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1. Introduction
Production planning is crucial for modern manufacturing operations, as it helps identify inefficiencies and 
implement necessary changes. It involves understanding the name, code, quantity, volume, and raw material 
requirements of  an item as well as technical specifications for quality control at each level (Hamal et al., 2023). 
It was realized that production planning (PP) problem was crucial in Shree Pashupati Biscuit Industries Pvt. 
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Abstract
This paper investigates the effectiveness of  operations research in addressing traditional production 
planning issues and determining potential of  decreasing production costs by implementing visible 
constraints. This study used an integer linear programming (ILP) model to forecast the monthly 
batch output from each product to meet demand, with a focus on the manufacturing facility at Shree 
Pashupati Biscuit Industries Pvt. Ltd. The aim is to minimize the plant's production costs. The 
labor and machine hour constraints are regarded as soft constraints, whereas demand constraints 
are regarded as hard constraints. The model was built as a python program and solved using the 
simplex approach with PuLP library. By efficiently employing both human and physical resources, 
the model calculates the lowest monthly cost and the number of  batches that must be produced. 
The required overtime expenses, labor and machine idle periods, and additional hours are also 
computed by the solution and added to the monthly production costs. By efficiently utilizing both 
human and physical resources, the production approach avoids producing excessive amounts of  
biscuits. This study explores methods to improve traditional production planning problems and 
effectively minimize production costs by considering multiple constraints through operations 
research. This study exactly finds out the difference in monthly production cost by using linear 
programming to prevalent production planning system. In addition, the method can be used to 
compute overtime expenses, labor and machine idle periods, and additional hours worked. These 
figures are then added to the monthly production costs. 
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Ltd. The manufacturing plant had integrated Just in Time (JIT) production and inventory management 
system which was not adequate considering the large capacity of  plant’s inventory and high demand of  
products in the market. It was also identified that JIT aims to reduce inventories, but requires a pull system, 
setup time reduction for smaller batches, and stable, reliable production operations for successful operation 
(Afriansyah & Mohruni, 2021), which was not required by the manufacturing facility. Similarly, research 
conducted by (Li et al., 2017) proposes a mathematical model for production planning in a foundry flow shop, 
aiming to maximize profit by considering material, process, delay, and facility occupy costs. An Improved 
Genetic Algorithm (IGA) is introduced to address the interaction between minimizing delay and facility 
occupy costs. The model and IGA approach demonstrate better profit rates in the foundry industry. However, 
they state that future research should consider additional factors like labor constraints.

Planning, scheduling, and synchronizing all production processes need effective implementation for a 
manufacturing plant to operate correctly. Since PP promotes efficiency, removes limitations, and organizes 
production flow, it is essential to organizational management. Before the manufacturing process starts, it 
directs tasks and time constraints to guarantee an organized and effective workflow (Afolalu, et al., 2021). 
Efficient production planning strategies can improve businesses' production performance, operational 
effectiveness, and resource utilization by considering demand changes and fostering cooperation among 
units (Khezrimotlagh & Chen, 2018). The manufacturing or production department is responsible for 
creating a production plan, a crucial component of  a company plan. To meet customer demand with the 
available plant resources, plant management must establish the total output that the manufacturing plant 
should produce from each period in the planning horizon. The PP problem can be solved quantitatively in a 
variety of  ways. Using a mathematical model to resolve a PP problem is one approach. Operations research 
(OR) applications are frequently used in the industrial sector because of  their capacity to maximize gains 
in a given scenario. Linear programming is a significant branch of  mathematics known as ‘optimization 
techniques’ used in real-world applications (Oladejo et al., 2019). The production planning model utilizes 
data-driven approaches to improve decision-making in large-scale production environments, focusing on 
resource considerations like labor, materials, and machinery for efficiency and cost-effectiveness (Christefa 
et al., 2022). Linear programming (LP) is a powerful tool for managers to optimize resource allocation, 
operations, and profit maximization. However, unique data input is needed for effective production planning 
(Solaja et al., 2019).

This paper solves an aggregate production planning (APP) problem for Shree Pashupati Biscuit Industries 
Pvt. Ltd. using operations research and Python programming as part of  a quantitative methodology. By 
implementing this production plan, extra biscuit production may be prevented, maximizing the use of  both 
human and physical resources. This can be achieved by utilizing LP to build up a mathematical model. LP 
is considering various linear inequalities in multiple circumstances and locating the best possible solution 
within those constraints. Most research identified in the literature uses LP strategies to handle PP problems 
(Alden et al., 2023) (Hojati & Patil, 2011) (Jamalnia & Soukhakian, 2008) (Nash, 2000) (Oladejo et al., 2019) 
(Solaja et al., 2019) (Wang & Fang, 2001). Many researchers employed LP techniques to address the APP 
problem. APP aims to determine each product's total (aggregate) production amounts (Alden et al., 2023). 
The APP problem has been solved using many methods, such as goal programming (Jamalnia & Soukhakian, 
2008). Goal setting is a managerial choice; hence, the issue is simplified to a LP issue. Due to insufficient 
or unavailable information, the input data or parameters for real-world APP problems, such as demand, 
resources, cost, and objective function, could be more precise (fuzzy). 

Additionally, (Wang & Fang, 2001) introduced a fuzzy linear programming method for solving the APP 
and acknowledged the fuzziness of  parameter values. However, the manufacturing plant was where the 
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study's cost and resource data came from. As the monthly demand is determined by the top management 
and communicated to the production managers at the beginning of  each month, the complexity of  the 
problem decreases. An LP model can be created to tackle this PP problem using a single month as the only 
uniquely determined data input. To meet the monthly demand with the resources at hand while reducing the 
production cost, the study aims to identify the number of  batches that must be produced from each product 
each month. All variables must be integers because the factory does not create incomplete batches. So, in 
this study, the PP problem is resolved using an integer linear programming (ILP) model. All of  the choice 
variables in our mathematical model must be integers (Wolsey, 1998). However, the mixed integer linear 
programming (MILP) problem can be used to address the issue when all the variables are integers. 

The study aims to determine the number of  batches produced from each product each month to meet 
monthly demand with available resources and reduce production costs. An ILP model is used to address 
the PP problem, which requires all variables to be integers (Wolsey, 1998). The MILP problem can also 
be employed when all variables are integers. A better production plan is crucial for reducing time spent in 
stores, preventing additional inventory expenditures, and ensuring product quality (Jamalnia et al., 2019). 
The factory manufactures biscuits made of  soft and firm dough, with some unique items requiring additional 
manufacturing steps. The mathematical model considers these variations and calculates coefficients for the 
objective function and restrictions. Multiple constraints are identified and converted into linear functions 
using python programming. The paper seeks answers to traditional production planning problems using 
operations research and if  implementing visible constraints can reduce production costs.

2. Materials and Methods
The number of  batches to be produced from each item was calculated mathematically using ILP to minimize 
cost while adhering to the limitations of  resources and meeting the demand constraint (see Table 1 for a list 
of  the products selected for the study). The following sections show how all the required information was 
gathered and how the estimated coefficients for the objective and constraints matched up.

Table 1: List of  products for study

Type Product Creaming Flavoring

Hard Dough

Milk Puff  (P1) Yes Yes

Cheese Crackers (P2) Yes

Marie (P3)

Soft Dough
Twist (P4) Yes

Soaltee (P5)  Yes

2.1 Formulating the mathematical model

Let xi represent the number of  batches that will be created from the ith product (Pi) each month, where, I = 
1, 2,…., 5.

2.1.1 Objective Function

The goal is to reduce the monthly manufacturing cost of  packed biscuits and baked cookies that are heaped 
into bins rather than being boxed. The production cost per kilogram of  unpackaged biscuits was gathered as 
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raw information. It includes the cost of  raw materials, labor, oven fuel, electricity, etc. These expenses were 
added, and the following objective function was created:

Let Ci represent the cost of  manufacturing each completed batch of  the ith product.

 ....................................................................................................................................... (1)

Where, 

Z is the linear function representing minimized cost

Ci is the cost per batch of  the ith product

Xi is the number of  batches of  the ith product 

OC is the overtime cost. 

Table 2: Wastage and weight loss in each section

Product
Dough 
weight (kg)

Baking 
loss %

Waste at 
mixing (kg)

Waste at 
cutter (kg)

Waste in cooling 
and stacking %

Milk Puff  (P1) 350 14 1.35 2 1
Cheese Crackers (P2) 350 13.21 1.2 2.5 1
Marie (P3) 350 20 1 3.5 1
Twist(P4) 350 10.28 0.85 1.5 1
Soaltee(P5) 350 4.28 1.15 3 1

Table 3: Weight loss of  baked biscuits per batch

Product
Dough 
weight 
(kg)

Waste in 
mixing 
(kg)

Oven 
input 
(kg)

Baking 
loss (kg)

Oven 
output 
(kg)

Waste in 
cooling & 
stacking (kg)

Final weight of  
baked biscuit 
batch (KG)

Milk Puff  (P1) 350 1.35 348.65 48.81 299.84 3.00 296.84

Cheese Crackers (P2) 350 1.2 348.8 46.08 302.72 3.03 299.70

Marie (P3) 350 1 349 69.80 279.20 2.79 276.41

Twist (P4) 350 0.85 349.15 35.89 313.26 3.13 310.12

Soaltee (P5) 350 1.15 348.85 14.93 333.92 3.34 330.58

Table 4: Cost per batch

Product (Pi) Production cost/ kg (Rs) Ki Final weight Cost per batch

Milk Puff  (P1) 140 296.84 41557.69

Cheese Crackers (P2) 135 299.70 40459.00

Marie (P3) 128 276.41 35380.22

Twist (P4) 132 310.12 40936.47

Soaltee (P5) 112 330.58 37024.96
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Table 2 illustrates the weight losses and waste generated during different processes of  biscuit manufacturing. 
The weight of  the wet dough mixture was then adjusted to account for all the wastes and weight losses listed 
in Table 2. Assuming that these are the only wastes that will happen during the production process, the 
model was created and solved. Table 3 displays the relevant information. It computes the weight of  a batch 
of  cooked cookies (Bi) which is according to the formula of  equation 2. The following formulas can be used 
to determine the cost per batch of  the ith product (Ci), given that the price per kilogram (ki) was gathered as 
raw data. Table 4 contains the computations for Ci according to the formula stated by equation 3.

Bi = Dough Weight – Waste in Mixing -Baking Loss -Waste in Cooling & Stacking ....................................  (2)

Ci = Production cost per kilogram of  biscuits (Ki) ×Weight of  a baked biscuit batch (Bi) .............................(3)

Therefore, the objective function according to equation 1 for the concerned problem can be written as:

Min Z = 41557.69 x1 + 40458.99 x2 + 35380.22 x3 + 40936.47 x4 + 37024.96 x5 .........................................(4)

Where, 

the integers are cost per batch of  the ith product obtained from Table 4;

x1, x2, x3, x4, x5 are the number of  batches to be produced for five products accordingly.

2.1.2 Constraints

For the viability, all limitations must be met. However, many models include two types of  constraints: soft 
constraints with varying relative importance that may or may not be satisfied, and hard constraints that any 
feasible solution must satisfy. In their discussion of  applying both soft and hard restrictions in production 
planning. The possible solutions are defined by the hard constraints, while the function to be optimized in 
choosing between the feasible solutions is defined by the soft constraints. If  a model contains both types of  
constraints, soft constraints can be changed until a workable solution is found.

1) Hard Constraint

In order to ensure that no consumer is dissatisfied, the management places the highest priority to meeting 
demand. The need must be satisfied by any workable solution that the model produces. Therefore, demand 
constraint was regarded as a hard limitation for this investigation.

Bi xi provides the total number of  kilograms that must be produced from the ith product each month since Bi 

represents the final weight of  baked biscuits and xi represents the number of  batches to be produced from 
the ith product which can be stated according to the formula in equation 5.

Total Production = Final Weight of  Biscuits (Bi)  per batch ×Total number of  batch (xi) ..........................  (5)

Since the plant doesn't want to create any extra biscuits, this quantity should be the same as the kilogram 
demand for each product. As a result, the demand restriction can be expressed as follows:

Bixi  ≥ Di for i = 1,2,…,5; ...............................................................................................................................................  (6)

Where,

Bixi is total production per month in kilograms;

Di is the monthly demand in kilograms for the ith product.
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The senior management makes the monthly demand decision, which is then communicated to the biscuit plant 
at the beginning of  each month. The quantity of  boxes of  cookies required for various stock keeping units 
(SKU) of  each product is how the demand is expressed. These data were gathered from the manufacturing 
facility, and using them, the monthly demand in kilos for each product was computed. The calculations 
needed to determine the total demand in kilos per month for each commodity are listed in Table 5 which is 
according to the formula in equation 7.

Total demand in kg = no.of  cartons demanded × no.of  packets in a carton ×wt of  biscuits per packet (in kg) ....(7)

Table 5: Total demand calculation in kilogram

Product (Pi)
SKU 
(gm)

No. of  packets in a 
carton

Demand (in carton)
Monthly 
demand

Milk Puff  (P1) 40 120 285 1368

Cheese Crackers (P2) 60 96 3000 17280

Marie (P3) 160 18 1875 5400

Twist (P4) 30 144 1500 6480

Soaltee (P5) 35 144 6,000 30240

The demand restrictions for each product can be expressed as follows; once all the coefficient values and 
right-hand side values, which represent the requirements, have been calculated:

296.84 x1≥1368

299.69 x2≥17280

276.41 x3≥5400

310.12 x4≥6480

330.58 x5≥30240 ...............................................................................................................................................................  (8)

Where,

The right-hand side integers are total demand in kilograms from Table 4;

The left-hand side values are total production in kilograms from Table 5.

2) Soft Constraint

The manufacturing company's resources are scarce. So, in order to reduce manufacturing costs, it's crucial 
to take into account the plant's resources. When making biscuits, the production process cannot use more 
resources than that are available, such as the number of  workers and the machine's capacity. The management 
frequently modifies the amount of  labor and equipment needed in accordance with the monthly demand. 
Therefore, labor and machine hour limits were viewed as soft constraints in this study.

·	 Machine Hour

Each product has a set processing time for a batch. The overall processing time needed for the monthly 
output should be less than or equal to the total monthly machine hours. The number of  working hours per 
day and working days per month might be extended up to a certain point in the model solving step if  the 
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demand cannot be met with the total number of  machine hours that are available. 

Machine hour constraints were therefore viewed as soft constraints. The machine hour restriction is then, 
generally, as follows:

  ...................................................................................................................................(9)

Where,

T
 
is the total monthly machine time available (in minutes);

ti is the total processing time (in minutes) per batch of  the ith product.

Table 6: Available machine hours per month

Available machine hours per month

No. of  working hrs 
per day

No. of  working days 
per month

Total available machine 
hours (hr)

T (min)

16 26 416 24960

Table 7: Available labor time per month

Section
Available no. 
of  labours

No. of  
days

No. of  
hours

L (hr) L (min)

Mixing 5 26 16 2080 124800

Cutter 6 26 16 2496 149760

Baking, Cooling, & Stacking 7 26 16 2912 174720

Packaging 50 26 16 20800 1248000

Table 8: Required labor time

Product
Total 
processing 
time

No. of  labors needed Required labor time (min)

Mixing Cutter

Baking, 
Cooling 
& 
Stacking

Packaging Mixing Cutter

Baking, 
Cooling 
& 
Stacking

Packaging

Milk Puff  
(P1)

40 5 6 7 45 200 240 280 1800

Cheese 
Crackers (P2)

50 5 6 7 38 250 300 350 1900

Marie (P3) 45 5 6 7 40 225 270 315 1800

Twist (P4) 39.29 5 6 7 45 196.45 235.74 275.03 1768.05

Soaltee (P5) 37.14 5 6 7 40 185.7 222.84 259.98 1485.6
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Table 6 calculates the number of  machine hours that are available each month (T), and Table 8 includes total 
processing time per batch (in min). It is possible to express the machine hour constraint based on equation 
(9) as follows:

40 x1 +50 x2 +45 x3 +39.29 x4 +37.14 x5 ≤ 24960 .............................................................................................. (10)

Where,

The integers on left hand side are required processing time from table 2.8;

The value of  right hand side is total available machine time from table 2.6.

·	 Labor Hour

The monthly labor hours available should be greater than the monthly labor hours required for the output. 
As a result, the overall formulation of  the labor hour constraint for each section: mixing, cutter, baking and 
cooling, and stacking is as follows:

 .............................................................................................................................................................. (11)

Where,

ti is the amount of  time (in minutes) needed to process one batch of  the ith product through each segment;

li  is the number of  workers required for each production section;

L is the total number of  hours of  labor that are available.

Each area of  the industrial facility has a set number of  laborers assigned to it (see Table 7). During the 
manufacturing of  various products, different numbers of  these laborers are assigned to each department (see 
Table 8). Additionally, Table 8 illustrates the calculations of  the required labor time for each segment during 
production, while Table 7 displays the available labor time in minutes.

This limitation is also referred to as a soft constraint because the number of  working days or hours can be 
changed until a workable solution is discovered. The following is how the labor constraint for each portion 
of  this PP problem might be presented:

Mixing:

200 x1 + 250 x2 + 225 x3 + 196.45 x4 + 185.7 x5 ≤ 124800  ............................................................................. (12)

Cutter:

240 x1 + 300 x2 + 270 x3 + 235.74 x4 + 222.84 x5 ≤ 149760  .......................................................................... (13)

Baking, Cooling, and Stacking:

280 x1 + 350 x2 + 315 x3 + 275.03 x4 + 259.98 x5 ≤ 17472  ............................................................................. (14)

Packaging:

1800 x1 + 1900 x2 + 1800 x3 + 1768.05 x4 + 1485.6 x5 ≤ 1248000  ............................................................... (15)

Where,
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The integer values on left hand side is required labor time for different section derived from table 8;

The left-hand side values are available labor time for different section derived from table 7;

Additionally, because the plant doesn't manufacture incomplete batches, all of  the xi values should be positive 
integers. That is: xi ≥0 and integer for i = 1, 2,..,5.

2.2 Solving the formulated mathematical model

The Simplex Algorithm, created by Dantzig in 1947, is the most well-known method for resolving LP 
problems. It is known as Integer Linear Programming (ILP) because the defined model uses integer decision 
variables (Nash, 2000). As a result, the simplex method by itself  is insufficient to resolve the issue. Cutting 
plane methods are a subclass of  precise algorithms that can be used to solve ILP (Neto, 2012). In order 
to move the solution toward being integer without rejecting any integer viable places, this method first 
applies LP relaxation and then adds linear restrictions. The branch and bound method's variations represent 
another class of  precise algorithms. Since ILP is NP-hard (Schrijver, 1999), many issues are intractable, 
hence heuristic methods are utilized in their place. ILPs can be solved using a variety of  heuristic techniques, 
including ant colony optimization. But in this work, the ILP problem was solved using a spreadsheet model.

Model in Python

Python programming was used to develop the aforementioned integer linear programming paradigm. The 
model coefficients must be chosen with particular values when creating a linear programming model. Rough 
intervals are regarded as helpful new instruments to address the imprecise, ambiguous, and uncertain data 
in decision-making situations (E.E. & A, 2020). For formulating the linear model, PuLP library was used. 
Using expressions that are native to the Python language, users can develop programs with PuLP, a high-
level modeling library that makes the most of  the language's capabilities while avoiding specific syntax 
and keywords (Mitchell et al., 2011). The problem function was established once the library was imported, 
and then decision variables — the number of  batches of  various items to be produced — were formed (xi). 
Equation (4) was used to define the objective function. Next, the constraints were applied using the formulas 
for hard constraints (equation (8)) and soft constraints (equations 10, 12, 13, 14, and 15). After then, a Python 
solution to the issue was printed. The optimal choices of  x1, x2, x3, x4, and x5 that minimize the objective 
function while meeting all restrictions were determined by code programming. Furthermore, the code was 
designed to output the current status as well. A workable solution was established when the number of  
working hours was above the required hours, while the number of  laborers assigned to each area was kept 
constant. The number of  working hours and working days were modified within a specific range that was 
acceptable to the management. 

3. Results and Discussion

3.1 Optimized solution for production efficiency

To identify the best answer, specific constraints have been created. While labor and machine hours were 
classified as soft constraints because they were not as necessary to be satisfied, they were still desirable to be 
taken into consideration. Demand constraints, on the other hand, were classified as hard constraints because 
they had to be met at all times. Table 5, similarly, demonstrated the available demand that the manufacturing 
plant needed to satisfy in accordance with equation (8). The appendix A1 is code in python which revealed that 
the demands were at least higher than the demand constraints. Similarly, it appeared that the total machine 
hours of  8241.97 were less than the machine hours limitation as indicated by equation (10). Additionally, 
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labor hours satisfied the requirements according to equations (12, 13, 14, and 15). The number of  batches to 
be generated from each product each month in accordance with the determined optimum solution is shown 
in appendix A2. According to the solution in Python, the monthly demand may be supplied utilizing the 
available resources at a minimal cost of  roughly Rs.7.53 million. The facility should create the following 
number of  batches from each product in order to accomplish that:

X1 (Milk Puff) = 5

X2 (Cheese Crackers) = 58

X3 (Marie) = 20

X4 (Twist) = 21

X5 (Soaltee) = 92

Furthermore, the production facility can have enough hours for production of  other biscuits if  it runs 
constantly for 16 hours each day for 26 days in a particular month in order to meet client demand. The 
solution printed the status as optimal which means that an optimal solution was found.

3.2 Discussion

Heuristics and intuition are frequently used in manual planning processes, which results in poor decisions 
and ineffective resource management. These inefficiencies can cause increased operational expenses, extra 
inventory, and unused resources. The lack of  a consistent mathematical model makes decision-making more 
difficult and also limits our ability to thoroughly assess alternative scenarios. If  the integer constraint is 
shifted, the total monthly cost can be decreased by Rs. 474,705. The extra monthly cost is brought on by the 
extra number of  biscuits that the integer constraint will cause to be created. As a result, if  the company can 
make partial batches, the monthly additional cost of  making more biscuits could be decreased.

Goal programming and batch determination approach can be used to determine the number of  batches that 
should be generated for any month, even though this study was based on data from a specific month. Applying 
fresh Di’s to the created Python code would provide the number of  products needed each month because 
of  Di's change from month to month. Additionally, the model can be appropriately modified to vary the 
working hours and working days until it becomes feasible. After determining a probability distribution for 
the monthly demand and simulating a scenario to account for the anticipated monthly demand, management 
can examine the future demand for the business. Furthermore, management still needs to establish goals, but 
if  they do so, a goal programming model can address this issue.

The production department at Shree Pashupati Biscuit Industries Pvt. Ltd. discovered an improvement 
in production efficiency after implementing this integer linear programming formulation for production 
planning. While there was a heuristic manual and JIT planning based on the orders placed, there was no 
specific estimate of  the required cost. Therefore, cost-saving measures were taken using other ineffective 
techniques. The production need was determined using the ILP approach in a matter of  seconds, which aided 
in the analysis of  the plant to determine the number of  laborers and raw materials needed. The plant might 
save money by controlling labor costs, equipment usage, and the quantity of  raw materials purchased.

4. Conclusions
The integer linear programming model provides a solution to reduce monthly manufacturing costs by 



73

Journal of Engineering Issues and Solutions 3 (1): 63-75 [2024]Chaudhary & Giri

addressing hard constraints such as monthly demand and soft constraints like equipment and personnel 
availability. By reducing wastage of  time and enhancing process efficiency, labor expenses are decreased, and 
inventory expenses are minimized. The model also increases capacity and optimizes equipment consumption, 
thereby increasing punctuality of  product and service deliveries.

Management can schedule production for each day, as the total number of  batches and labor hours per month 
are known in advance. Overproduction of  biscuits can lead to excessive inventory costs and damage the 
production facility's reputation. This production plan ensures that neither physical nor human resources are 
wasted, allowing manufacturing facilities to lower production costs. 
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Appendix 1: Python code to solve ILP and results

Results:
Status: Optimal
x1 = 5.0 x2 = 58.0
x3 = 20.0 x4 = 21.0
x5 = 92.0
Total Cost = 7527976.46


