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1. Introduction
Nepal is considered one of  the world's most disaster-prone countries because of  its geomorphic and ecological 
diversity (DRR Portal, n.d.). Several areas in Nepal  are susceptible to hazards such as landslides, debris flow, 
floods, and earthquakes due to their weak geology, steep slopes, and climatic conditions (Budha et al., 2016; 
Regmi et al., 2014). Landslides occur yearly in various areas of  Nepal, resulting in numerous individual and 
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Abstract
Landslides are geological hazards that typically occur in different settings on both temporal and 
spatial scales, causing significant loss of  life and property. The landslides in Nepal have increased 
in recent years, claiming loss of  lives and properties. The coupling effect of  Asian monsoon, 
seismo-tectonic activities, and anthropogenic activities are the major cause of  landslide generation 
in the Nepal Himalaya. Systematic landslide research is essential to prevent or control the issues 
generated by landslides, including widespread damage of  buildings and structures, property, 
cultivated areas, and loss of  life. This study aims to perform a GIS-based landslide susceptibility 
mapping of  the Kathmandu valley using bivariate statistical approaches (Frequency Ratio and 
Information Value) and a heuristic approach. The landslide inventory database was prepared from 
2010 to 2021 using Google Earth Pro, where 105 landslides were identified. Predisposing factors 
were categorized into different classes (aspect, slope, geology, curvature, land use, distance to 
road, distance to drainage, rainfall, NDVI, and relative relief) for the suitability mapping. The 
landslide susceptibility classes for all three methods were divided into low, medium, and high 
classes. Furthermore, the frequency ratio (FR) and information value (IV) methods were validated 
through the area under curve approach. Results indicate that the FR and IV approaches have 
predictive rates of  70.16% and 81.43%, respectively. This study is helpful for geohazard assessment 
for infrastructure planning and land use zoning. 
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property losses. Most of  the landslides in Nepal are caused by earthquakes and excessive monsoon 
precipitation events, while human activities including improper land use, encroachment into susceptible 
land slopes, and unmanaged developmental projects and construction without appropriate protections in the 
vulnerable areas, worsen the risk (Acharya et al., 2017). 

Landslides are geological hazards that typically occur in different settings on both temporal and spatial 
scales, causing significant loss of  life and property (McKean & Roering, 2004). A landslide is the downward 
and outward flow of  slope-forming material over the separating surfaces (Varnes, 1958). It occurs when the 
driving force outweighs the resisting force (Gariano & Guzzetti, 2016; Gill et al., 2014; Pardeshi et al., 2013). 
Consequently, triggers for landslides include those responsible for amplifying the impacts of  downslope 
forces and those that contribute to poor or decreased strength of  the material. Landslides are of  concern that 
can result in economic losses, casualties, and environmental issues (Acharya et al., 2017). 

In the last decade alone, there have been over 2600 recorded incidents of  significant landslides in Nepal, 
resulting in the death of  more than 1300 people and an estimated loss of  2 billion Nepalese Rupees (DRR 
Portal, n.d.). Furthermore, the landslide events have destroyed over 3000 infrastructures. The 2015 Mw 7.8 
Gorkha Earthquake in Nepal has caused over 20,000 small and large-scale landslides in 14 districts across 
Central and Western Nepal (Rosser et al., 2021). Insufficient early warning systems (EWS) and emergency 
preparedness with mitigation strategies have aggravated the situation (Thapa & Adhikari, 2019). Kathmandu 
Valley is a densely populated and significant area from an economic standpoint, with rapidly growing 
settlements (Mesta et al., 2022). According to a study conducted by Kincey et al. (2024), Kathmandu, 
Bhaktapur, and Lalitpur rank 55th, 48th, and 60th in district-wise mean landslide susceptibility, indicating 
low landslide susceptibility of  the valley. However, Kathmandu ranks 20th in population exposure and 3rd in 
building exposure, which has the potential to cause severe damage to the residing population, infrastructure, 
and economy. Therefore, a systematic landslide study is essential to prevent or control the loss and damages 
caused by landslides, including widespread damage to buildings and structures, property, cultivated areas, 
and loss of  life (Pardeshi et al., 2013). This can be done with the help of  landslide risk assessment, where 
susceptibility and vulnerability provide the sectoral information. Landslide susceptibility can be defined as 
the probability of  a landslide taking place at a specific location based on local topographical characteristics, 
which assesses the extent to which future slope movement may affect the ground (Rahman et al., 2022). The 
susceptibility models predict where landslides are likely to occur. Landslide inventory and susceptibility 
mapping are critical steps in hazard and disaster risk management practices associated with landslides, 
particularly in the Himalayan region, where many people have been affected, and the property has been 
destroyed (Acharya et al., 2017; Regmi et al., 2014).

Landslide hazard assessment and risk mitigation can be performed by providing professionals with 
conveniently available, comprehensive, and reliable information regarding the incidence of  landslides. As a 
result, reliable susceptibility mapping information is essential for a broader range of  stakeholders. Recent and 
developing tools such as high-resolution Landsat images, Digital Elevation Model (DEM), and Geographic 
Information System (GIS) are very useful in generating the landslide susceptibility map, hazard analysis, and 
risk evaluation (Basharat et al., 2016). The first step in landslide management and mitigation is to prepare 
and develop a landslide inventory. 

The landslide inventory provides systematic data on the locations, types, dynamics, and prevalence of  
landslides in the area. High-resolution sentinel images and DEM are used to create landslide inventory maps 
(Basharat et al., 2016). Moreover, geospatial tools are essential in generating a digital database and monitoring 
landslide data. Following the development of  the landslide inventory, the second phase is creating a landslide 
susceptibility map containing pre-disposing factors (Basharat et al., 2016).
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Several qualitative and quantitative methodologies exist to build the thematic layers for the landslide 
susceptibility map preparation. Previously, researchers created susceptibility maps by qualitatively 
superimposing topographical and geological attributes onto landslide data. Nowadays, researchers have been 
using advanced approaches for susceptibility mapping, such as bivariate and multivariate statistical models, 
logistic regression analysis, artificial neural network (ANN), and Analytic Hierarchy Process (AHP) (Basharat 
et al., 2016; Kamiński, 2019; Shahabi & Hashim, 2015). GIS-based statistical models such as the Frequency 
Ratio (FR), Weight of  Evidence (WoE), Logistic Regression (LR), and Information Value (IV) models have 
been used by researchers in Nepal (Acharya et al., 2017; Pathak & Devkota, 2022; Regmi et al., 2014; Thapa 
& Adhikari, 2019), and around the world (Addis, 2023; Mersha & Meten, 2020; Sarkar et al., 2013; Wubalem, 
2021; Wubalem & Meten, 2020).

Among various methods of  statistical analysis, the logistic regression approach is among the most reliable 
for determining landslide susceptibility (El-Fengour et al., 2021; Lee & Pradhan, 2007; Sajadi et al., 2022; 
Wubalem & Meten, 2020). However, the technique requires a large dataset and more computational resources 
than FR and IV and is less suitable in data-scare areas with limited inventory. FR and IV models have the 
advantage over LR of  being simple and free of  complex mathematical analysis (Sarkar et al., 2013). Mersha 
& Meten (2020) used the WoE and FR approach to conduct landslide susceptibility assessment and found 
that the results from FR were more accurate than the WoE approach. Furthermore, Gholami et al. (2019) 
conducted the assessment using the Frequency Ratio, Fuzzy Gamma, and Landslide Index Method, where 
the result from the FR technique was the most accurate. 

The study aims to fit different susceptibility models in order to determine the landslide susceptibility of  the 
Kathmandu valley, and compare the results of  other models. The comparative analysis of  models and model 
validation helps to select the best model based on the local characteristics of  the region. 

2. Study Area
Kathmandu valley is the capital city of  Nepal located in the central Nepal. It is an intermontane basin within 
the Mahabharat Lekh. The Bagmati River drains all the water in the valley. Steep mountainous regions of  
over 2,000 meter elevations surround the area, and it is made up of  very gentle and flat terrain at elevations 
of  around 1,300 meters (Figure 1). The Kathmandu Valley is situated within 85° 11' 30.7” - 85° 31' 38.47” due 
East and 27° 32' 13.16” - 27° 49' 4.19” due North, covering an area of  652 square kilometers. Geologically, the 
valley is bounded by Gneiss, Schist, and Granite of  Shivapuri Gneiss to the north and sedimentary rocks of  
Phulchauki Group to the south (Acharya & Paudyal, 2019). The valley sediment comprises lacustrine deposits 
such as sand, silt, and mud lignite, particularly along the Bagmati river banks of  Lukundol, Naikhandi, and 
upstream of  Nakhu river. Black and grey silt and mud can be found in the Kalimati formation along the 
center of  the Kathmandu basin, extending thinly towards the south (Paudel & Sakai, 2008).

The average annual rainfall of  the Kathmandu basin is around 1755 mm, depending on the altitude (Devkota, 
2005). Rainfall often increases in steep and hilly areas, and it is heavier on slopes with a southern aspect than 
the north-facing slope. The rainy season (June to September) receives about 80% of  the yearly precipitation 
(Devkota, 2005; Pokharel & Hallett, 2015). The valley is surrounded by forests from all sides: Shivapuri forest 
in the northern part, Nagarjun forests in the north-west, Chandragiri in the south-west, and Godawari in the 
south and south-eastern regions. The central part of  the basin is a core residential area, with agricultural 
and croplands distributed further away from the center. The residential or built-up areas of  Kathmandu 
have significantly increased from 41 km2 in 1975 to 177 km2 in 2018 (Mesta et al., 2022). Furthermore, Mesta 
et al. (2022) anticipate the built-up areas to double by 2050 and reach 352 km2, which covers roughly half  of  
the Kathmandu valley's total area.
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Figure 1: Study area

3. Materials and Methods
The study has adopted several bivariate statistical models, such as Information Value, Frequency Ratio, and 
Heuristic method for the landslide susceptibility mapping of  the Kathmandu valley. These analyses were 
performed using different topographical and hydro-meteorological data. The obtained susceptibility models 
were validated statistically using the AUC method (Figure 2).
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Figure 2: Methodological framework

3.1 Landslide inventory

Landslide inventory provides systematic data on the locations, types, dynamics, and prevalence of  landslides 
in the area. The landslide inventory was generated through Google Earth Pro, by identifying landslide areas 
from 2010 to 2021. A total of  105 landslides were identified in the Kathmandu valley. The landslides were 
prominent at the outskirts of  Kathmandu valley, primarily at higher slope and elevation areas, as seen in 
Figure 3 (a). 70% of  the total inventory (74 landslides) was used as training data, and the remaining 30% 
was used as testing data for the validation of  susceptibility models using Area Under Curve (AUC) method.
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Figure 3: (a) Landslide inventory; (b) Landslide identified on Google Earth

3.2 Data collection and preparation

The generation of  a landslide susceptibility map is dependent on various landslide hazard elements and 
the strong interaction between landslides and earth's surface data (Wubalem, 2021). The study considered 
a total of  10 predisposing factors: aspect, slope, geology, curvature, land-use, distance to road, distance to 
drainage, rainfall, NDVI, and relative relief. The DEM (2*2 m) was used to generate slope, aspect, relative 
relief, and curvature of  the study area, as provided in Table 1. The land cover dataset of  Nepal, 2019 was 
developed through the National Land Cover Monitoring System (NLCMS) (ICIMOD, 2019). The Normalized 
Difference Vegetation Index (NDVI) was generated using the Sentinel-2 images of  10m resolution (European 
Space Agency, 2022). Furthermore, the drainage and road data were obtained from National Geoportal of  
Nepal (Survey Department, 2022). Rainfall data from 1990 to 2016 was used to generate isohyet for the 
further analysis. The thematic layers were prepared using various spatial analyst tools in ArcGIS v10.4.1 and 
resampled into 2*2m resolution for further modeling. Each factor was divided into different classes based on 
their characteristics.
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Table 1: Input parameters used for the study

Input Parameters Source Purpose

DEM ALOS Palsar 
Slope, aspect, relative relief, 
curvature

Road and stream data Government website Stream/ Road buffer

Rainfall data
Dept. of  Hydrology and 
Meteorology 

Rainfall/ Theissen polygon

Sentinel 2 Images EarthData website Vegetation index/ NDVI

Land Cover
National Land Cover Monitoring 
System 

Landuse

Geology Map
Department of  Mines and 
Geology

Geological formation
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Figure 4: Predisposing factor maps, (a) aspect; (b) slope; (c) relative relief; (d) land cover; (e) curvature; (f) 
distance to drainage; (g) distance to road; (h) NDVI; (i) Rainfall; (j) Geology.

3.3 Landslide susceptibility model setup

Once the datasets were generated for the study, a Landslide Susceptibility Model was set up. The study adopted 
three different models for developing the LSM— the Frequency Ratio Model, Information Value Model, and 
Heuristic Model. The key distinction between these approaches is the numerical weightage assigned to the 
landslide contributing elements (Mersha & Meten, 2020). The preparation of  a landslide susceptibility map 
indicates the landslide prone area in which a landslide might take place in the future (Lee & Pradhan, 2007). 
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3.3.1 Frequency ratio model 

The frequency ratio (FR) technique is founded on a quantitative relationship between the landslide inventories 
and the landslide predisposing elements (Kamiński, 2019). A table was prepared to determine the frequency 
ratio of  each class of  the predisposing factors, as well as the final weightage (influence) of  the factors. 
Using the equation as presented below, a composite of  the landslide inventory map and thematic factor map 
was built to determine the frequency ratio (FR) for each category of  the predisposing factors (Mersha & 
Meten, 2020).

 
 ...................................................................................(1) where,

Np(1) = The number of  pixels containing landslide in a class

∑Np(2) = Total number of  pixels containing landslide

Np(3) = Total number of  pixels of  each class in the whole area

∑Np(4) = Total number of  pixels in the study area 

The derived frequency ratio is summed to develop a Landslide Susceptibility Map using Eq. (2) 

LSI= Fr1+ Fr2+ Fr3+… + Frn  ............................................................................ (2)

where Fr is the frequency ratio, and n is the number of  selected predisposing factors.

The estimated FR value shows how closely a given class of  the predisposing factor and a given landslide are 
related. Based on the approach, frequency ratio is the area in which the landslides occur to the entire area, 
with a value of  1 representing an average value. If  the number is larger than one, the percentage of  the 
landslide is higher than the area, indicating a higher relationship, whilst values less than one imply a lesser 
correlation (Khan et al., 2019; Mersha & Meten, 2020).

3.3.2 Heuristic model 

The heuristic model is built based on the expert knowledge and experience. The premise of  the Heuristic 
model is to provide a certain weightage to the predisposing factor maps for the landslides based on the 
judgment and experience of  experts (Barredo et al., 2000; Leoni et al., 2015). The predisposing factors were 
divided into different classes and assigned an individual rank; the total ranks of  each factor were combined to 
generate the final susceptibility map (Figure 5). The final map was divided into classes, and expert judgment 
was used to map the hazardous locations.

3.3.3 Information value model

Information value method is a probabilistic approach and a bivariate statistical method used to predict the 
relationship between landslides and landslide predisposing factors (Wubalem, 2021). Information value 
numbers are crucial in defining the part that each causative factor plays in the various classes of  landslide 
occurrence (Wubalem & Meten, 2020). Depending on the historical location of  landslides, the information 
values for each class of  the predisposing factor were generated by using the equation below, and tabulated. 
The total ranks were also calculated. 

 
 ........................... (3) where,
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Conditional probability (Np(1)/ Np(2)) is the ratio of  the landslide pixels within a class of  a certain factor to 
the total pixels of  the class. 

Prior  probability  (∑Np(3)/∑Np(4))  is  the  ratio  of   the  number  of   landslide  pixels  of   the  study  area  to 
the number of  total pixels in the area.

An information value of  more than 0.1 indicates a high correlation of  landslide occurrence and predisposing 
factor classes, thus high susceptibility. Furthermore, an information value of  less than 0.1 or 0 indicates a 
low correlation of  landslide occurrence and predisposing factor classes, thus low susceptibility (Wubalem 
& Meten, 2020). In this study, information value for each class was determined using Microsoft Excel and 
ArcGIS. The landslide susceptibility index (LSI) for the area was then generated, and lookup tool was used 
to rasterize each factor.

LSI = IV ∗ Slope + IV ∗ Aspect + IV ∗ Curvature+ IV ∗ Geology+ IV ∗ Landuse + IV ∗ Distance to stream + 
IV ∗ Distance to road + IV ∗ Relative relief  + IV ∗ NDVI + IV ∗ Rainfall.

After calculating the landslide susceptibility index, the values were categorized using natural break method 
in ArcGIS into three classes— low, medium, and high, to indicate the level of  susceptibility in the area.

Figure 5: Total ranks of  the predisposing factors using different approaches

3.4 Model validation

After the susceptibility map for Kathmandu Basin was developed, the landslide polygons were separated into 
training and testing datasets for the validation of  landslide susceptibility mapping (Figure 5). Taking into 
account their distribution pattern, the landslide polygons were randomly divided into two groups using the 
subset tool in ArcGIS, with 70% used for training and 30% used for testing. Model validation was carried out 
using Area Under Curve (AUC) approach.

The success rate and prediction rate curves were created using the AUC approach. The comparison between 
the predicted model and the training dataset gives the success rate curve, which provides the ability to 
accurately characterize the incidence of  existing landslides (Mersha & Meten, 2020; Shahabi & Hashim, 
2015; Wubalem, 2021). Furthermore, predictive rate curve is determined by comparing the predicted model 
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and testing dataset, and helps demonstrate how well the landslide model can forecast landslide susceptibility 
(Wubalem & Meten, 2020). The model is considered to be most accurate when the AUC value is between 
90% and 100%, and it performs very well when it is between 80% and 90%. Moreover, AUC values between 
70% and 80% indicate that the model is performing well. The model performance is acceptable if  the AUC 
value is between 60% and 70%, and poor if  the AUC values are between 50% and 60% and equal to 50% or 
less (Wubalem & Meten, 2020).

In this study, the Landslide Susceptibility Index was reclassified into 100 classes and AUC was determined 
by combining it with the landslide inventory. The success rate and predictive rate curve were determined for 
Frequency Ratio and Information Value approach.

Figure 6: Training and Testing data for Model Validation

4. Results 
The results derived from landslide susceptibility mapping of  Kathmandu basin show that the regions in 
south, south-east, and south-west are highly susceptible to landslides as compared to others. Furthermore, 
the central region with low elevation and slope is less susceptible to landslides.

4.1 Landslide susceptibility mapping and distribution

After calculating the weightage of  the individual classes and total rank of  the predisposing factors, Landslide 
Susceptibility Index was calculated for the three models, by multiplying each thematic map with their 
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weightage and adding them in raster calculator. The reclassification of  resulting Landslide Susceptibility 
Indices were carried out using natural breaks method to create a map for landslide susceptibility (Figure 6).

In case of  FR method, 49.15% of  the total area fall under low susceptibility (316.00 km2), followed by 
37.96% (244.07 km2) in medium susceptibility, and 12.89% (82.89 km2) in high susceptibility. Furthermore, 
the susceptibility in information value method determined that 27.71% of  the area had low susceptibility 
(178.15 km2), followed by 44.55% (286.46 km2) in medium susceptibility, and 27.74% (178.35 km2) in high 
susceptibility. The results of  Heuristic method were found to be closer to the IV method, with 25.48% of  the 
total area under low susceptibility (163.85 km2), 46.17% (296.84 km2) in medium susceptibility, and 28.35% 
(182.27 km2) in high susceptibility (Figure 7).

Figure 7: Landslide susceptibility map using (a) frequency ratio method; (b) information value method; (c) 
Heuristic method

Figure 8: Distribution of  landslide susceptibility in different models
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4.2 Comparison and validation of  susceptibility models

Comparing the results, it is seen that the susceptibility map produced by Heuristic method is closer to that 
by information value than frequency ratio method, which can be seen in Figure 7. The area lying in low 
susceptible zone are 25.48 and 27.71 percent in heuristic method and IV method respectively, which are 
close values as compared to 49.15 percent of  FR method. The FR and IV approaches indicated that rainfall 
had highest influence or weightage in the area while aspect had the lowest. In case of  Heuristic, the slope, 
geology, and vegetation index had a high influence, while aspect, curvature, and distance to drainage had a 
low influence.

Furthermore, the AUC values under success rate curve and predictive rate curve for Information value 
method were obtained as 81.43% and 78.37% respectively. Similarly, the AUC values under success rate 
curve and predictive rate curve for Frequency ratio model were obtained as 70.16% and 61.9% respectively 
as shown in Figure 8. While the values for both methods are within the acceptable range, it is seen than 
information value method has provided a higher value in both success and predictive rate. Therefore, it gives 
a more accurate and reliable result than frequency ratio method.

Figure 9: Success and Predictive rate curves for IV and FR methods

5. Discussion
Based on the susceptibility results, the majority of  the area lies in medium and high susceptibility zones 
(74.52% in Heuristic, 72.59% in IV, and 50.85% in FR). The values of  Heuristic and IV are considerably 
higher as compared to previous study conducted by Khatakho et al. (2021), where the medium, high, and very 
high areas cover 60% of  the valley. In order to generate a more accurate representation of  the susceptibility 
zones, the hill slopes can be solely considered in the study. Since the landslides primarily occur on such areas, 
disregarding the flat lands in the central part of  the valley can help reduce discrepancies in the results.
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The high susceptible areas are concentrated in the southern and south-eastern region of  the basin, while the 
low susceptible areas are spread in the northern and north-west region around Baneshwor, Thimi, and Patan 
areas where the elevation is relatively lower. The distribution of  susceptibility can be attributed to several 
reasons and predisposing characteristics of  the area. Since the south-facing slopes in the area are typically 
steep, rain-bearing wind, exposure with sun rays, the majority of  the landslides are located on the south-east, 
south, and south-west. 

The south and SE slopes have a gentle steep topography, and usually lie on the windward side. Similarly, 
the areas with slope from 50 to 70 degrees have been observed to be more susceptible to landslides, closely 
followed by the slopes with 30 to 50 degrees. The shear stress increases in soil or other unconsolidated 
elements as slope increases, and the downhill component of  force is greater on steeper slopes (Cellek, 2022). 
However, as the slope approaches 90 degrees and becomes nearly vertical, the gravitational forces that 
act on the soil are almost perpendicular to the slope surface, which increases slope stability. The regions 
with geological formations of  the Phulchoki group (Tistung formation, Sopyang formation, Chandragiri 
formation, and Chitlang formation) are moderate to highly susceptible areas, which can be attributed to their 
weakly metamorphosed composition (Acharya & Paudyal, 2019). The forest areas and cropland have high 
number of  landslide occurrences, which is evident from the lack of  vegetation increasing the susceptibility 
to the landslides.

The areas with negative or concave curvature appear to have a higher susceptibility than the positive curvature 
areas, although the difference is small. This result is comparable to the study conducted by Ohlmacher (2007) 
in northeastern Kansas, where the hillsides concave areas had a marginally higher probability of  landslide 
than the convex areas. The study further discusses that water flow is directed to the hollows where curvature 
is concave, increasing the soil's moisture content as well as the time the soil is saturated. This results in 
a decreased soil stability and an increased soil erosion. In relation to the distance the drainage, landslide 
appearances are increasing as the distance from stream is increased the landslide occurrence is highest as 
the distance is more than 500 meters. The distance to rivers is a risk factor for landslides, and influential in 
landslide susceptibility mapping as saturation degrees of  the components strongly influence slope stability 
(Thapa & Adhikari, 2019). A similar case is found in case of  the distance to road, in which the frequency of  
landslides occurring is highest where the distance is more than 500 meters. Relative relief  is also an essential 
factor in determining whether the study area is susceptible to landslides or not. Landslides are more common 
at higher elevations because higher elevations have heavier rainfall and a faster rate of  weathering, both of  
which generate unstable surfaces. 

The success rate of  FR and IV models is in the acceptable range; however, it is lower compared to other studies 
that have employed these models (Addis, 2023; Sarkar et al., 2013; Wubalem, 2021). This is partly due to the 
insufficient landslide inventory for the Kathmandu valley. The susceptibility models were chosen based on 
the data limitations, to provide the most reliable analysis feasible with the available data. In order to obtain 
more accurate results, the inventory data can be enhanced using high-resolution satellite images such as 
Landsat and Sentinel-2. Moreover, Heuristic approach is suitable in data-scarce regions. The key benefit of  
the Heuristic assessment approach is its relative simplicity, where the weightage is not based on historical 
data, but rather on the influence of  each variable class (Shano et al., 2020).

Statistical techniques for LSA are critical for defining the geographical distribution of  landslides and how 
they relate to various landslide influencing factors. With their simplicity and less demand for primary data, 
they have an advantage over numerical and physical-based models. While they are appropriate in large areas 
with low availability of  geotechnical data, they provide limited to no information regarding the safety factor 
and ultimately quantitative details on the instability of  slopes (Wubalem & Meten, 2020). These bivariate 
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statistical approaches may not be sufficiently reliable or accurate to fulfill the practical requirements. This is 
because of  their inability to assess the complex non-linear interdependence of  the elements (Tien Bui et al., 
2017). Due to their capacity to handle complicated interactions within datasets, machine learning techniques 
can be used for determining landslide susceptibility (Sajadi et al., 2022).

6. Conclusions
This study has aimed to perform landslide susceptibility mapping of  Kathmandu valley using Frequency 
Ratio (FR), Information Value (IV), and Heuristic approaches. The areas facing south-east and south 
directions are more susceptible to landslide. The final susceptibility maps obtained from the three methods 
were reclassified into three levels; low, medium, and high based on natural break method of  classification. 
The results were obtained as: low (49.15%), medium (37.96%), and high (12.89%) for FR; low (27.71%), 
medium (44.55%), and high (27.74) for IV; low (25.48%) medium (46.17%), and high (28.35%) in Heuristic. 
The maps were validated using Area Under Curve (AUC) approach, which revealed that the models are 
fairly reliable; however, leaving room for improvement. Results from IV method were found to be closer to 
Heuristic method. The susceptibility maps may be utilized by urban planners, policymakers, and geologists 
for urban land use planning of  Kathmandu valley and implementation of  landslide mitigating strategies. 
Furthermore, vulnerability and factors can be applied to the map to assess the landslide risk of  the area.
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