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Abstract

Weather forecasting plays a vital role in climate risk management, disaster mitigation, and agricultural
planning. Traditional forecasting models often rely on sequential methods or spatially coarse datasets,
limiting their ability to capture fine-grained interactions across geographically distributed locations. This
research proposes a Graph Neural Network (GNN)-based approach for spatio-temporal weather
prediction, utilizing ERA5 reanalysis data from 1979 to 2020 for 1,359 locations in Nepal. Key
meteorological features, including precipitation, relative humidity, and temperature, are incorporated into
the model. The proposed framework constructs a graph representation, where each node corresponds to a
geographic location and edges represent spatial adjacency or environmental similarity. The GNN
architecture integrates graph convolutional layers to capture spatial dependencies and a Gated Recurrent
Unit (GRU) to model temporal patterns. Performance evaluation against historical weather data
demonstrates that the model achieves lower Mean Squared Error (MSE) than traditional sequential
baselines, while maintaining computational efficiency. Results highlight the model’s ability to generalize
across diverse climate zones, making it a promising tool for large-scale weather monitoring. Future
enhancements could incorporate real-time sensor feedback and probabilistic uncertainty quantification to
develop a more robust forecasting pipeline. This study underscores the potential of GNNSs in enhancing
weather prediction accuracy by effectively modeling spatial dependencies—an aspect often overlooked
in conventional approaches. While the model achieved strong accuracy for temperature and humidity,
precipitation predictions exhibited modest visual deviations. These differences are largely attributable to
the bursty, sparse nature of rainfall and vertical scale exaggeration in plotted values. Nonetheless, the
predictions remained temporally aligned with actual events and yielded low MSE, underscoring the
model’s validity.
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Introduction

Accurate weather forecasting is crucial for strategic decision-making across various sectors, including
agriculture, water resource management, and disaster prevention. Reliable predictions help mitigate risks,

optimize resource allocation, and support early warning systems. However, traditional numerical weather
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prediction (NWP) models, while effective at providing global or regional forecasts, often fail to capture
localized, complex interactions among environmental variables. These models rely on coarse spatial
resolutions and deterministic approaches, limiting their ability to account for the intricate, region-specific

dependencies essential for precise forecasting.

Machine learning techniques, particularly sequential models like recurrent neural networks (RNNs) and
long short-term memory (LSTM) networks, have been widely used to enhance forecasting accuracy by
leveraging temporal dependencies in climate data. However, these models predominantly focus on time-
series patterns and often neglect spatial dependencies, which are critical in geographically diverse regions
such as Nepal. Weather phenomena are inherently spatial, influenced by topography, altitude variations,
and regional climatic interactions. Ignoring these factors can lead to diminished prediction accuracy,

especially in regions with high environmental variability.

Graph Neural Networks (GNNs) offer a promising alternative to overcome these limitations by
incorporating both spatial and temporal dependencies into weather prediction models. GNN-based
architectures represent each geographic location as a node in a graph, where edges capture relationships
based on proximity or climatic similarity. By integrating graph convolutional layers with traditional
sequence-learning mechanisms, GNNSs enable a more refined and context-aware representation of weather

dynamics.

This paper presents a GNN-based spatio-temporal approach for weather forecasting, leveraging ERA5
reanalysis data, a high-resolution climate dataset spanning multiple decades. By combining graph-based
learning with historical meteorological data, the proposed model enhances predictive accuracy for key
weather parameters such as temperature, humidity, and precipitation. The study demonstrates that
spatially-informed forecasting can significantly improve weather prediction outcomes, offering valuable
insights for policy makers, environmental planners, and disaster response teams (Lira et al., 2022; Roth
& Liebig, 2022; Bhandari et al., 2024).

Literature Review

The integration of Graph Neural Networks (GNNSs) into weather forecasting is an evolving area that
addresses the limitations of traditional models in capturing spatial and temporal dependencies. Weather
phenomena inherently exhibit both local and global spatial relationships, along with strong temporal
dynamics, which sequential models like LSTMs or traditional numerical weather prediction (NWP)
frameworks often fail to model jointly. In recent years, GNNs have emerged as a promising solution to

these challenges by enabling structured learning over graph-encoded spatial data.
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Kipf and Welling (2016) laid the foundation for modern graph-based learning by introducing Graph
Convolutional Networks (GCNs), which efficiently perform semi-supervised learning by aggregating
features from local graph neighborhoods. Their spectral convolutional approach enabled scalable learning
on large graphs and has since influenced applications across natural language processing, social networks,
and spatio-temporal modeling. Their work demonstrated that information diffusion through graph
topology allows for better generalization in sparse and partially labeled data environments, a property

directly applicable to environmental modeling.

Following this, graph-based models gained popularity in dynamic system forecasting. Keisler (2022)
extended the GCN framework into the realm of global-scale weather forecasting by training a GNN with
over 6 million parameters on the ERA5 dataset. His work achieved comparable or better performance
than high-resolution physics-based NWP models but with vastly reduced inference time — generating
six-hour forecasts in milliseconds on GPU hardware. This reinforced the hypothesis that GNNs could
effectively replace or supplement traditional simulation-heavy approaches, especially in operational
settings where computational efficiency is critical.

Recent research has also introduced spatio-temporal attention mechanisms to improve GNN
expressivity. Lira et al. (2022) proposed a GNN-based model combining spatial graph structures with
temporal self-attention modules for multivariate weather series forecasting. Their application to frost
prediction used multiple environmental data sources and demonstrated that temporal attention can
enhance forecasting performance for episodic weather events — a particularly relevant factor in

precipitation forecasting.

Roth and Liebig (2022) approached the problem from the perspective of latent node state estimation using
spatio-temporal GNNs. Their model was capable of inferring weather variables in locations with missing
observations by learning from graph topologies and nearby temporal slices. This is particularly relevant
for data-sparse regions such as Nepal, where high-resolution weather observations are often missing or

incomplete.

From a regional and applied perspective, Bhandari et al. (2024) explored GNNs for weather prediction in
Nepal. Their study emphasized the importance of data quality and coverage, and showed that GNN-based
models can generalize even in topographically diverse regions. Their results suggest that domain-adapted
graph construction — where nodes reflect both spatial proximity and climate similarity — can lead to

substantial accuracy improvements over conventional models.

In energy forecasting, Khodayar and Wang (2018) applied a spatio-temporal GNN to wind speed

prediction across different monitoring stations. They demonstrated that capturing spatial dependencies
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between nodes significantly reduces prediction errors, especially when weather dynamics propagate

across locations — a pattern also observed in Nepal’s monsoon-driven rainfall.

Taken together, these studies demonstrate the growing maturity of graph-based models for forecasting in
both global and localized weather systems. They underscore the importance of designing GNNs that can
integrate multi-modal, multi-temporal signals from geographically distributed nodes — a paradigm this
paper adopts and extends by applying it to the geographically and topographically complex landscape of
Nepal using ERAS reanalysis data.

Materials and Methods

Data Acquisition and Preprocessing
This study utilizes the ERAS dataset, a high-resolution climate dataset provided by the Copernicus

Climate Data Store and accessed via Google Earth Engine. The dataset includes hourly weather
observations from 1979 to 2020, covering essential meteorological variables such as temperature,
humidity, and precipitation. To construct a geographically relevant dataset for Nepal, a filtering process
was applied using latitude and longitude values, resulting in 1359 locations distributed across the country.

Although ERA5 provides reanalysis data from 1940 onward, we limited our dataset to the period from
1979 to 2020. Data after 1979 marks the introduction of satellite-based observations, which significantly
improved accuracy and consistency. This choice also helped reduce computational overhead, as training
on high-resolution weather data across a longer timeline would have increased processing requirements

without a proportional gain in model performance.

Graph Construction
To effectively model the spatio-temporal dependencies of weather patterns, the dataset was structured as

a graph representation, allowing for the integration of both spatial and temporal relationships in climate
data. This structure enables the model to capture localized climate interactions while leveraging

information from geographically connected regions.

In the graph framework, each geographic coordinate (location) is represented as a node. These nodes
correspond to specific locations across Nepal, where historical weather data, including temperature,
humidity, and precipitation, has been recorded. The spatial arrangement of these nodes ensures that
climate variations at different locations are appropriately modeled.

Edges in the graph define the relationships between nodes and were established based on geographical

proximity and climatic similarity. Proximity-based edges connect locations that are physically close to
each other, reflecting natural climate continuity across regions. In addition, similarity-based edges were

determined using correlations in historical temperature variations, ensuring that locations with similar
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climatic patterns influence each other's weather predictions. This dual approach helps the model capture

both local and regional climate dependencies, leading to more accurate forecasting.

Each node was enriched with features derived from normalized historical weather measurements,
ensuring that data remains consistent across different scales and units. Normalization eliminates
variations due to differing measurement units and scales, making it easier for the model to learn patterns
effectively. By structuring the dataset as a graph, the model benefits from a richer representation of

weather dynamics, leading to improved accuracy in climate predictions.

Model Architecture
The proposed model architecture was designed to integrate both spatial and temporal components,

enabling it to capture the complex dynamics of weather data. The spatial component of the model consists
of graph convolutional layers, which are responsible for capturing interdependencies among nodes by
aggregating features from neighboring nodes. These layers employ either spectral or spatial graph
convolutional methods, depending on the specific requirements of the task. Spectral methods leverage the
graph's Laplacian matrix to perform convolutions in the frequency domain, while spatial methods operate
directly on the graph structure by aggregating information from neighboring nodes. This flexibility allows

the model to efficiently handle the spatial relationships inherent in the weather data.

The temporal component of the model is handled by a gated recurrent unit (GRU), a type of recurrent
neural network (RNN) that is particularly well-suited for processing sequential data. The GRU processes
the temporal aspects of the weather data, such as the progression of temperature or humidity over time,
and outputs a hidden representation that encapsulates the temporal dynamics. This hidden representation
is then combined with the spatial features extracted by the graph convolutional layers to produce the final
weather predictions. The output layer of the model is a fully connected layer that predicts key weather
variables, including temperature, humidity, and precipitation. Linear activation is used in this layer to
facilitate regression tasks, ensuring that the model outputs continuous values suitable for weather

forecasting.

Training Procedure
The training process was designed to optimize the model’s ability to predict key weather variables with

high accuracy. The Mean Squared Error (MSE) was chosen as the loss function, as it effectively measures
the deviation between predicted and actual weather values. By minimizing MSE, the model learns to

generate more precise forecasts for temperature, humidity, and precipitation.

To enhance convergence and stability during training, the Adam optimizer was employed. Adam was

selected due to its adaptive learning rate properties, which allow it to efficiently handle sparse gradients
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and non-stationary objectives. Additionally, a learning rate scheduler was implemented to dynamically

adjust the learning rate, preventing overfitting and ensuring smooth optimization across training epochs.

To improve computational efficiency and generalization, the model was trained using mini-batch gradient
descent. This method allows the model to update its parameters incrementally, reducing memory
constraints and enhancing convergence speed. The number of epochs was fine-tuned based on validation
performance, ensuring the model did not underfit or overfit the training data. Through these carefully
selected training strategies, the model was optimized for both accuracy and computational efficiency in

weather forecasting tasks.

Results

Model Performance

The performance of the Graph Neural Network (GNN)-based model was evaluated using held-out
portions of the ERA5 dataset, with predictions assessed for temperature, humidity, and precipitation. The
results demonstrate the model’s effectiveness in capturing spatio-temporal dependencies and improving

weather forecasting accuracy.

The Graph Neural Network (GNN)-based model achieved a Mean Squared Error (MSE) of 0.76 for
temperature, 5.84 for humidity, and approximately 0.00 for precipitation on the test set. These results
demonstrate that the GNN approach significantly outperformed traditional sequential models, which do
not account for spatial dependencies in weather patterns. By incorporating both spatial and temporal
relationships, the model was able to capture complex climate interactions more effectively. Additionally,
the GNN-based model exhibited strong generalization across geographically diverse regions, highlighting
its robustness in different climatic zones and reinforcing its potential for large-scale weather forecasting

applications.

Figure 1 compares the actual temperature (blue solid line) and predicted temperature (red dashed line)
for the “Aangna” location. The predicted curve tracks the true observations closely, capturing both day-
to-day fluctuations and broader trends with minimal lag. This accuracy is quantified by a mean squared
error (MSE) of 0.76, which reflects the model’s ability to learn complex spatio-temporal temperature

patterns.
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Actual vs Predicted Temperature for Location: Aangna
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Figure 1: Actual vs Predicted Temperature for Location "Aangna"

Figure 2 shows similar results for humidity (green vs. orange). While some peaks and troughs deviate
more than in the temperature case—likely due to humidity’s inherent variability—the overall fit remains
strong, with a 5.84 MSE. This suggests the GNN effectively transfers spatial information (e.g., shared
climate zones or similar moisture conditions) to improve its forecasts.

Figure 3 presents the comparison between actual and predicted precipitation values for the “Aangna”
location. While some minor deviations are visible, particularly in the intensity of certain peaks, the
predicted values maintain strong temporal alignment with actual rainfall events. The sparse and spiky
nature of precipitation makes perfect regression challenging, and the vertical scaling of the plot can

visually exaggerate small absolute differences. Nevertheless, the model captures the overall rainfall
dynamics effectively, as reflected in a near-zero MSE.
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Actual vs Predicted Precipitation for Location: Aangna
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Figure 3: Actual vs Predicted Precipitation for Location "Aangna".

Lastly, Figure 4 presents the training loss curve for the Spatio-Temporal Graph Neural Network
(STGNN). The loss steadily decreases and flattens near an MSE of about 2.20, suggesting the model
converges and consistently assimilates both spatial adjacency and temporal sequences. Compared to
purely sequential baselines, the GNN’s ability to integrate neighboring locations’ data yields improved

accuracy and robust generalization, particularly across diverse geographic and climatic settings.
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Figure 4: Training Loss Curve for GNN Model
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Discussion

The study shows that incorporating Graph Neural Networks (GNNs) into weather prediction models
significantly improves their performance by capturing spatial dependencies. Traditional weather models
often treat each location's data independently, overlooking the spatial correlations between different
regions. However, by modeling each location as a node in a graph and establishing connections based on
geographical proximity or similar weather patterns, GNNs can learn more complex relationships between

local and regional climates.

Despite the improvements, there are still limitations. The quality and resolution of input data can limit the
accuracy of predictions, especially in areas with insufficient data collection. Additionally, the current
model focuses on deterministic predictions, meaning it gives a single forecast without uncertainty
estimation. Adding probabilistic forecasting could provide more valuable insights into the range of
possible weather outcomes, which would be critical for applications like disaster response where

understanding forecast uncertainty is vital.

The precipitation forecasts also reveal that the model is sensitive to temporal patterns in rainfall but tends
to slightly misestimate amplitude in highly variable conditions. These deviations are consistent with
challenges observed in similar studies and reflect the complex, non-linear structure of precipitation
processes. Improvements may include probabilistic methods or uncertainty-aware loss functions to better

capture such stochastic behavior.

Conclusion

This study highlights the effectiveness of Graph Neural Networks (GNNs) enhanced with gated recurrent
units (GRUs) for temporal modeling in weather forecasting. By combining spatial adjacency data with
temporal sequences, GNNs can generate more accurate and resilient weather predictions compared to
traditional sequential models. This fusion of spatial and temporal information allows for better

representation of the complex interactions within weather systems.

Future developments could include incorporating real-time data from Internet of Things (loT) sensors and
employing ensemble techniques for uncertainty quantification. These upgrades would improve the
accuracy of localized weather forecasts, making the system more adaptable to fluctuating climate
conditions. Such advancements would be particularly valuable for decision-makers in fields like
agriculture, infrastructure planning, and disaster management, where precise, dynamic forecasting is

crucial for effective planning and response.

ISSN: 3102-0283 (Print) 109



Journal of NAST College (JONC), Volume 1, Number 1-2, 2025 Siddhartha Devkota, Avinab Khadka, Yagya Raj Pandeya

References

Keisler, R. (2022). Forecasting global weather with graph neural networks. arXiv preprint
arXiv:2202.07575.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks.
arXiv preprint arxXiv:1609.02907.

Bhandari, H. C., Pandeya, Y. R., Jha, K., & Jha, S. (2024). Recent advances in electrical engineering:
exploring  graph  neural networks for  weather  prediction in  data-scarce

environments. Environmental Research Communications, 6(10), 105010.

Khodayar, M., & Wang, J. (2018). Spatio-temporal graph deep neural network for short-term wind speed
forecasting. IEEE Transactions on Sustainable Energy, 10(2), 670-681.

Lira, H., Marti, L., & Sanchez-Pi, N. (2022). A graph neural network with spatio-temporal attention for

multi-sources time series data: An application to frost forecast. Sensors, 22(4), 1486.

Roth, A., & Liebig, T. (2022, November). Forecasting unobserved node states with spatio-temporal graph
neural networks. In 2022 IEEE International Conference on Data Mining Workshops
(ICDMW) (pp. 740-747). IEEE.

ISSN: 3102-0283 (Print) 110



