ 		 𝑣q(𝑥, 𝑡) = 	−𝐿8p ¼
1
4𝑠 𝐿

[𝐻p(𝑣)]½

= 	
2
15 𝑥

q𝑡§, 

𝑝� ∶ 		 𝑣�(𝑥, 𝑡) = 	−𝐿8p ¼
1
4𝑠 𝐿

[𝐻q(𝑣)]½

= 	−
17
315𝑥

q𝑡¬, 

⋮ 
and so on. 
Thus, the solution of (5.1) is given by 

𝑣(𝑥, 𝑡) = 𝑣D(𝑥, 𝑡) + 𝑣p(𝑥, 𝑡) + 𝑣q(𝑥, 𝑡)
+ 𝑣�(𝑥, 𝑡) +	⋯ 

= 𝑥q𝑡 −	
1
3 𝑥

q𝑡� +	
2
15 𝑥

q𝑡§ −	
17
315 𝑥

q𝑡¬ +	⋯ 

Which is exactly same as the solution given by 
Adomian decomposition method. In the paper 
(Mishra & Nagar, 2012), it is shown that the standard 
HPM provides exactly same solutions as the standard 
ADM for solving functional equations. It has been 
proved that He’s polynomials are only Adomians 
polynomials with different name. 

 
9. Variational Iteration Method (VIM) 
The variational iteration method is the approximation method 
for solving linear and nonlinear problems. It has been the 

centre of attention of many researchers. This method was 
introduced by the Chinese mathematician He (1999). The 
main idea in the variational iteration method is to construct an 
iterative sequence of functions converging to an exact solution. 
  
Consider the differential equation (He, 1999): 
 

𝐿𝑣 + 𝑁𝑣 = 𝑔(𝑥),	 
where 𝐿 = 	 Á

Â

Á>Â
	 , 𝑚 ∈ ℕ, is linear operator, 𝑁 is 

nonlinear operator and 𝑔(𝑥) is sourcing term. Using 
VIM, we can construct a correct functional as follows: 
𝑣$�p	(𝑥, 𝑡) = 𝑣$(𝑥, 𝑡) + 	∫ 𝜆<𝐿𝑣$(𝑥, 𝑤) +

3
D

𝑁𝑣$ÅÅÅ(𝑥, 𝑤) − 𝑔(𝑥)A𝑑𝑤,  
where 𝜆 is a Lagrange multiplier. It is calculated by 
𝜆 = 	−1,	 for 	𝑚 = 1 
𝜆 = 	𝑤 − 𝑡,	 for 	𝑚 = 2,	 
and in general  
𝜆 = 	 (8p)

Â

(h8p)!
(𝑤 − 𝑡)h8p,	 for 𝑚 ≥ 1. 

 
Here 𝑣$ÅÅÅ  is supposed to be restricted variation that 
means 	𝛿𝑣$ÅÅÅ = 0. In this method, first to determine the 
Lagrange multiplier 𝜆 is determined optimally via 
variational theory. The successive approximation 𝑣$�p,
𝑛 ≥ 0 of the solution 𝑢 is obtained by using 
determined Lagrange multiplier and selective initial 
approximation 𝑣D. Then the solution is given by 

𝑣 = 	 lim
$→�

𝑣$. 

 
10. Experimental Evaluation For VIM 
Consider the example (5.1): 

𝜕𝑣
𝜕𝑡 = 𝑥q −

1
4 �
𝜕𝑣
𝜕𝑥�

q

, 𝑣(𝑥(0), 0) = 0. 

Its correction functional can be written as 
𝑣$�p(𝑥, 𝑡) = 𝑣$(𝑥, 𝑡)

+ 	6 𝜆 Ç𝑣$È(𝑥, 𝑤)
3

D

+ 	
1
4 <𝑣$>

(𝑥, 𝑤)Aq − 𝑥qÉ 𝑑𝑤.	 

Choosing 𝜆 = 	−1 and starting with the initial 
approximation 𝑣D(𝑥, 𝑡) = 0, 

𝑣p(𝑥, 𝑡)
= 𝑣D(𝑥, 𝑡)

− 6 Ç𝑣D>(𝑥, 𝑤) + 	
1
4 <𝑣D>

(𝑥, 𝑤)Aq − 𝑥qÉ 𝑑𝑤
																																										

3

D
 

= 0 − 6 (−𝑥q)𝑑𝑤,
3

D
	 

= 𝑥q𝑡; 



JScE, Vol.9, 2021                                                                                                                     Khadka and KC        14 
  

 

 
𝑣q(𝑥, 𝑡)
= 𝑣p(𝑥, 𝑡)

− 6 Ç𝑣p>(𝑥, 𝑤) + 	
1
4 <𝑣p>

(𝑥, 𝑤)Aq − 𝑥qÉ 𝑑𝑤
																																										

3

D
 

= 𝑥q𝑡 − 6 (𝑥q𝑤q)𝑑𝑤,
3

D
	 

= 𝑥q𝑡 − 	
1
3 𝑥

q𝑡�; 

𝑣�(𝑥, 𝑡)
= 𝑣q(𝑥, 𝑡)

− 6 Ç𝑣q>(𝑥, 𝑤) + 	
1
4 <𝑣q>

(𝑥, 𝑤)Aq − 𝑥qÉ 𝑑𝑤
																																										

3

D
 

= 𝑣q(𝑥, 𝑡) − 6 �−
2
3 𝑥

q𝑤¢ +
1
9 𝑥

q𝑤©� 𝑑𝑤,
3

D
	 

= 𝑥q𝑡 − 	
1
3 𝑥

q𝑡� + 	
2
15 𝑥

q𝑡§ − 	
1
63 𝑥

q𝑡¬; 

⋮ 
and so on. 
The exact solution of (5.1) is 𝑣(𝑥, 𝑡) = 𝑥q tanh 𝑡. 
 
11. Comparison of Solution of ADM, VIM 

with Exact 
 
We compare the solutions obtained using ADM and 
VIM to the exact solution given by 𝑣(𝑥, 𝑡) =
𝑥q tanh 𝑡. 

 
Fig. 1 Solutions given by ADM, VIM and Exact 

 
                                      

 
 
 

 

 
 
Fig. 2 Absolute Error of ADM, VIM with Exact 

Table 1: Comparison Error 

Time
e 

Absolute ADM Error Absolute VIM Error 
0.1 2.18E-11 3.79E-09 
0.2 1.10E-08 4.77E-07 
0.3 4.15E-07 7.92E-06 
0.4 5.38E-06 5.70E-05 
0.5 3.88E-05 0.000259 
0.6 0.000192 0.000874 
0.7 0.000736 0.002401 
0.8 0.002331 0.005658 
0.9 0.006379 0.011842 
1 0.015562 0.022533 

 
Here, Fig. 1 represents the solutions of ADM, VIM 
and Exact, and Fig. 2 shows the absolute error of 
ADM, VIM with Exact. 
 
From the error analysis shown in the Table 1, we 
can conclude that the result obtained from the ADM 
is better than the result obtained from the VIM. That 
is, ADM gives the better approximation for the HJB 
equation. 
 
12. Conclusion 

 
In this paper, nonlinear optimal control system is 
deduced in the HJB equation. Adomian 
decomposition method and the Laplace transform - 
homotopy perturbation transform method (LT-HPM) 
are successfully applied to study the Hamilton-Jacobi- 
Bellman equation with initial condition. Both the 
methods give the exactly same solution. The results 
show that the ADM and LT-HPM are both powerful 
and efficient techniques in finding exact and 
approximate solutions for HJB and nonlinear partial 
differential equations as well. 
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