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1. Introduction
In the construction field, concrete remains a critical material worldwide due to its strength, flexibility, and 
relatively low cost. It is a composite material primarily composed of  cement, water, fine and coarse aggregates, 
and sometimes admixtures. The physical and mechanical properties of  these ingredients significantly affect 
concrete's compressive strength, quality, and durability. As a result, detailed impact assessments are crucial 
for improving the overall performance of  concrete compressive (Chithra et al., 2016; Prabhu et al., 2014; 
Katuwal, 2019a; Parashar et al., 2020; KC et al., 2022; Singh & Siddique, 2012). In structural design, the 
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Abstract
The structural integrity of  concrete structure is explicitly influenced by concrete compressive 
strength (CS). Timely prediction of  concrete compressive strength exhibits good performance 
in the field of  construction. However, it is very challenging due to the unpredictable physical 
and mechanical properties of  concrete and its constituent ingredients. To mitigate the limitation 
of  the laboratory testing-based experimental method, this manuscript presents optimal artificial 
neural network (ANN) model to forecast CS. For this purpose, total number of  776 datasets were 
collected from previous research papers. The preprocess dataset was randomly split into training 
and testing sets. After that, optimal ANN model was developed by establishing appropriate 
hyperparameters with random search method. The over-fitting and validation loss were stabilized 
by loss function assessment with Adaptive optimization algorithms (Adam) optimizer. The output 
results of  the optimized ANN model exhibit good prediction performance with R-squared value 
of  0.87, and errors such as MAE, MSE, and RMSE with values of  3.419 MPa, 21.909 MPa, and 
4.68 MPa, respectively. In addition, SHAP value of  the output model shows volume of  cement and  
time have highest positive impact, whereas water and fly have highest negative impact on concrete 
compressive strength. This paper shows the power of  machine learning techniques to timely and 
efficient prediction of  concrete compressive strength. Thus, this optimal ANN model is applicable 
in concrete made infrastructure design and construction industry.

Keywords: Artificial neural network; compressive strength; loss function; prediction; SHAP.

Journal of  Engineering Issues and Solutions



77

Journal of Engineering Issues and Solutions 3 (1): 76-90 [2024]Thapa

overall performance of  structural components is explicitly influenced by concrete compressive strength. In 
addition, the structural durability and strength of  concrete composite structures are highly influenced by 
concrete compressive strength, which is vital for determining linear or nonlinear modeling parameters in 
structural design (Banjara et al., 2021; Bhusal et al., 2020; Chaulagain et al., 2015; Ghimire & Chaulagain, 
2021). Therefore, accurately determining concrete compressive strength is essential for enhancing the 
structural strength and durability of  concrete-made infrastructures.

Traditionally, laboratory testing methods and empirical equations have been used to determine concrete 
compressive strength (Prabhu et al., 2014; Singh & Siddique, 2012). These methods show good results; 
however, undesirable results can be seen due to unpredictable physical and mechanical properties of  concrete 
ingredients. Moreover, these methods are very challenging, time-consuming, and costly. To address these 
limitations, robust artificial intelligence prediction models have emerged as useful tools for forecasting 
concrete compressive strength. 

In recent decades, many researchers have applied machine learning algorithms for classification and 
regression analysis in the civil engineering field (Bhattarai et al., 2022; Gautam et al., 2024; Katuwal et al., 
2024; Pyakurel et al., 2023). These studies have demonstrated the strong prediction capabilities of  machine 
learning algorithms. Specifically, several researchers have employed machine learning (ML) techniques to 
forecast concrete compressive strength (Chithra et al., 2016; Chopra et al., 2014; Mahajan & Bhagat, 2022; 
Paudel et al., 2023; Song et al., 2021; Song et al., 2022; Thapa, 2024a; Thapa, 2024b). Some researchers applied 
the artificial neural networks (ANN) method to determine concrete compressive strength (Bu et al., 2021; 
Chithra et al., 2016; Khademi et al., 2016; Topçu & Saridemir, 2008). These machine learning algorithms and 
artificial neural network methods show good prediction performance and have a strong correlation between 
predicted and actual concrete compressive strength.

However, previous studies have limitations, such as relying on data from specific sources or laboratory tests 
and using simple ML algorithms or ANN methods with limited input datasets. To address these gaps, this 
research proposes an optimal artificial neural network (ANN) method by aggregating 776 data points from 
various previous studies conducted in different laboratories. This approach not only bridges the gap between 
conventional laboratory methods and advanced ANN techniques but also aims to optimize different ANN 
hyper-parameters for predicting concrete compressive strength.

The novelty of  this study lies in its comprehensive data collection and optimization of  ANN hyperparameters, 
which have not been extensively explored in existing literature. The performance and reliability of  the 
proposed model were evaluated using the loss function (MSE), several statistical indices, and SHAP values, 
demonstrating its superior prediction accuracy and robustness compared to existing methods.

2. Artificial Neural Network
The artificial neural network (ANN) algorithm was inspired and evolved by simulating the ideas with the 
function and structure of  biological neural networks in the human brain (Jain et al., 1996). Hence, the 
working methodology of  ANN is more or less similar to working function of  human brain. The fundamental 
function of  each artificial neuron is to receive information from input features, process it, and outputs are 
transferred into the next layer of  neurons. Neurons consist of  two parameters such as weight and bias, 
and act as basic processing units of  neural networks. During the training phase, these two parameters are 
learned from the input and adjusted weights based on the error of  the output is compared to the expected 
result. ANN consists of  input layer and, output layer, and these layers may or may not be connected with 
number of  hidden layers. The input layer has many nodes which depends on the number of  input features. 
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This input layer receives the preprocessed data and transfers it into hidden layers of  the neural network. The 
real processing is performed in hidden layers through a system of  weighted connections. Thus, hidden layer 
optimization is often essential to increase the performance of  neural networks. Consequently, the output 
layer provides the final result as a response of  artificial neural networks to input features. In ANN, the feed-
forward neural network is a straightforward model, where input data is processed in a single direction from 
input to output, which means it does not have back-propagation. This network may or may not have hidden 
layers (Raschka & Mirjalili, 2019).

The overall function of  the artificial neural network has been established by the function of  weight, input, 
and bias from input to output. In addition, in ANN, the basic operation of  neurons is obtained by using the 
following equation to determine the output of  each layer.

Z = Φ (i.W+b)................................................................................................................................... (1)

Where, input features are represented by i, and weight matrix is represented by W and bias vector for each 
layer is indicated by b. In addition, the Φ represents the activation function. Similarly, Z is a pre-activation 
vector that represents the output of  each input layer transferring statistics from one layer to the next layers. 
This transformation is both linear (through weights and biases), and non-linear (through activation function). 
Thus, it enables ANN to effectively train the model even with complex relationships. The choice of  activation 
function significantly depends on types of  specific data and characteristics of  the problem. The following 
equations are widely used activation functions.

Sigmoid (Logistic Function) Φ = ........................................................................................... (2)

Hyperbolic Tangent Function (Tanh) Φ =  ...................................................................... (3)

Rectified Linear Unit Function (ReLU) Φ = max (0, z) .............................................................. (4)

The ANN learning algorithms enable to tuning iteration between weight and bias in each neuron with the 
use of  activation function and show good mapping from input to output. However, certain errors occurred 
during the forward propagation, hence, this error is updated in the neural network by propagating errors 
backward from output to input layer with application of  algorithms called back-propagation (BP). The main 
objective of  BP is to minimize error function by adjusting the weights and biases of  neural network is called 
loss function. Hence, back-propagation is often used in the field of  artificial neural networks (Werbos, 1990). 
In this ANN model, two main steps are involved. Firstly, forward propagation is performed in each network 
layer to compute the loss between predicted output and actual output by using loss function. After that, the 
backward pass was conducted from output layer to the input layer via hidden layers to update the weights and 
biases of  network using appropriate optimization algorithms like gradient descent and adaptive optimization 
algorithms. This process is continuously repeated with multiple epochs until the stopping criterion is met. 
The effectiveness of  BP depends on the choice of  activation function, number of  hidden layers, learning rate, 
and optimization algorithms used for back-propagation. Hence, optimal parameter selection is essential to 
increase the performance of  the ANN model.

3. Model Development
In this research, concrete compressive strength and its ingredients-related data were collected from previous 
research (Aggarwal & Siddique, 2014; Agudelo et al., 2022; Basar & Deveci, 2012; Bilal et al., 2019; Prabhu et 
al., 2014; Guney et al., 2010; Katuwal, 2018; Katuwal, 2019b, Mahajan & Bhagat, 2022; Manoharan et al., 2018; 
Mavroulidou & Lawrence, 2019; Parashar et al., 2020; Siddique et al., 2018; Singh & Siddique, 2012; Song et 
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al., 2021; Song et al., 2022; Thiruvenkitam et al., 2020). A total of  776 number of  data were preprocessed with 
cleaning, correlation analysis, and data distribution. These preprocessed datasets were split into training set 
(80%) and test set (20%). After data splitting, the min-max normalization technique was used to make a uniform 
scale for all selected parameters. The optimal ANN model was selected and trained with training dataset. 
After that, trained model was tested with test set. The performance of  ANN model was evaluated by using 
different statistical parameters, which are discussed in following section. Hyper-parameter tuning was applied 
if  ANN model output results were not within the desired range. Conversely, if  the predictive outcomes meet 
expectations, these results are compared and the final regression model was established for prediction. The 
detailed research methodology employed in this study for ANN regression analysis is illustrated in Figure 1. In 
addition, a comprehensive discussion is conducted in the following subsection.

Figure 1: Working methodology flowchart
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Table 1 demonstrates the statistical details of  selected dataset. Table 1 breaks down these parameters into 
their different values such as mean, standard deviation, minimum value, maximum value, and occurrence of  
different percentile like 25%, 50%, and 75%. This Table 1 shows the dimensions and scale of  selected input 
parameters and target variable. In this research, the concrete compressive strength (CS) was selected as target 
variable which depends on different ingredients such as cement (C), water (W), sand (S), coarse aggregate 
(CA), fly ash (FA), curing time (T), and super-plasticizer (SP), which were selected as input features.

Table 1: Statistics of  the selected features

 Parameters Mean Std Min 25% 50% 75% Max

Cement (C) 300.2 98.27 134.7 218.9 290.1 372 540

Water (W) 182.1 17.96 140 168.2 186 192.9 238.6

Sand (S) 765.7 148.1 0 734.9 780.5 830 1820

Coarse aggregate (CA) 1026.9 142.4 410 966 1028.4 1086.8 1385.2

Fine aggregate (FA) 69.6 63.54 0 0 97 124.8 200.1

Super-plasticizer (SP) 4.6 5.33 0 0 3.7 9.4 28.2

Time (T) 31.4 27 1 14 28 28 100

Concrete compressive
strength (CS) 

30.9 13.4 6.27 20.4 29.8 39.8 79.9

3.1 Data preprocessing

In machine learning (ML), data preprocessing is the foremost and very crucial step for transferring raw 
data into the required format of  ML algorithms. This technique handles missing values, cleans or removes 
any noise, scales features, encodes features, selects the appropriate feature, and finally transfers the selected 
dataset into a suitable format of  ML algorithms. In this research, Pearson's correlation coefficient was used 
to evaluate correlation between selected parameters. This correlation is plotted in a heat map and presented 
in Figure 2. This process presents a detailed description of  how two or more variables are correlated to 
each other. This method is helpful to identify the appropriate input variables, which means not correlated 
parameters should be excluded from selected datasets. Figure 2 presents a detailed description of  correlations 
between selected parameters. This heat map shows a coefficient within the range of  -1 to +1. The higher 
positive value indicates that these parameters are highly correlated and vice versa. The coefficient value zero 
represents no correlation between variables.
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Figure 2: Pearson’s correlation coefficient between selected parameters with heat map

Figure 2 shows that concrete compressive strength has a high positive correlation with curing time (T) with 
value of  0.54, and volume of  cement (C) with value of  0.29. This means these variables have a high positive 
influence on concrete compressive strength (CS). In contrast, amount of  water (W) has negatively correlated 
with concrete compressive strength with value of  0.33. In addition, the Figure 2 illustrates that concrete 
compressive strength is negatively correlated with amount of  sand, coarse aggregate, and fine aggregate 
with values of  0.14, 0.09, and 0.01, respectively. Thus, these selected parameters have a considerable effect 
on the determination of  concrete compressive strength. Thus, these all parameters are selected as input 
variables for further regression analysis.

3.2 Data distribution

Data distribution involves examining and visualizing selected parameters to understand their patterns, 
characteristics, and statistical structures. Figure 3 shows how data points are spread out across different values 
in the combined form of  a histogram and kernel density estimation (KDE) plot. In addition, the histogram 
in this figure illustrates a graphical representation of  frequency distribution of  each input feature and target 
variable, which means that it divides selected data into bins by exhibiting the number of  specific observations 
that fall into each bin. For example, target variable (CS) varies from 6.27 to 79.9 MPa, and the median value of  
29.88 MPa. Thus, this plot demonstrates the numerical data distribution in other input features as well.

The probability density function of  random variables is evaluated by using KDE as shown in Figure 3, which 
demonstrates the pattern of  underlying data. The concrete compressive strength (CS), cement (C), and sand 
(S) follow a normal distribution with a single peak point i.e. it shows unimodal distribution. The fly ash (FA) 
curve follows a normal distribution with two distinct peaks, i.e. it follows a bimodal distribution. Moreover, 
other plots in water (W), coarse aggregates (CA), super-plasticizer (SP), and curing time (T) have no clear 
normal distribution and these plots exhibit multiple peaks. In conclusion, this combination of  histogram 
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with KDE curve exhibits a good understanding of  the shape and structures of  data distribution in selected 
input features and target variable.

Figure 3: Histograms and corresponding kernel density estimate (KDE) plots
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3.3 Data rescaling

The collected data sets for this study (presented in Table 1) are in different scales for input variables and target 
variable. Therefore, it is essential to rescale these parameters to ensure their consistency. Moreover, rescaling 
ensures that input feature values are in the same range and transferring selected data to the appropriate 
format of  ML algorithms. Thus, this technique significantly influences the performance of  models. For 
this purpose, min-max normalization was employed in this research to achieve a consistent scale across 
all parameters. This method scales all features within the range of  0 – 1. For rescaling of  input features, 
following calculation formula was used.

Xn = (X – Xmin)/ (Xmax – Xmin) 

In this formula, X denotes the actual value of  the parameters, while Xn represents the normalized values. The 
maximum and minimum values of  the input features are represented by Xmax and Xmin, respectively.

3.4 ANN model development with optimal hyper-parameters

In this ANN model, two main steps are involved: forward and backward propagations. In forward propagation, 
preprocessed input features such as cement (C), water (W), sand (S), coarse aggregate (CA), fly ash (FA), 
super-plasticizer (SP), and curing time (T) were selected in the input layer. After processing of  ANN 
regression model, a random search method was applied to establish different optimal hyper-parameters. 
The obtained optimal results are presented in Table 2. These optimal hyper-parameters significantly reduce 
model overfitting or underfitting and improve ANN model interpretability, optimize the resource utilization, 
and eventually enhance model prediction performance.

Table 2: Optimal hyper-parameters for artificial neural network

Hyper-parameters Value

Output layers Number of  features = 7, 

First hidden layer
Neurons = 352, activation function = tanh, kernel_initializer = ‘he_
normal’

Second hidden layer Neurons = 480, activation function = relu, kernel_initializer = ‘he_normal’

Output layer Neurons = 1, activation function = linear

Optimal number of  epoch 72

Batch size 32

Optimizer Adaptive optimization algorithms (Adam)

Loss function mean_squared_error

Based on these optimal values, two hidden layers were established between input and output layers with 
optimal parameters, which are presented in Figure 4. After that, final prediction was determined in output 
layers. These output results were compared with actual value and computed the loss function of  neural 
networks. The minimum loss function represents better prediction performance of  ANN model. However, 
some errors exist between predicted and actual values. Thus, appropriate algorithms are essential to minimize 
this loss function via the back-propagation process.
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Figure 4: Artificial neural network (ANN) model diagram

In this research, the chain rule was used to determine the loss score, and Adaptive optimization algorithm 
(Adam) was used to compute the gradients of  loss function concerning weights and bias in neural networks. 
This forward, loss calculation, backward propagation, and parameter adjustments were conducted with an 
iterative process until a defined number of  epochs or convergence criteria were met. Thus, the effectiveness 
of  ANN regression model is significantly controlled by its hyper-parameters.

3.5 Performance evaluation statistical indicators

The effectiveness of  regression model is typically assessed through various statistical metrics to evaluate the 
performance and verification of  selected model. Thus, these metrics are essential to determine accuracy and 
efficiency of  predictive models. In this study, equations (5) to (12) were utilized to evaluate the performance 
of  artificial neural network (ANN) model.

R-squared (R2) = ............................................................................. (5)

Mean absolute error (MAE) = ............................................................................. (6)

Mean squared error (MSE) ............................................................................... (7)
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Root mean squared error (RMSE) =    ....................................................... (8)

Relative root mean squared error (RRMSE)=  ............................................ (9)

Mean absolute percentage error (MAPE) =  ........................................(10)

Mean relative error (MRE) =  .............................................................................. (11)

Variance accounted for (VAF) = ........................................................... (12)

In this equation,  indicates actual values of  selected parameters,  indicates the corresponding regression 
model predicted values, and ‘n’ denotes the total number of  data used in training or testing stages.

3.6 Shapely additive explanations

In machine learning, the contribution of  selected input features in output performance of  target variable is 
evaluated by using a unified framework like Shapley Additive Explanations (SHAP). The SHAP value of  each 
input feature shows its impact on the output performance and illustrates a clear understanding of  how each 
selected input feature impacts the target variables (Lundberg & Lee, 2017). Thus, this SHAP value shows the 
contribution of  input features with the corresponding ranking for a specific task.

4. Results and Discussion

4.1 Loss function validation

Loss function evaluation in training and validation sets against epochs is essential for effective model training, 
generalization assessment, and model selection. This evaluation is useful for model overfitting detection and 
selection of  optimal parameters in artificial neural network regression model. Figure 5 illustrates the loss 
function of  training and validation sets against number of  epochs. In Figure 5, both training and validation 
losses drastically decrease at the beginning and slightly decrease after epoch of  15. This initial steep decrease 
indicated that both training and validation begin to learn from a randomly initialized state. After the 15th 
epoch, both curves decrease gradually in a smooth curve that indicates that the artificial neural network 
(ANN) model has a less pronounced rate of  decrease losses, which means improvement slows down.
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Figure 5: Loss function of  training and validation sets against epoch

In Figure 5, the early stopping line with the epoch of  72 indicates that the training process performs well 
and yields minimum validation loss. In addition, the Figure 5 shows that the training process stopped at the 
epoch of  72. These results indicated that in the last 8 epochs (80-72), validation loss starts to increase and is 
higher than the training loss, which increases overfitting in artificial neural networks model. Thus, for this 
ANN model, 72 epoch numbers were selected to prevent overfitting conditions.

4.2 Artificial neural network regression model

In this study, the preprocessed train set data was trained with optimal hyper-parameters, which are illustrated 
in Table 2. The trained ANN model was tested with preprocessed test set data. This ANN model shows 
excellent statistical indicators and good prediction performance. The output result of  the ANN model is 
presented in Figure 6. 

Figure 6: Distribution of  actual and predicted concrete compressive strength with errors
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Figure 6 illustrates the distribution of  concrete compressive strength predicted value with actual value. 
Also, the Figure 6 illustrates the errors measured in the prediction model with corresponding data points. 
Ae correlation between the actually measured and ANN model predicted concrete compressive strength is 
presented in Figure 7. The Figure 7 shows that good correlation with R-squared value of  0.87 and Pearson’s 
r value of  0.93. These values show that the ANN model has good prediction performance.

Figure 7: Correlation between predicted versus actual results

The statistical indicators of  this ANN model are presented in Table 3. The R-squared value and VAF of  
ANN model are 0.87, and 86.91%, respectively. These results exhibit the ANN model has good prediction 
performance. In addition, the MAE and MSE values of  this ANN model are 3.419 and 21.909. Other statical 
indicators presented in Table 3 show that the use of  optimal hyper-parameters in the ANN model significantly 
improves the prediction capabilities of  this regression model. 

Table 3: Statistical indicators of  the artificial neural network (ANN) model

Indicators R2 VAF MAE MRE MSE RMSE RRMSE MAPE

Values 0.87 86.91% 3.419 -3.588% 21.909 4.68 0.145% 11.622%

4.3 Features importance analysis

The SHAP value method was used to describe the importance of  each feature and its impact on the target 
variable. This method originates from cooperative game theory and calculates the contribution of  each feature 
to target variables. Figure 8 depicts the importance of  selected input features to target concrete compressive 
strength. The cement (C) and curing period (T) have the highest positive impact on concrete compressive 
strength. In contrast, water has highest negative impact. In addition, fly ash (FA) has least positive impact, 
and coarse aggregate (CA), super-plasticizer (SP), and sand (S) have a negative impact on the prediction of  
concrete compressive strength using the ANN model.
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Figure 8: Features importance analysis using SHAP value method

5. Conclusions
In this research, 776 number of  concrete compressive strength datasets were collected from previously 
published research papers. This research included different constituents of  concrete with increasing sources 
of  data to enhance the prediction of  concrete compressive strength. These datasets were evaluated using 
artificial neural network (ANN) model with optimal hyper-parameters. This optimized ANN model was 
tested with test datasets and shows a good prediction performance to predict concrete compressive strength 
as indicated by various statistical indicators. Loss function in this ANN model exhibits valuable information 
about early stopping stage, mitigation condition for over-fitting, and validation loss stabilization stage. This 
research depicted that the epoch of  72 is suitable to prevent over-fitting and the last 8 epoch shows suitability 
for validation loss stabilization. Furthermore, it shows that the cement and curing time have positive impact 
on compressive strength of  concrete, whereas water and fly ash have negative impact. The optimized ANN 
model can be applicable to predict concrete compressive strength with good performance, which contributes 
to advancement in timely prediction of  concrete strength and facilitates novelty in material design and its 
utilization in concrete made infrastructures. Thus, this model can be used in real construction sites and 
further research.
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