
Journal of Nepal Mathematical Society (JNMS) Research Article
ISSN: 2616-0153 (Print), 2616-0161 (Online) Received Date: Mar. 23, 2024
Vol. 7, Issue 1, 2024 (July): 71-85 Accepted Date: June 03, 2024
DOI: https://doi.org/10.3126/jnms.v7i1.67488 Published Date: July 03, 2024

©Nepal Mathematical Society

Delta Power Transformation: A New Family of
Probability Distributions

Laxmi Prasad Sapkota1,∗, Pankaj Kumar2, Vijay Kumar3

1Department of Statistics, Tribhuvan University, Tribhuvan Multiple Campus, Tansen, Palpa, Nepal
2,3Department of Mathematics and Statistics, DDU Gorakhpur University, Gorakhpur-273001, India

*Correspondence to: Laxmi Prasad Sapkota, Email: laxmisapkota75@gmail.com

Abstract: This research article presents a novel approach called the delta-power transformation, which
introduces a new class of lifetime distributions. The article discusses the key features of one member from
this family, which exhibits a hazard function with a distinctive shape resembling a J, reverse-J, constant, or
monotonically increasing. The researchers delve into the statistical characteristics of this distribution and
utilize the maximum likelihood estimation (MLE) approach to gauge its parameters. They conduct a sim-
ulation experiment to evaluate the precision of the estimation process, finding that biases and mean square
errors diminish with larger sample sizes, even in cases involving small samples. Moreover, the study show-
cases the practical utility of the suggested distribution through an examination of two real-world datasets.
Evaluation criteria for model selection and goodness-of-fit test statistics indicate that the proposed model
surpasses certain existing models in performance.
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1 Introduction

In practical applications, statistical models are widely employed to represent and analyze datasets. Tra-
ditional distributions such as Weibull, gamma, Lomax, beta, log-normal, and exponential are commonly
used for this purpose. However, these distributions may not always provide a satisfactory fit for complex
datasets. Consequently, researchers are continuously working on developing new models that are more gen-
eralized versions of the existing ones. These advancements often involve techniques like exponentiation and
the T-X approach, which aim to generate more adaptable distributions. Recently, Mahdavi and Kundu [13]
introduced an alternative approach called the alpha power transformation (APT) family, which incorporates
a high degree of skewness and flexibility to the base distribution. They specifically studied the alpha power
exponential as a member of this family. Since then, this approach has gained popularity among researchers
in the fields of probability theory and survival analysis. Using the APT technique, several authors have
proposed new generalized models and families of distributions. For instance, Nassar et al. [20] employed
the APT technique to define the new family of distributions using log transformation. Mead et al. [18]
have further studied the APT family by providing some mathematical properties that were not provided
in [13]. Further, Lomax distribution was transformed using APT by Maruthan and Venkatachalam [16].
Ihtisham et al. [7] and Ihtisham et al. [8] studied the Pareto and inverse Pareto distributions using the
APT approach, with the inverse Pareto distribution being applied to model real data related to extreme
values. Similarly, Hozaien et al. [6] and Klakattawi and Aljuhani [10] introduced new models using the
APT family of distributions. Alotaibi et al. [2] have introduced a new distribution as a weighted form of
the APT method while Gomma et al. [4] introduced the alpha power of the power Ailamujia distribution,
which offers a flexible hazard function. They utilized this distribution to model COVID-19 datasets from
Italy and the UK. Furthermore, Nassar et al. [19] introduced a new family utilizing the quantile function
of the APT family whose cumulative distribution function (CDF) is

F (t) =
log [1 + (α− 1)G (t;ϕ)]

log (α)
; t > 0, α > 0, α ̸= 1,

where G (t;ϕ) is the CDF and ϕ is the parameter space of base distribution. Similarly, Elbatal et al. [3]
introduced another new APT family whose CDF is

F (x) =
G (x)αG(x)

α
;α > 0, x ∈ ℜ.
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As a particular member, new APT-Weibull distribution has been studied. Also using the APT method,
Mandouch et al. [14] have reported a new two-parameter family of distributions whose CDF is

F (x) =
αkW{G(x)} − 1

α− 1
;α > 0, α ̸= 1, x ∈ ℜ.

Lone and Jan [12] have introduced another new family using the concept of the APT family and named it
the Pi-Exponentiated transformed (PET) family whose CDF is

F (x) =
π{G(x)}α − 1

π − 1
;α > 0, x ∈ ℜ.

Hence, researchers are continuously developing and exploring new models and families of distributions to
capture the characteristics of complex datasets better. The alpha power transformation (APT) family
has emerged as a popular approach, offering increased skewness and flexibility to the base distribution.
These advancements have led to the proposal of various generalized models and distributions, which have
been successfully applied to a range of datasets, including those related to COVID-19 and extreme values.
Building upon the concept of the alpha power transformation (APT), we have introduced a novel method
to enhance existing distributions by incorporating an additional parameter, which we refer to as the delta
power transformation (DPT) family of distributions. This new family offers increased robustness com-
pared to other compound probability distributions and demonstrates great potential for modeling real-life
datasets. The DPT family possesses an extra parameter that enables it to capture a broader range of
characteristics exhibited by a dataset, including skewness, kurtosis, and failure rate. This enhanced flex-
ibility allows for a more accurate representation of complex data patterns and distributional properties.
By considering the DPT family, researchers and practitioners can better account for the intricate nature
of real-world datasets, leading to improved modeling outcomes. Among the members of the DPT family,
one distribution stands out as particularly noteworthy - the Weibull distribution. The Weibull distribution
has long been employed in reliability theory and life testing due to its ability to capture failure rates and
survival probabilities effectively, for more detail see [15]. With the integration of the DPT framework,
the Weibull distribution can be further adapted and refined to better align with the unique characteristics
observed in various applications.

2 DPT Family and Some Important Functions

Let X ∼ DPT −G family, then the CDF and PDF of DPT family M (y; δ, ψ) and m (y; δ, ψ) for y ∈ ℜ, are
defined as

M(y; δ, ψ) =

{
δ
δ−1

(
1− δ−K(y;ψ)

)
for ψ > 0, δ > 1, y ∈ ℜ

0 otherwise
(1)

m(y; δ, ψ) =

{
δ log δ
δ−1 δ

−K(y;ψ)k(y, ψ) for ψ > 0, δ > 1, y ∈ ℜ
0 otherwise

, (2)

whereK(y;ψ) and k(y;ψ) are the CDF and PDF of a baseline distribution with parameter space ψ. Further
reliability, hazard, and quantile functions of the DPT family can be expressed as

R(y; δ, ψ) =

{
1− δ

δ−1

(
1− δ−K(y;ψ)

)
for δ > 1, y ∈ ℜ

0 otherwise
(3)

h(y; δ, ψ) =

{
(log δ)δ1−K(y;ψ)k(y;ψ)

δ1−K(y;ψ)−1
for δ > 1, y ∈ ℜ

0 otherwise
(4)

Q(p) = K−1

[
− 1

logα
log

(
1− (α− 1)p

α

)]
. (5)
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2.1 Some special cases of DPT family

1. When δ = e, in Equation (1) the CDF of DPT tends to KM-Transformation, for more detail see
Kavya and Manoharan [9].

2. When δ = α−1 in Equation (1) the CDF of DPT tends to APT, for more detail see Mahdavi and
Kundu [13].

3. When δ = π−1 in Equation (1) the CDF of DPT tends to PET, for more detail see Lone and Jan
[12].

2.2 A linear form of the DPT family

Through some mathematical calculations, the PDF (2) of the DPT family can be expressed in linear form
as

m(y; δ, ψ) =
δ

δ − 1

∞∑
i=1

∆iK
i(y;ψ)k(y;ψ), (6)

where ∆i = (−1)
i (log δ)1+i

i! .

3 DPT Weibull (DPTW) Distribution

Let Y be a continuous random variable following the Weibull distribution, then the CDF and PDF are

K(y;ψ) = 1− e−λy
β

; (λ, β) > 0, y > 0. (7)

k(y;ψ) = λβyβ−1e−λy
β

; (λ, β) > 0, y > 0. (8)

Now using Equation (7) as a base distribution, we have introduced the DPTW distribution having CDF

M(y; δ, β, λ) =
δ

δ − 1

(
1− δ

−
(
1−e−λy

β
))

for δ > 1, (β, λ) > 0, y > 0. (9)

The PDF of the DPTW distribution can be expressed as

m(y; δ, β, λ) =
δβλ(log δ)

δ − 1
δ
−
(
1−e−λy

β
)
yβ−1e−λy

β

; δ > 1, y > 0. (10)

Further, some key functions such as reliability, hazard, and quantile of DPTW distribution can be presented
as

R(y; δ, β, λ) = 1− δ

δ − 1

(
1− δ

−
(
1−e−λy

β
))

; y > 0. (11)

h(y; δ, β, λ) =
βλ(log δ)δe

−λyβ

yβ−1e−λy
β

δe−λy
β − 1

; y > 0. (12)

QY (p) =

[
− 1

λ
log

{
1 +

{
1

log δ
log

(
1− (δ − 1) p

δ

)}}]1/β
. (13)

and random numbers deviate

y =

[
− 1

λ
log

{
1 +

{
1

log δ
log

(
1− (δ − 1)u

δ

)}}]1/β
. (14)

The DPTW distribution has a density plot that can take on a diversity of shapes, including symmetrical,
or right-skewed and decreasing. Figure (1) (left) shows some examples of these shapes. The HRF on the
other hand, can take on the shapes of a constant, increasing j and a reverse-j. Figure (1) (right) shows
some examples of these shapes.
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Figure 1: Shapes of PDF and HRF of DPTW distribution.

4 Statistical Properties

4.1 Linear form of DPTW distribution

Through some mathematical calculations, the PDF (10) of DPTW distribution can be expressed in linear
form as

m(y; δ, β, λ) =

∞∑
i=1

∞∑
j=0

∆∗
ijy

β−1e−(j+1)λyβ ; δ > 1, y > 0, (15)

where ∆∗
ij =

βλδ
δ−1 (−1)

j

(
i
j

)
∆i.

4.2 Moments

The rth moment of DPTW distribution is

E [Y r] =

∞∑
i=0

∞∑
j=0

∆∗
ij

∞∫
0

yβ+r−1e−(j+1)λyβdy =

∞∑
i=0

∞∑
j=0

∆∗
ij

β−1Γ
(
r
β + 1

)
{(j + 1)λ}

r
β+1

. (16)

Mean and Variance

E [Y ] =

∞∑
i=0

∞∑
j=0

∆∗
ij

β−1Γ
(

1
β + 1

)
{(j + 1)λ}

1
β+1

. (17)

and

E
[
Y 2
]
=

∞∑
i=0

∞∑
j=0

∆∗
ij

β−1Γ
(

2
β + 1

)
{(j + 1)λ}

2
β+1

.

V [Y ] = E
[
Y 2
]
− [E (Y )]

2
=

∞∑
i=0

∞∑
j=0

∆∗
ij

β−1Γ
(

2
β + 1

)
{(j + 1)λ}

2
β+1

−

 ∞∑
i=0

∞∑
j=0

∆∗
ij

β−1Γ
(

1
β + 1

)
{(j + 1)λ}

1
β+1

2

. (18)
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Using equations 17 and 18, we have computed the mean and variance of the DPTW distribution and results
are displayed in Table 1.

Table 1: Mean and variance of DPTW for the various values of the parameters
δ, β and λ E(Y ) E(Y 2) V (X)
1.5, 0.5, and 0.75 2.5323 51.9262 45.5137
2.5, 1.5, and 1.25 0.7968 5.5693 4.9343
5.0, 1.5, and 0.5 0.4516 2.0151 1.8111
7.5, 2.5, and 1.75 0.2547 0.7903 0.7254

4.3 Moment generating function

For any real number t, the MGF of DPTW distribution can be defined as

DY (t) =

∞∑
i=0

∞∑
j=0

∞∑
k=0

tk

k!
∆∗
ij

∞∫
0

yβ+k−1e−(j+1)λyβdy =

∞∑
i=0

∞∑
j=0

∞∑
k=0

tk

k!
∆∗
ij

β−1Γ
(
k
β + 1

)
{(j + 1)λ}

k
β+1

.

4.4 Order statistics

Let yi(i = 1, ..., n) ∼ DPTW (yi; δ, β, λ) with CDF M(yi; δ, β, λ) and PDF m(yi; δ, β, λ). If mr(y) denotes
the PDF of rth order statistic Y(r), then their CDF and PDF are given by

Mr(y) = IM(y)(r, n− r + 1).

mr(y) =
d

dy
[Mr(y)] =

d

dy

[
IM(y)(r, n− r + 1)

]
=

1

B(r, n− r + 1)
Mr−1(y)m(y) [1−M(y)]

n−r
.

mr(y) =
1

B(r, n− r + 1)

δβλ(log δ)

δ − 1
δ
−
(
1−e−λy

β
)
yβ−1e−λy

β

[Zy (δ, β, λ)]
r−1

[1− Zy (δ, β, λ)]
n−r

,

where Zy (δ, β, λ) = δ
δ−1

(
1− δ

−
(
1−e−λy

β
))

, IM (a, b) =
t∫
0

ta−1 (1− t)
b−1

dt and B (a, b) are incomplete

and standard beta functions respectively. The CDF and PDF of first-order statistic Y(1) are given by

M1(y) = 1− [1− Zy (δ, β, λ)]
n
; y > 0.

m1(y) =
nδβλ(log δ)

δ − 1
[1− Zy (δ, β, λ)]

n−1
δ
−
(
1−e−λy

β
)
yβ−1e−λy

β

; y > 0.

The CDF and PDF of first-order statistic Y(n) are given by

Mn(y) = [Zy (δ, β, λ)]
n
; y > 0.

mn(y) =
nδβλ(log δ)

δ − 1
[Zy (δ, β, λ)]

n−1
δ
−
(
1−e−λy

β
)
yβ−1e−λy

β

; y > 0.

The joint PDF of rth and sth order statistics are given by

mrs(x, y) =
n!

(r − 1)!(s− r − 1)!(n− s)!
Mr−1(x).m(x) [M(y)−M(x)]

s−r−1
m(y). [1−M(y)]

n−s
.

mrs(x, y) =
n!

(r − 1)!(s− r − 1)!(n− s)!

(
δ
−
(
2−e−λy

β
−e−λx

β
)
(xy)

β−1
e−λ(y

β+xβ)
)[

δβλ(log δ)

δ − 1

]2
[Zx (δ, β, λ)]

r−1
[Zy (δ, β, λ)− Zx (δ, β, λ)]

s−r−1
[1− Zy (δ, β, λ)]

n−s
; (x, y) ∈ R×R.
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The joint PDF of the 1st and nth order statistics is given by

m1n(x, y) = n(n− 1) [M(y)−M(x)]
n−2

m(x).m(y)

m1n(x, y) = n(n− 1)

(
δβλ(log δ)

δ − 1

)2

[Zy (δ, β, λ)− Zx (δ, β, λ)]
n−2

(xy)
β−1

e−λ(y
β+xβ)δ

−
(
2−e−λx

β
−e−λy

β
)
,

where Zx (δ, β, λ) =
δ
δ−1

(
1− δ

−
(
1−e−λx

β
))

.

5 Statistical Inference

5.1 Estimation

Let yi(i = 1, ..., n) ∼ DPTW (yi; δ, β, λ) with PDF m(yi; δ, β, λ), then the log-likelihood function can be
calculated as

l(y; δ, β, λ) = n log(δβλ) + n log(log δ)− n log(δ − 1)− log δ

n∑
i=1

(
1− e−λy

β
i

)
+

(β − 1)

n∑
i=1

log yi − λ

∞∑
i=1

yβi .

(19)

Differentiating equation (19) with respect to associated parameters, we get

∂l

∂δ
=

n

δ log δ
− n

δ − 1
+

1

δ

n∑
i=1

e−λy
β
i .

∂l

∂β
=
n

β
− λ log δ

n∑
i=1

e−λy
β
i yβi log yi +

n∑
i=1

log yi − λ

∞∑
i=1

yβi log yi.

∂l

∂λ
=
n

λ
+ log δ

n∑
i=1

e−λy
β
i yβi −

∞∑
i=1

yβi .

By solving the above three non-linear equations using suitable software one can obtain the estimates under
the maximum likelihood estimation (MLE) method.

5.2 Cramer-Rao (CR) inequality

If T (y1, ..., yn) is an unbiased estimator for g(ψ), a function of parameter ψ, then

V ar[T (y1, ..., yn)] ⩾

{
d
dψ g(ψ)

}2

E
(
∂
∂ψ logL

)2 =
{g′(ψ)}2

I(ψ)
,

where I(ψ) is the information on ψ, supplied by the sample. To define CR lower bound (CRLB) for δ when
β and λ are known. The CRLB for an unbiased estimator T1(y1, ..., yn) of a parameter δ is given by 1

I(δ) ,

where

I(δ) = −E
[
∂2l

∂δ2

]
= n

(
δ−2 (log δ)

−2
+ δ−2 (log δ)

−1
)
+ n (δ − 1)

−2
+ δ−2

n∑
i=1

E
(
e−λy

β
i

)
and

∂2l

∂δ2
= −n

(
δ−2 (log δ)

−2
+ δ−2 (log δ)

−1
)
− n (δ − 1)

−2 − δ−2
n∑
i=1

e−λy
β
i .
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Again CRLB for β when δ and λ are known, then CRLB for an unbiased estimator T2(y1, ..., yn) of a
parameter β is given by 1

I(β) , where

I (β) = −E
[
∂2l

∂β2

]
= nβ−2 + λ log δ

n∑
i=1

E
{(
e−λy

β
i yβi log yi − λe−λy

β
i y2βi log yi

)
log yi

}
+ λ

∞∑
i=1

E
{
yβi (log yi)

2
}

and
∂2l

∂β2
= −nβ−2 − λ log δ

n∑
i=1

(
e−λy

β
i yβi log yi − λe−λy

β
i y2βi log yi

)
log yi − λ

∞∑
i=1

yβi (log yi)
2
.

CRLB for λ when δ and β are known, then for an unbiased estimator T3(y1, ..., yn) of a parameter λ is
given by 1

I(λ) , where

I (λ) = −E
[
∂2l

∂λ2

]
= nλ−2 + λ log δ

n∑
i=1

E
{
e−λy

β
i y2βi

}
and

∂2l

∂λ2
= −nλ−2 − λ log δ

n∑
i=1

{
y2βi e−λy

β
i

}
.

5.3 Asymptotical properties

As n approaches infinity, a steady solution to the likelihood equation tends towards a normal distribution
centered around the true value θ0. Consequently, θ̂ asymptotically follows a normal distribution with mean

θ0 and variance 1
I(θ0)

, expressed as θ̂ ∼ N
(
θ0,

1
I(θ0)

)
. Particularly δ̂, β̂ and λ̂ are distributed asymptotically

N
(
δ, 1
I(δ)

)
, N

(
β, 1

I(β)

)
and N

(
λ, 1

I(λ)

)
respectively as n→ ∞.

5.4 Pivotal quantity (PQ)

Let yi(i = 1, 2, ..., n) ∼ DPTW (y; δ, β, λ) with CDF M(yi; δ, β, λ), then pivotal quantity is defined as

−2

n∑
i=1

ln [M(yi; δ, β, λ)] ∼ χ2
2n and − 2

n∑
i=1

ln [1−M(yi; δ, β, λ)] ∼ χ2
2n.

PQ = −2

n∑
i=1

ln [Zyi (δ, β, λ)] ∼ χ2
2n and PQ = −2

n∑
i=1

ln [1− Zyi (δ, β, λ)] ∼ χ2
2n,

where χ2
2n represent the chi-square distribution with 2n degree of freedom. Let xi(i = 1, 2, ...,m) ∼

DPTW (x; δ, β, λ) and yi(i = 1, 2, ..., n) ∼ DPTW (y; δ, β, λ) are two independent random variables with
CDF M(xi; δ, β, λ) and M(yi; δ, β, λ) respectively, then

PQ1

PQ2
∼ Beta2 (m,n) and

PQ1

PQ1+PQ2
∼ Beta1 (m,n)

and n
m
PQ1

PQ2
∼ F (m,n) , where

PQ1 = −2

n∑
i=1

ln

[
δ

δ − 1

(
1− δ

−
(
1−e−λx

β
i

))]

and

PQ2 = −2

n∑
i=1

ln

[
δ

δ − 1

(
1− δ

−
(
1−e−λy

β
i

))]
.

Generally, PQ is used to construct CI for a single parametric model. For this model, we used PQ to
construct CI for a small sample for one parameter keeping others constant.
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5.5 Confidence interval for large sample

Subject to regularity conditions, the asymptotic normality of the first derivative of the logarithm of the
likelihood function with respect to parameter θ, denoted as ∂ logL

∂θ , is characterized by a mean of zero and
a variance as follows

V ar

(
∂ logL

∂θ

)
= E

(
∂ logL

∂θ

)2

= −E
(
∂2 logL

∂θ2

)
Hence for large n,

T =
∂ logL
∂θ√

V ar
(
∂ logL
∂θ

) ∼ N (0, 1)

The results enable us to obtain a confidence interval for the parameter θ in a large sample. Thus for a
large sample, the confidence interval for θ with confidence coefficient (1 − b)% is obtained by converting
the inequalities in P (|Z| ⩽ γb) = 1− b, where γb is given by

1

(2π)
1/2

γb∫
−γb

exp
(
−t2/2

)
dt = 1− b.

Thus Confidence interval for δ, β and λ are given by δ̂± γb/2SE
(
δ̂
)
, β̂± γb/2SE

(
β̂
)
and λ̂± γb/2SE

(
λ̂
)

at the confidence coefficient (1− b)%.

6 Simulation Study

We utilized the maxLik R package, which was developed by Henningsen and Toomet [5], to generate samples
from the quantile function specified in the equation (13) for various parameter combinations of the DPTW
distribution. For each sample, we then computed the MLEs using the maxLik() function and the BFGS
algorithm. This allowed us to investigate parameter estimation issues and determine the direction and size
of bias (i.e., overestimation or underestimation) of the MLEs. In our simulation, we employed sample sizes
ranging from 120 to 370 in increments of 50, and we repeated the process 1000 times to obtain estimates
of bias and mean square error (MSE). We presented the results in the Tables 2, 3, and 4, which report
the bias and MSEs for MLEs of each parameter. Our findings indicated that for three different parameter
combinations, the bias and MSE decreased as the sample size increased. This suggests that the MLE
method is asymptotically efficient, consistent, and follows the invariance property. However, one of the
parameters, delta, in the proposed model exhibited slightly high bias values in the simulation study. We
examined the bias of this parameter for large sample sizes and found that the bias values were small. Since
the biases of the remaining parameters were nearly zero, we decided not to include all these results in the
manuscript. Additionally, delta’s contribution to the shape of the distribution is minimal, so the goodness
of fit of the model remains unaffected.

Table 2: Simulation results for MLEs (δ = 5.0, β = 0.5, λ = 1.25)
n Bias MSE

δ β λ δ β λ
120 6.9424 -0.0209 0.2346 614.3530 0.0046 0.4713
170 6.8734 -0.0123 0.1413 563.0340 0.0032 0.3278
220 5.9442 -0.0099 0.0942 443.2450 0.0022 0.2409
270 5.5046 -0.0088 0.0895 408.8020 0.0022 0.2264
320 5.5526 -0.0073 0.0684 423.3870 0.0017 0.1955
370 4.2720 -0.0087 0.0833 287.1260 0.0017 0.1963
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Table 3: Simulation results for MLEs (δ = 5.5, β = 0.75, λ = 1.5)
n Bias MSE

δ β λ δ β λ
120 8.0465 -0.0224 0.2160 697.1780 0.0093 0.5421
170 6.2254 -0.0241 0.1596 439.6600 0.0074 0.4160
220 6.9088 -0.0229 0.1491 771.6680 0.0062 0.3815
270 6.0974 -0.0156 0.1079 484.9720 0.0046 0.3093
320 6.3304 -0.0116 0.0810 479.7390 0.0041 0.2798
370 6.0813 -0.0112 0.0756 578.0470 0.0035 0.2405

Table 4: Simulation results for MLEs (δ = 2.5, β = 0.25, λ = 0.75)
n Bias MSE

δ β λ δ β λ
120 5.3011 -0.0066 0.1186 419.2490 0.0013 0.1945
170 4.9076 -0.0038 0.0657 320.4290 8.00E-04 0.1269
220 3.6058 -0.0053 0.0721 210.5540 8.00E-04 0.1248
270 3.0040 -0.0049 0.0627 157.3500 7.00E-04 0.1096
320 2.2869 -0.0024 0.0425 104.0350 6.00E-04 0.0892
370 2.6803 -0.0031 0.0522 176.5600 6.00E-04 0.0912

7 Application

Using two real datasets, we demonstrate the application of the DPTW distribution in this section. The
datasets used for the suggested distribution applications are presented below.

7.1 Dataset-I

In this section, we demonstrate how the DPTW model can be applied using a real dataset that has been
previously utilized by other researchers. The dataset we utilized comprises 100 observations on the breaking
stress of carbon fibers, measured in gigabars (Gba). The datasets can be found in Nichols and Padgett [21]
and Sapkota and Kumar [24].
3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15,
4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85,
2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91,
3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51,
2.17, 1.69, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12,
1.89, 2.88, 2.82, 2.05, 3.65

7.2 Dataset-II

The second actual set of data includes information on the duration of remission (in months) for a group
of 128 individuals who have been diagnosed with bladder cancer. This data was collected from a random
sample of patients and was originally published by Lee and Wang [11]. It can also be found in Sapkota
[23].
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5.41, 5.41, 5.49, 5.62, 5.71, 5.85, 6.25, 6.54, 6.76, 6.93, 6.94, 6.97, 7.09, 7.26, 7.28, 7.32, 7.39, 7.59, 7.62,
7.63, 7.66, 7.87, 7.93, 8.26, 8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 9.74, 10.06, 10.34, 10.66, 10.75, 11.25,
11.64, 11.79, 11.98, 12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 14.83, 15.96, 16.62,
17.12, 17.14, 17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63, 25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 43.01,
46.12, 79.05
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For both data sets, we have displayed the boxplots and total time on the test (TTT) plots in Figures 2 and
3 and observed that the data set I have almost symmetrical and increasing hazard rate whereas data set II
has right skewed and bathtub shaped hazard rate. We have used the R package AdequacyModel developed
by [1] to generate TTT plots.
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Figure 2: Boxplots of the dataset I and II.

7.3 Model analysis

We have computed several well-known goodness-of-fit statistics to analyze both data sets I and II. The fitted
models were evaluated using various metrics, including the log-likelihood value (-2logL), Akaike information
criterion (AIC), Hannan-Quinn information criterion (HQIC), Anderson-Darling (AD), Kolmogrov-Smirnov
(KS), and Cramer-von Mises (CVM) with corresponding p-values. All essential computations were per-
formed using the R software, for more detail see [17, 22]. To compare the fitting capability of the DPTW
model, we have selected several models such as the inverse Weibull (IWeib), Weibull, alpha power inverse
Pareto (APIP) [8], alpha power Weibull quantile (APWQ) [19], APT-Weibull (APTW) [20], and new APT-
Weibull (NAPTW) [3]. We have presented KS plots and Quantile-Quantile (QQ) plots for both datasets in
the Figures (4) and (5). Our analysis indicates that the suggested model can effectively fit the real datasets.
The estimated values of the parameters (Par) and their associated standard errors (SE) for both datasets
were presented in the Tables 5 and 6, which were obtained using the MLE method. Additionally, the Tables
7 and 8 showcase model selection criteria such as log-likelihood, HQIC, and AIC, and goodness of fit statis-
tics such as KS, AD, and CVM for both datasets. Our observations show that the GOIChE model has the
least statistics compared to the IWeib, Weibull, IWeib, APIP, APWQ, APTW, and NAPTW distributions,
along with the corresponding highest p-values. For the dataset-II, the suggested model performed as similar
as performed by NAPTW model. This indicates that the DPTW model is more flexible and provides a
good fit. Furthermore, we have provided graphical illustrations of the fitted models in Figures (6) and (7),
which support our findings that the DPTW model outperforms the other candidate models.
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Figure 3: TTT plots of dataset I and II .

1 2 3 4 5

1

2

3

4

5

 

Empirical quantiles

F
itt

ed
 q

ua
nt

ile
s

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

 

x

F
n(x

)

Empirical
Fitted

Figure 4: QQ and KS plots of DPTW distribution (dataset-I).

Table 5: MLEs with SE (dataset-I)
Model Par SE Par SE Par SE
DPTW (δ, β, λ) 9.1663 5.2699 3.2415 0.2539 0.0150 0.0058
IWeib(β, λ) 1.7690 0.1121 3.0882 0.3283 – –
Weibull(β, λ) 0.0490 0.0139 2.7928 0.2140 – –
APIP (β, θ) 11.1245 3.7479 1.0645 0.0000 – –
APWQ(α, β, θ) 1.0000 0.6835 2.4830 0.0582 0.0722 0.0234
APTW (β, λ, θ) 9.0285 6.6132 2.1089 0.1036 0.1768 0.0488
NAPTW (α, β, λ) 10.4475 5.4553 1.7934 0.0714 0.2965 0.0353
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Figure 5: QQ and KS plots of DPTW distribution (dataset-II).

Table 6: MLEs with SE (dataset-II)
Model Par SE Par SE Par SE
DPTW (δ, β, λ) 52.5472 4.2682 1.2702 0.0853 0.0175 0.0040
IWeib(β, λ) 0.7521 0.0424 2.4311 0.2196 – –
Weibull(β, λ) 0.0939 0.0191 1.0478 0.0676 – –
APIP (β, θ) 77.8931 2.9822 1.1804 0.1247 – –
APWQ(α, β, θ) 5.4624 3.4923 1.2776 0.1224 0.0315 0.0158
APTW (β, λ, θ) 139.3390 74.6275 0.5946 0.0347 0.6511 0.0347
NAPTW (α, β, λ) 93.5553 4.1734 0.5573 0.0383 0.7439 0.0733
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Figure 6: Fitted PDF (left) and fitted CDF vs empirical CDF (right) (dataset-I).
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Figure 7: Fitted PDF (left) and fitted CDF vs empirical CDF (right) (dataset-II).

Table 7: Some model selection and goodness-of-fit statistics (dataset-I)
Model -2logL AIC HQIC KS p(KS) CVM p(CVM) AD p(AD)
DPTW 282.6701 288.6701 291.8332 0.0720 0.6770 0.0820 0.6813 0.4500 0.7977
IWeib 346.2879 350.2879 352.3966 0.1777 0.0036 0.8875 0.0044 5.3496 0.002
Weibull 283.0586 287.0586 289.1673 0.0605 0.8578 0.0633 0.7942 0.4177 0.8307
APIP 448.3450 452.3450 454.4537 0.3759 0.0000 3.9501 0.0000 19.978 0.0000
APWQ 285.2749 291.2749 294.4380 0.0876 0.4267 0.1679 0.3399 0.9582 0.3797
APTW 283.1754 289.1754 292.3385 0.0534 0.9379 0.0537 0.8544 0.3787 0.8692
NAPTW 282.9462 288.9462 292.1093 0.0649 0.7939 0.0676 0.7675 0.3957 0.8527

Table 8: Some model selection and goodness-of-fit statistics (dataset-II)
Model -2logL AIC HQIC KS p(KS) CVM p(CVM) AD p(AD)
DPTW 820.4086 826.4086 829.8850 0.0461 0.9481 0.0384 0.9417 0.2487 0.9710
IWeib 888.0015 892.0015 894.3191 0.1408 0.0125 0.9787 0.0027 6.1183 9.00E-04
Weibull 828.1738 832.1738 834.4913 0.0700 0.5569 0.1537 0.3789 0.9577 0.3801
APIP 847.5875 851.5875 853.9051 0.1291 0.0280 0.5659 0.0270 3.7763 0.0113
APWQ 826.5404 832.5404 836.0167 0.0687 0.5818 0.1444 0.4074 0.8503 0.4459
APTW 820.8125 826.8125 830.2889 0.0440 0.9655 0.0366 0.9506 0.2476 0.9716
NAPTW 819.8662 825.8662 829.3426 0.0383 0.9920 0.0267 0.9861 0.1700 0.9965
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8 Conclusion

In this investigation, a pioneering family of distributions named the delta power transformation (DPTW)
family has been developed. Drawing inspiration from the ATP methodology, we selected the Weibull distri-
bution as the fundamental framework for this novel family. The DPTW distribution showcases a spectrum of
hazard function shapes, encompassing constant, monotonically increasing, J-shaped, and reverse-J-shaped
patterns. Utilizing the MLE technique, we delved into the statistical properties of this distribution, esti-
mating its parameters. A Monte Carlo simulation was conducted to assess the accuracy of our estimation
method, revealing a decline in biases and mean square errors with increasing sample sizes, even with modest
samples.

To showcase the practical utility of the DPTW distribution, we applied it to two real-world datasets and
compared its performance against six established models using model selection criteria and goodness-of-fit
tests. Our analysis demonstrated that the DPTW distribution consistently outperformed the other models
for dataset-I. For dataset-II, the NAPTW model performed similarly to the DPTW model, highlighting
its potential across various domains such as medical science, reliability engineering, and survival analysis.
Additionally, the delta power transformation family of distributions holds promise for future model devel-
opment, providing a versatile framework for tackling emerging challenges and advancing research in diverse
fields.
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