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Abstract: In this paper, we investigate and study various new notions of statistical convergence criteria
of martingale sequences via deferred Cesàro mean. We then establish several results concerning the rela-
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1 Introduction and Motivation

Let (Xn) be a sequence of random variables relative to the measurable functions Fn ⊆ F (n ∈ {0} ∪ N)
over the probability space (Ω,F , P ). Then, we adopt a stochastic sequence (Xn,Fn;n ∈ {0}∪N) such that

(i) E{|Xn|} < +∞,

(ii) E(Xn+1|Fn) = Xn almost surely (a.s.) and

(iii) (Fn) is a measurable sequence of functions;

where E is the mathematical expectation. Then it is known as a martingale sequence.

Now, in view of the convergence of martingale sequences we recall the following definition.

Definition 1.1. A martingale sequence (Xn,Fn;n ∈ {0}∪N) with E{|Xn|} < +∞ and having probability
1 (that is, Prob(Xn) = 1) is convergent to a finite integrable random variable X0, if

lim
n→∞

(Xn,Fn) −→ X0 (E{|X0|} < +∞) a.e. (almost everywhere).

Subsequently, we recall sub-martingale sequence, reverse martingale sequence and reverse sub-martingale
sequence.

A given stochastic sequence (Xn,Fn;n ∈ {0} ∪ N) is a sub-martingale sequence if

(i) E{|Xn|} < +∞,

(ii) E(Xn+1|Fn) ≧ Xn almost surely (a.s.) and

(iii) (Fn) is a measurable sequence of functions;
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where E is the mathematical expectation.

A given stochastic sequence (Xn,Fn;n ∈ {0} ∪N) with E{|Xn|} < +∞ is a reverse martingale sequence if

E(Fn|Xm+n) = Xm+n (a.s.) for m,n ≧ 1,

and a reverse sub-martingale sequence if

E(Fn|Xm+n) ≧ Xm+n (a.s.) for m,n ≧ 1.

Next, we recall the almost sure convergence and rth mean convergence of martingale sequences.

A martingale (Xn,Fn;n ∈ {0} ∪ N) sequence is almost sure convergent (a.s.) to a random variables X0, if

Prob
({

lim
n→∞

(Xn,Fn) = X0

})
= 1.

We write
(Xn,Fn) −→ X0 (a.s.).

A martingale (Xn,Fn;n ∈ {0} ∪ N) sequence is rth mean convergent (r ≧ 1) to a random variable X0, if

E{|(Xn,Fn)−X0|r} = 0.

Recently, the notion of statistical convergence is very helpful in sequence spaces because it is more general
than the classical convergence and such a idea was introduced by two distinguished mathematicians, Fast
[5] and Steinhaus [22]. For utilizing this nice idea a few researchers worked in many diversified ways and de-
veloped so many interesting results in various fields of pure and applied mathematics, such as summability
theory, Soft Computing, Machine Learning, Measure theory and so on. Moreover, the notion of statistical
convergence in probability has enhanced the glory of this work. In this direction, interested learners are
referred to see [2], [3], [4], [6], [7], [8], [9], [10], [11], [14], [15], [16] and [21].

Let η ⊆ N, and also let ηn = {i : i ≦ n and i ∈ η}. Then the natural density d(η) of η is defined by

d(η) = lim
n→∞

|ηn|
n

= k,

where k is a real finite number, and |ηn| is the cardinality of ηn.

A given sequence (Xn) of random variables is statistically convergent to X0 if, for each ϵ > 0,

ηϵ = {i : i ∈ N and |Xi −X0| ≧ ϵ}

has natural density zero ([5] and [22]). Thus, for each ϵ > 0,

d(ηϵ) = lim
n→∞

|ηϵ|
n

= 0.

We write,
stat lim

n→∞
Xn = X0.

We now introduce the definitions of statistical convergence of martingale and sub-martingale sequences.

Definition 1.2. A martingale sequence (Xn,Fn, n ∈ {0}∪N) with E{|Xn|} < +∞ and having probability
1 is statistically convergent to a finite integrable random variable X0 (E{|X0|} < +∞) if, for all ϵ > 0,

ηϵ = {i : i ≦ n and |(Xi,Fi)−X0| ≧ ϵ}

has zero natural density, with
E(Xn+1|Fn) = Xn
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almost surely. That is, for every ϵ > 0,

d(ηϵ) = lim
n→∞

|ηϵ|
n

= 0.

Here, we write
statmart lim

n→∞
(Xn,Fn) = X0.

Definition 1.3. A sub-martingale sequence (Xn,Fn, n ∈ {0} ∪ N) with E{|Xn|} < +∞ and having
probability 1 is statistically convergent to a finite integrable random variable X0 (E{|X0|} < +∞) if, for
all ϵ > 0,

ηϵ = {i : i ≦ n and |(Xi,Fi)−X0| ≧ ϵ}

has zero natural density, with
E(Xn+1|Fn) ≧ Xn

almost surely. That is, for every ϵ > 0,

d(ηϵ) = lim
n→∞

|ηϵ|
n

= 0.

Here, we write
statsubmart lim

n→∞
(Xn,Fn) = X0.

Based on the above Definitions, we establish the following theorem.

Theorem 1.1. (see [17]) If a martingale sequence (Xn,Fn, n ∈ {0}∪N) is convergent to a finite integrable
random variable X0 with E{|X0|} < +∞, then it is statistically convergent to the finite integrable random
variable X0. However, it not generally true in the converse sense.

The example below illustrates the non-validity of converse part of the Theorem 1.1.

Example 1.1. Let (Xn,Fn, n ∈ {0}∪N) be a sequence (monotonically increasing) of 0-mean independent
random variables over the σ-fields, and (Xn) ∈ Fn be such that

Xn =


1 (n = 2m;m ∈ N)

0 (otherwise).

Here we observe that, the martingale (Xn,Fn) sequence is convergent statistically to zero but not simply
martingale convergent.

Next, in view of discussing the better behavior of statistical convergence of martingale sequence, we in-
troduce the notions of statistical reverse martingale convergence and statistical reverse sub-martingale
convergence.

Definition 1.4. A reverse martingale sequence (Xn,Fn, n ∈ {0} ∪ N) with E{|Xn|} < +∞ and having
probability 1 is statistically convergent to an integrable random variable X0 almost surely if, for all ϵ > 0,

ηϵ = {i : i ≦ n and |(Xi,Fi)−X0| ≧ ϵ}

has zero natural density, with
E(Fn|Xm+n) = Xm+n for m,n ≧ 1

almost surely. That is, for every ϵ > 0,

d(ηϵ) = lim
n→∞

|ηϵ|
n

= 0.

Here, we write
statrev−mart lim

n→∞
(Xn,Fn) = X0.
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Definition 1.5. A reverse sub-martingale sequence (Xn,Fn, n ∈ {0}∪N) with E{|Xn|} < +∞ and having
probability 1 is statistically convergent to an integrable random variable X0 almost surely if, for all ϵ > 0,

ηϵ = {i : i ≦ n and |(Xi,Fi)−X0| ≧ ϵ}

has zero natural density, with
E(Fn|Xm+n) ≧ Xm+n for m,n ≧ 1

almost surely. That is, for every ϵ > 0,

d(ηϵ) = lim
n→∞

|ηϵ|
n

= 0.

Here, we write
statrev−submart lim

n→∞
(Xn,Fn) = X0.

Based on the above Definition 1.5 we establish the following theorem, where the reverse sub-martingale
sequence converges almost surely to an infinite integrable random variable.

Theorem 1.2. Let (Xn,Fn, n ∈ {0}∪N) be a statistical reverse sub-martingale sequence, then there exists
an infinite integrable random variable X0 such that

statrev−submart lim
n→∞

(Xn,Fn) = X0 (a.s.).

Proof. Let A denotes the event and let the martingale sequence (Xn,Fn, n ∈ {0}∪N) does not statistically
converge. Suppose we consider a set

As,t = {stat lim inf(Xn,Fn) ≦ s < t ≦ lim supXn}.

It is easy to verify that

A = ∪{As,t | s < t (s, t are finite rational)}.

Let Hn denotes the number of up-crossings martingale sequences over [s, t], and let

Hn = {i : i ≦ n and | [(Xn,Fn), (Xn−1,Fn−1), · · ·, (X0,F0)]−X0 |≧ ϵ}.

As Hn is non-negative, finite, so we immediately get

statrev−submartE | Hn |≦ E{(X0,F0)− s}
t− s

≦
E{| (X0,F0) |}+ | s |

t− s
.

Since there is an (Fn)- measurable infinite function H0 over (Ω,F , P ) such that

statrev−submartHn → H0 (a.s.),

and by monotone convergence theorem, we have

statrev−submart

∫
Ω

H0dP = statrev−submart supE{Hn} ≦
E{| (X0,F0) |}+ | s |

t− s
;

which is finite. Therefore, H0 is finite almost surely and As,t ⊂ H0 and Prob(H0) = 0, then Prob(As,t) = 0.
Thus,

statrev−submart lim
n→∞

(Xn,Fn) = X0 (a.s.).

Inspired basically by the aforesaid investigations, here we investigate and study various notions of new
statistical convergence criteria of martingale sequences via deferred Cesàro mean. We then establish several
new elementary theorems concerning the relation between these beautiful and potentially useful concepts.
Moreover, in view of our proposed techniques, we find several new approximation of the Korovkin-type
results with algebraic test functions (with probability one) for a martingale sequence over a complete
norm linear space. Finally, we present some specific examples associated with the generalized Bernstein
polynomials of the martingale sequence, which shows that our established results are much more stronger
than the classical and statistical versions of some earlier existing results.
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2 Deferred Cesàro Statistical Convergence of Martingale Sequence

Let (un) and (vn) ∈ Z0+ such that un < vn and limn→∞ vn = +∞. Then the deferred Cesàro mean for
the martingale sequence (Xn,Fn;n ∈ {0} ∪ N) is defined by

D(Xn,Fn) =
(Xun+1,Fun+1) + (Xun+2,Fun+2) + · · ·+ (Xvn ,Fvn)

vn − un

=
1

vn − un

vn∑
k=un+1

(Xk,Fk).

Now, we propose the following definitions.

Definition 2.1. Let (un) and (vn) ∈ Z0+. A bounded martingale sequence (Xn,Fn;n ∈ {0} ∪ N) having
probability 1 is deferred Cesàro statistically convergent to a finite integrable random variable X0 with
E|X0| < ∞ if, for all ϵ > 0, the natural density

Uϵ = {i : un < i ≦ vn and |(Xi,Fi)−X0| ≧ ϵ}

is zero. That is, for each ϵ > 0,

lim
n→∞

|{i : un < i ≦ vn and |(Xi,Fi)−X0| ≧ ϵ}|
un − vn

= 0.

Here, we write
DMCstat lim

n→∞
(Xn,Fn) = X0.

Definition 2.2. Let (un) and (vn) ∈ Z0+. A bounded martingale sequence (Xn,Fn;n ∈ N) having
probability 1 is statistically deferred Cesàro summable to a finite integrable random variable X0 with
E|X0| < ∞ if, for all ϵ > 0,

Uϵ = {i : un < i ≦ vn and |D(Xi,Fi)−X0| ≧ ϵ}

has zero natural density. That is, for every ϵ > 0,

lim
n→∞

|{i : un < i ≦ vn and |D(Xi,Fi)−X0| ≧ ϵ}|
un − vn

= 0.

Here, we write
statDMC lim

n→∞
D(Xi,Fi) = X0.

Now we demonstrate an inclusion theorem concerning these two new interesting concepts.

Theorem 2.1. (see [17]) If a given martingale sequence (Xn,Fn;n ∈ N) is deferred Cesàro statistically
convergent to a finite integrable random variable X0 with E|X0| < ∞, then it is statistically deferred Cesàro
summable to a finite integrable random variable X0, but not conversely.

In view of the non-validity of the converse statement of Theorem 2.1, we establish here a counter example.

Example 2.1. Suppose that un = 2n and vn = 4n, and (Fn, n ∈ {0} ∪ N) be a sequence (monotonically
increasing) of 0-mean independent random variables of the σ-fields with (Xn) ∈ Fn such that Xn = 1 (n =
2m;m ∈ N) and Xn = −1 (n = 2m+ 1;m ∈ N). Here, the martingale (Xn,Fn, n ∈ N) sequence does not
ordinarily converge. Also, it does not statistically deferred Cesàro converge. But, it has deferred Cesàro
sum 1

2 . Thus, it is statistically deferred Cesàro summable to 1
2 .

We now present an inclusion theorem for deferred Cesàro statistically convergent (D
′
MC) martingale se-

quence.

Theorem 2.2. Let (un), (vn), (u
′
n) and (v′n) ∈ Z0+ with un ≦ u′

n < vn ≦ v′n (∀ n ∈ {0} ∪ N). Then

statD′MC lim
n→∞

(Xn,Fn) = X0 =⇒ DMCstat lim
n→∞

(Xn,Fn) = X0.
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Proof. Let ϵ > 0, and suppose that statD′MC limn→∞(Xn,Fn) = X0. Now consider the set in the following
form:

{i : un < i ≦ vn and |(Xi,Fi)−X0| ≧ ϵ}
= {i : un < i ≦ u′

n and |(Xi,Fi)−X0| ≧ ϵ}
∪ {i : u′

n < i ≦ v′n and |(Xi,Fi)−X0| ≧ ϵ}
∪ {i : v′n < i ≦ vn and |(Xi,Fi)−X0| ≧ ϵ}.

Following the deferred Cesàro mean, the statistical versions of the set can be written as

1

vn − un
|{i : un < i ≦ vn and |(Xi,Fi)−X0| ≧ ϵ}|

≦
1

v′n − u′
n

|{i : un < i ≦ u′
n and |(Xi,Fi)−X0| ≧ ϵ}|

+
1

v′n − u′
n

{i : u′
n < i ≦ v′n and |(Xi,Fi)−X0| ≧ ϵ}

+
1

v′n − u′
n

{i : v′n < i ≦ vn and |(Xi,Fi)−X0| ≧ ϵ}.

Now, taking limit on both sides as n → ∞, we get

lim
n→∞

1

vn − un
|{i : un < i ≦ vn and |(Xi,Fi)−X0| ≧ ϵ}| = 0.

Hence,
DMCstat lim

n→∞
(Xn,Fn) = X0.

Next, we see that under certain specific condition the converse of the Theorem 2.2 also holds.

Theorem 2.3. Let (un), (vn), (u
′
n) and (v′n) ∈ Z0+ with un ≦ u′

n < vn ≦ v′n for all n ∈ N such that

lim
n→

vn − un

v′n − u′
n

= θ > 0.

Then,
DMCstat lim

n→∞
(Xn,Fn) = X0 =⇒ statD′MC lim

n→∞
(Xn,Fn) = X0.

Proof. Since, DMCstat limn→∞(Xn,Fn) = X0, then it is easy to see that the inclusion

{i : u′
n + 1 ≦ i ≦ v′n and |(Xi,Fi)−X0| ≧ ϵ}

⊆ {i : un + 1 ≦ i ≦ vn and |(Xi,Fi)−X0| ≧ ϵ}

and the inequality

|{i : u′
n + 1 ≦ i ≦ v′n and |(Xi,Fi)−X0| ≧ ϵ}|

≦ |{i : un + 1 ≦ i ≦ vn and |(Xi,Fi)−X0| ≧ ϵ}|

are fairly hold.

Thus, we have

1

v′n − u′
n

|{i : u′
n + 1 ≦ i ≦ v′n and |(Xi,Fi)−X0| ≧ ϵ}|

≦

(
vn − un

v′n − u′
n

)
1

vn − un
|{i : un + 1 ≦ i ≦ vn and |(Xi,Fi)−X0| ≧ ϵ}|.
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Taking limit as n → ∞ we get

lim
n→∞

1

v′n − u′
n

|{i : u′
n + 1 ≦ i ≦ v′n and |(Xi,Fi)−X0| ≧ ϵ}|

≦ lim
n→∞

(
vn − un

v′n − u′
n

)
1

vn − un
|{i : un + 1 ≦ i ≦ vn and |(Xi,Fi)−X0| ≧ ϵ}|.

Thus, clearly we have
statD′MC lim

n→∞
(Xn,Fn) = X0.

3 Deferred Cesàro Statistical Uniform Integrability

A martingale sequence (Xn,Fn, n ∈ {0} ∪ N) is uniformly integrable if, for each ϵ > 0 there is a number
Kϵ > 0 such that

lim
n→∞

∫
{|Xn|≧Kϵ}

| Xn | dP < ϵ. (3.1)

Next, to get the stronger statistical convergence of martingale sequence it is necessary to introduce the
notion of statistical uniform integrability.

Definition 3.1. A martingale sequence (Xn,Fn, n ∈ {0} ∪ N) is statistically uniformly integrable if, for
each ϵ > 0 there is a number Kϵ > 0 such that

lim
n→∞

1

n

∣∣∣∣∣
{
i : i ≦ n and

∣∣∣∣∣
∫
{|Xn|≧Kϵ}

| Xn | dP

∣∣∣∣∣ ≧ ϵ

}∣∣∣∣∣ = 0.

We write

statUI lim
n→∞

∫
{|Xn|≧Kϵ}

| Xn | dP < ϵ.

Theorem 3.1. If a martingale sequence (Xn,Fn, n ∈ {0} ∪ N) is statistically uniformly integrable, then
for each ϵ > 0 there exists a δϵ > 0 such that for any event B, if Prob(B) < δϵ then

stat lim
n→∞

∫
B

| Xn | dP < ϵ.

Proof. Let B be any event, and let for each n ∈ {0} ∪ N,

stat lim
n→∞

∫
B

| Xn | dP = stat lim
n→∞

∫
B∩{|Xn|≦K}

| Xn | dP

+ stat lim
n→∞

∫
B∩{|Xn|>K}

| Xn | dP

≦ K Prob(B) + stat lim
n→∞

∫
{|Xn|>K}

| Xn | dP.

For every ϵ > 0, select K > 0, so that

stat lim
n→∞

∫
{|Xn|>K}

| Xn | dP <
ϵ

2

for all n ∈ {0} ∪ N.

For K > 0, we chose δϵ =
ϵ

2K , therefore, B ∈ F for which Prob(B) < δϵ. Thus, the inequality

stat lim
n→∞

∫
B

| Xn | dP < ϵ

holds for all n ∈ {0} ∪ N.
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Theorem 3.2. If a martingale sequence (Xn,Fn, n ∈ {0} ∪ N) is statistically uniformly integrable, and if
it is statistically convergent to a random variable X0 (a.s.), then

stat lim
n→∞

(Xn,Fn) → X0.

in rth mean (r = 1).

Proof. Since (Xn,Fn, n ∈ {0} ∪ N) is statistically uniformly integrable for each ϵ > 0 there exists a δϵ > 0
such that

stat lim
n→∞

∫
B

| Xn | dP < ϵ

for all n ∈ {0} ∪ N, if Prob(B) < δϵ. Also, since (Xn,Fn, n ∈ {0} ∪ N) is statistically convergent to a
random variable X0 (a.s.), then there is an event A such that Prob(A) < δϵ and let (Xn,Fn, n ∈ {0} ∪ N)
is statistically uniformly convergent over Ac.

Thus,

stat

∫
Ω

| Xn −Xm | dP ≦ stat

∫
Ac

| Xn −Xm | dP

+ stat

∫
A

| Xn | dP + stat

∫
A

| Xm | dP

≦ stat

∫
Ac

| Xn −Xm | dP + 2ϵ.

As (Xn,Fn, n ∈ {0} ∪ N) is statistically uniformly convergent over Ac, we have

0 ≦ stat

∫
Ac

| Xn −Xm | dP < 3ϵ (∀ m,n ∈ {0} ∪ N).

Moreover, L1(Ω,F , P ) being complete, there exists a random variable X
′

0 ∈ L1(Ω,F , P ) such that

stat(Xn,Fn) → X
′

0

in rth mean (r = 1). Therefore, there exists a martingale subsequence (Xn,k,Fn,k) of (Xn,Fn) such that

stat(Xn,k,Fn,k) → X
′

0 (a.s.).

However,
stat(Xn,Fn) → X0 (a.s.)

implies that
stat(Xn,k,Fn,k) → X0 (a.s.).

Hence, X0 = X
′

0 and

stat lim
n→∞

(Xn,Fn) → X0

in rth mean (r = 1).

We now introduce and investigate the notions of deferred Cesàro statistically uniformly integrability and
statistically deferred Cesàro uniformly summability of martingale sequences.

Definition 3.2. Let (un) and (vn) ∈ Z0+. A martingale sequence (Xn,Fn, n ∈ {0}∪N) is deferred Cesàro
statistically uniformly integrable if, for each ϵ > 0 there is a number Kϵ > 0 such that

lim
n→∞

1

un − vn

∣∣∣∣∣
{
i : un < i ≦ vn and

∣∣∣∣∣
∫
{|Xn|≧Kϵ}

| Xn | dP

∣∣∣∣∣ ≧ ϵ

}∣∣∣∣∣ = 0.

We write

DUIstat lim
n→∞

∫
{|Xn|≧Kϵ}

| Xn | dP < ϵ.
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Definition 3.3. Let (un) and (vn) ∈ Z0+. A martingale sequence (Xn,Fn, n ∈ {0} ∪ N) is statistically
deferred Cesàro uniformly summable if, for each ϵ > 0 there is a number Kϵ > 0 such that

lim
n→∞

1

n

∣∣∣∣∣
{
i : i ≦ n and

∣∣∣∣∣
∫
{|Xn|≧Kϵ}

| D(Xn,Fn) | dP

∣∣∣∣∣ ≧ ϵ

}∣∣∣∣∣ = 0.

We write

statDUI lim
n→∞

∫
{|D(Xn,Fn)|≧K′

ϵ1
}
| D(Xn,Fn) | dP < ϵ.

Now we establish an inclusion theorem concerning these two new fascinating notions, that every deferred
Cesàro statistically uniformly integrable martingale sequence is statistically deferred Cesàro uniformly
summable but it is not generally true in the converse sense.

Theorem 3.3. Let (un) and (vn) ∈ Z0+, and let a martingale sequence (Xn,Fn, n ∈ {0}∪N) is statistically
uniformly integrable, then it is deferred Cesàro statistically uniformly integrable.

Proof. Let a martingale sequence (Xn,Fn, n ∈ {0} ∪ N) be statistically uniformly integrable. Then, for
each ϵ > 0 there is a number Kϵ > 0 such that

lim
n→∞

1

n

∣∣∣∣∣
{
i : i ≦ n and

∣∣∣∣∣
∫
{|Xn|≧Kϵ}

| Xn | dP

∣∣∣∣∣ ≧ ϵ

}∣∣∣∣∣ = 0.

As the given martingale sequence (Xn,Fn;n ∈ N) is bounded with probability 1, then for every ϵ > 0 and
there exists Kϵ > 0, we have

lim
n→∞

1

vn − un

∣∣∣∣∣
{
i : un < i ≦ vn and

∣∣∣∣∣
∫
{|Xn|≧Kϵ}

| Xn | dP

∣∣∣∣∣ ≧ ϵ

}∣∣∣∣∣
⊆ lim

n→∞

1

n

∣∣∣∣∣
{
i : i ≦ n and

∣∣∣∣∣
∫
{|Xn|≧Kϵ}

| Xn | dP

∣∣∣∣∣ ≧ ϵ

}∣∣∣∣∣ = 0.

Consequently, by Definition 3.2, we obtain

lim
n→∞

1

vn − un

∣∣∣∣∣
{
i : un < i ≦ vn and

∣∣∣∣∣
∫
{|Xn|≧Kϵ}

| Xn | dP

∣∣∣∣∣ ≧ ϵ

}∣∣∣∣∣ = 0.

Again, it is not hard to see that, every deferred Cesàro statistically uniformly integrable martingale sequence
is statistically deferred Cesàro uniformly summable but it not true in the converse sense. Accordingly, we
establish a theorem (below).

Theorem 3.4. If a given martingale sequence (Xn,Fn;n ∈ {0} ∪ N) is deferred Cesàro statistically uni-
formly integrable then it is statistically deferred Cesàro uniformly summable, but not conversely.

Proof. In the similar lines of proof of Theorem 3.3, the proof of the Theorem 3.4 can be established. We,
thus, choose to skip the details involved.

For the non-validity of sufficient part of the theorem 3.4, here we consider an example (below).

Example 3.1. Let un = 2n+1, vn = 4n+1, and let (Xn) be a martingale sequence relative to probability
measurable functions (Fn) with mean 0 and E(Xn) is finite, then for n is odd

Xn =


1 (n = 2m;m ∈ N)

n (otherwise).
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and also for n is even

Xn =


1
2 (n = 2m;m ∈ N)

n (otherwise).

Here, the martingale sequence (Xn,Fn) is statistically deferred Cesàro uniformly summable, but not de-
ferred Cesàro statistically uniformly integrable.

Corollary 3.1. For any martingale sequence (Xn,Fn;n ∈ {0} ∪ N), statistical uniform integrability =⇒
deferred Cesàro statistical uniform integrability =⇒ statistical deferred Cesàro uniform summability. How-
ever, the converse is not true.

Proof. The proof of first implication (that is, statistical uniform integrability =⇒ deferred Cesàro statistical
uniform integrability) is the consequence of Theorem 3.3, and the proof of second implication (that is,
deferred Cesàro statistical uniform integrability =⇒ statistical deferred Cesàro uniform summability) is the
direct consequence of Theorem 3.4.

4 Distribution Convergence of Martingale Sequence

Let (Ω,F , P ) be a probability measurable space, and let F(Xn,Fn)(x) and FX0
(x) be the real-valued con-

tinuous cumulative distribution functions of (Xn,Fn) and X0, respectively. A given martingale sequence
(Xn,Fn;n ∈ {0}∪N) converges in distribution (or converges weakly) to a finite integrable random variable
X0, if

lim
n→∞

F(Xn,Fn)(x) = FX0
(x) (∀ x).

Next, for more details, it is necessary to introduce the notions of statistical distribution convergence (DC)
and deferred Cesàro statistical distribution convergence (DDC) of martingale sequence.

Definition 4.1. Let F(Xn,Fn)(x) be the cumulative distribution functions of a martingale sequence (Xn,Fn;n ∈
{0} ∪ N), then it is statistically distribution convergent (or distribution convergent in statistics) to a dis-
tribution function FX0

(x) of a finite integrable random variable X0 if for each ϵ > 0,

lim
n→∞

1

n

∣∣{i : i ≦ n and | F(Xn,Fn)(x)− FX0
(x) |≧ ϵ

}∣∣ = 0.

We write

statDC lim
n→∞

F(Xn,Fn)(x) = FX0(x).

Definition 4.2. Let (un) and (vn) ∈ Z0+, and let F(Xn,Fn)(x) be the cumulative distribution functions of a
martingale sequence (Xn,Fn;n ∈ {0}∪N), then it is deferred Cesàro statistically distribution convergent (or
deferred Cesàro distribution convergent in statistics) to a distribution function FX0

(x) of a finite integrable
random variable X0 if for each ϵ > 0,

lim
n→∞

1

vn − un

∣∣{i : un < i ≦ vn and | F(Xn,Fn)(x)− FX0(x) |≧ ϵ
}∣∣ = 0.

We write

statDDC lim
n→∞

F(Xn,Fn)(x) = FX0(x).

From the above definitions, it is necessary that every distribution convergence (DC) in statistic implies the
deferred Cesàro distribution convergence (DDC) in statistics; however, the sufficient part is not true. In
this context, here we present an example.
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Example 4.1. Let (un) = 2n and (vn) = 4n and let F(Xn,Fn)(x) be the cumulative distribution functions
of a martingale sequence (Xn,Fn;n ∈ {0} ∪ N) of the form

F(Xn,Fn)(x) =


x− sin 2nπx

2nπ (0 ≦ x ≦ 1;n = m2,m ∈ N)

0 (otherwise).

Now by Definition 4.2, we have

statDDC lim
n→∞

F(Xn,Fn)(x) = 0.

Here we observe that, the cumulative distribution function F(Xn,Fn)(x) is not distribution convergent
(DDC) in statistic; however, it is deferred Cesàro distribution convergent (DDC) in statistics to 0 distribu-
tion function of a random variable. Thus, the example is valid for the Definition 4.2, but it is not valid for
the Definition 4.1.

Now in view of our Definitions 4.1 and 4.2, we establish a beautiful Theorem concerning a relation between
statistical distribution convergence and deferred Cesàro statistical distribution convergence of martingale
sequence.

Theorem 4.1. If the sequence
vn

vn − un
≦ K,

then

statDC lim
n→∞

F(Xn,Fn)(x) = FX0
(x) implies statDDC lim

n→∞
F(Xn,Fn)(x) = FX0

(x),

but not conversely.

Proof. Let (un) and (vn) ∈ Z0+ such that limn→∞ un = u and limn→∞ vn = +∞.

Now from the Definition 4.1, we immediately get

1

n
|{i : i ≦ n and |F(Xi,Fi)(x)− FX0(x)| ≧ ϵ}| = 0

for every ϵ > 0.

Again, since (un) and (vn) are non-negative integers such that un < vn, we have

1

vn
|{i : i ≦ vn and |F(Xi,Fi)(x)− FX0

(x)| ≧ ϵ}| = 0 (n ∈ N).

Consequently, the inclusion

{i : un < i ≦ vn and |F(Xi,Fi)(x)− FX0
(x)| ≧ ϵ}

⊆ {i : i ≦ vn and |F(Xi,Fi)(x)− FX0
(x)| ≧ ϵ}

holds.

Thus, the inequality

|{i : un < i ≦ vn and |F(Xi,Fi)(x)− FX0
(x)| ≧ ϵ}|

≦ |{i : i ≦ vn and |F(Xi,Fi)(x)− FX0
(x)| ≧ ϵ}|

also holds.
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Now by definition of deferred Cesàro distribution convergence in statistics, we have(
1 +

un

vn − un

)
|{i : un < i ≦ vn and |F(Xi,Fi)(x)− FX0

(x)| ≧ ϵ}|

≦
1

vn − un
|{i : i ≦ vn and |F(Xi,Fi)(x)− FX0

(x)| ≧ ϵ}|.

Taking limit on both sides, we get

statDDC lim
n→∞

F(Xn,Fn)(x) = FX0
(x).

Next, under suitable condition, we establish and prove the sufficient part of the Theorem 4.1.

Theorem 4.2. Let (un) and (vn) ∈ Z0+, and let vn = n for all n. Then statDDC limn→∞ F(Xn,Fn)(x) =
FX0

(x) implies statDC limn→∞ F(Xn,Fn)(x) = FX0
(x).

Proof. Suppose that statDDC limn→∞ F(Xn,Fn)(x) = FX0
(x). Then, for each n ∈ N, we have

un = n1 > un1 = n2 > un2 = · · ·,

and we may write the set{
i : i ≦ n and | F(Xn,Fn)(x)− FX0

(x) |≧ ϵ

}
=

{
i : i ≦ n1 and | F(Xn,Fn)(x)− FX0(x) |≧ ϵ

}
∪
{
i : n1 < i ≦ n and | F(Xn,Fn)(x)− FX0

(x) |≧ ϵ

}
.

Again the set {
i : 1 < i ≦ n1 and | F(Xn,Fn)(x)− FX0

(x) |≧ ϵ

}
=

{
i : i ≦ n2 and | F(Xn,Fn)(x)− FX0(x) |≧ ϵ

}
∪
{
i : n2 < i ≦ n1 and | F(Xn,Fn)(x)− FX0

(x) |≧ ϵ

}
and the set {

i : i ≦ n2 and | F(Xn,Fn)(x)− FX0(x) |≧ ϵ

}
=

{
i : i ≦ n3 and | F(Xn,Fn)(x)− FX0

(x) |≧ ϵ

}
∪
{
i : n3 < i ≦ n2 and | F(Xn,Fn)(x)− FX0

(x) |≧ ϵ

}
,

and if this process is continued, we get{
i : i ≦ nt−1 and | F(Xn,Fn)(x)− FX0(x) |≧ ϵ

}
=

{
i : i ≦ nt and | F(Xn,Fn)(x)− FX0

(x) |≧ ϵ

}
∪
{
t : nt < i ≦ nt−1 and | F(Xn,Fn)(x)− FX0

(x) |≧ ϵ

}
,
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for a positive integer t > 0 depending on n such that nt ≧ 1 and nt+1 = 0. From the above relations, we
have for each n,

1

n

{
i : i ≦ n and | F(Xn,Fn)(x)− FX0(x) |≧ ϵ

}
=

t∑
s=0

ns − ns+1

n

1

ns − ns+1

∣∣∣∣{t : ns+1 < i ≦ ns

and | F(Xn,Fn)(x)− FX0
(x) |≧ ϵ

}∣∣∣∣.
Consequently, it indicates that statDC limn→∞ F(Xn,Fn)(x) = FX0(x).

Next, we establish a theorem under a continuous map of distribution functions of a martingale sequence.

Theorem 4.3. Let (X , d) be a metric space. Suppose the distribution functions F(Xn,Fn)(x) of a martingale
sequence (Xn,Fn;n ∈ {0} ∪ N) is statistically distribution convergent to a distribution function FX0

(x)
of a finite integrable random variable X0 ∈ (X , d). Let (Y, d) be also a metric space such that there is a
function h : (X , d) → (Y, d). Define

Ch = {x : h(x) is continuous at x}.

Suppose that Prob(X0) = 1. Then

statDCh
(
F(Xn,Fn)(x)

)
= h (FX0

(x)) .

Proof. Let (Wn) be the distribution of h
(
F(Xn,Fn)

)
and let W be the distribution of h (FX0

(x)). Subse-
quently, (Zn) be the distribution of F(Xn,Fn) and let Z be the distribution of FX0

.

Let B ⊂ (Y, d) which is closed, then there exists a sequence

{an : n ∈ N} ⊆ h−1(B)

such that

stath(an) → h(a) ∈ B,

since B is closed and h(an) ∈ B. It implies that

h−1(B) ⊆ h−1(B) ∪ Cc
h.

We write

statDC lim sup
n→∞

Wn(B) = statDC lim sup
n→∞

Zn(h
−1(B))

≦ statDC lim sup
n→∞

Zn(h−1(B)) ≦ Zn(h−1(B))

≦ Z(h−1(B)) + Z(Cc
h)

≦ Z(h−1(B)) = W (B).

Thus, we have

statDCh
(
F(Xn,Fn)(x)

)
= h (FX0

(x)) .
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5 Applications of Deferred Cesàro Martingale Sequence

As the application’s perspective, here we establish some new approximation of the Korovkin-type results
based on different convergence criteria of a martingale sequence of positive linear operators via deferred
Cesàro summability mean. Recently, under different settings of positive linear operators, the approximation
of Korovkin-type results have been very useful in various fields of mathematics, such as sequence space,
Measurable space, Probability space and so on. Here, we like to draw the attention of interested readers
to the current works [18], [19] and [20].

Let C([0, 1]) be the space of all continuous functions (real valued) over [0, 1] under the norm ∥.∥∞, and let
C[0, 1] be a Banach space. Then for f ∈ C[0, 1], the norm of f is given by,

∥f∥∞ = sup
x∈[0,1]

{|f(x)|}.

The operator L is called a martingale positive linear operator such that

f ≧ 0 =⇒ L(f ;x) ≧ 0, with Prob(L(f ;x)) = 1.

Here, in view our Definitions 2.1 and 2.2, we have the following results.

Result 1. Let
Lm : C[0, 1] → C[0, 1]

be the sequences of martingale positive linear operators, and let f ∈ C[0, 1]. Then

DMCstat lim
m→∞

∥Lm(f ;x)− f(x)∥∞ = 0 (5.1)

if and only if

DMCstat lim
m→∞

∥Lm(1;x)− 1∥∞ = 0, (5.2)

DMCstat lim
m→∞

∥Lm(2x;x)− 2x∥∞ = 0 (5.3)

and

DMCstat lim
m→∞

∥Lm(3x2;x)− 3x2∥∞ = 0. (5.4)

Result 2. Let Lm : C[0, 1] → C[0, 1] be the sequences of martingale positive linear operators, and let
f ∈ C[0, 1]. Then

statDMC lim
m→∞

∥Lm(f ;x)− f(x)∥∞ = 0 (5.5)

if and only if

statDMC lim
m→∞

∥Lm(1;x)− 1∥∞ = 0, (5.6)

statDMC lim
m→∞

∥Lm(2x;x)− 2x∥∞ = 0 (5.7)

and

statDMC lim
m→∞

∥Lm(3x2;x)− 3x2∥∞ = 0. (5.8)

Now in view of our Results 1 and 2, we present an example for a martingale sequence of positive linear
operators in conjunction with the Bernstein polynomial, that does not fulfill the statistical convergence
versions of Korovkin-type approximation Result 1 and also the results of Srivastava et al. [21], and Paikray
et al. [13], but it satisfies the statistical summability versions of our Korovkin-type approximation Result
2. Thus, our Result 2 is a quite stronger approach than the Result 1 and also, the Results of Srivastava et
al. [21] and Paikray et al. [13].
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Example 5.1. We consider Bernstein polynomial Bm(f ; ζ) on C[0, 1] given by

Bm(f ; ζ) =

n∑
m=0

f
(m
n

)(
n

m

)
ζm(1− ζ)n−m (ζ ∈ [0, 1]).

Next, we define martingale positive linear operators by using Bm(f ; ζ) over C[0, 1]as follows,

Lm(f ; ζ) = [1 + (Xn,Fn)]Bm(f ; ζ) (∀ f ∈ C[0, 1]) (5.9)

where (Xn,Fn) already mentioned in Example 2.1.

Now, we calculate the values of all the functions 1, 2ζ and 3ζ2 by using our defined operators (5.9),

Lm(1; ζ) = [1 + (Xm,Fm)] · 1

Lm(2ζ; ζ) = [1 + (Xm,Fm)] · 2ζ

and

Lm(3ζ2; ζ) = [1 + (Xm,Fm)] · 3
{
ζ2 +

ζ(1− ζ)

m

}
so that we have

statDMC lim
m→∞

∥Lm(1; ζ)− 1∥∞ = 0,

statDMC lim
m→∞

∥Lm(2ζ; ζ)− 2ζ∥∞ = 0

and

statDMC lim
m→∞

∥Lm(3ζ2; ζ)− 3ζ2∥∞ = 0.

Consequently, the sequence Lm(f ; ν) fulfills the conditions (5.6) to (5.8). Therefore, by Result 2, we have

statDMC lim
m→∞

∥Lm(f ; ζ)− f∥∞ = 0.

Here, the given martingale sequence (Xm,Fm) in Example 2.1 is statistically deferred Cesàro summable,
but not statistically deferred Cesàro convergent. Thus, our operators (5.9) satisfy the Result 2; however,
it is not satisfying the Result 1.

Moreover, in view of our Definitions 3.2 and 3.3, we have the following Korovkin-type results via our
proposed deferred Cesàro mean.

Result 3. Let Lm : C[0, 1] → C[0, 1] be the sequences of martingale positive linear operators, and let
f ∈ C[0, 1]. Then

DUIstat lim
n→∞

∫
[0,1]

| Lm(f ;x)− f(x) | dP = 0 (5.10)

if and only if

DUIstat lim
n→∞

∫
[0,1]

| Lm(1;x)− 2x | dP = 0, (5.11)

DUIstat lim
n→∞

∫
[0,1]

| Lm(2x;x)− 2x | dP = 0 (5.12)

and

DUIstat lim
n→∞

∫
[0,1]

| Lm(3x2;x)− 3x2 | dP = 0. (5.13)
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Result 4. Let Lm : C[0, 1] → C[0, 1] be the sequences of martingale positive linear operators, and let
f ∈ C[0, 1]. Then

statDUI lim
n→∞

∫
[0,1]

| Lm(f ;x)− f(x) | dP = 0 (5.14)

if and only if

statDUI lim
n→∞

∫
[0,1]

| Lm(1;x)− 2x | dP = 0, (5.15)

statDUI lim
n→∞

∫
[0,1]

| Lm(2x;x)− 2x | dP = 0 (5.16)

and

statDUI lim
n→∞

∫
[0,1]

| Lm(3x2;x)− 3x2 | dP = 0. (5.17)

Now, in view of our Results 3 and 4, we present an example for the uniform integrability of a martingale
sequence of positive linear operators in conjunction with the Bernstein polynomial, that does not satisfy the
conditions of the deferred Cesàro uniform integrability in statistical versions of Result 3 and also the results
of Srivastava et al. [21], and Paikray et al. [13], but it satisfies the deferred Cesàro uniform summability
in statistical versions of our Result 4. Thus, our Result 4 is a quite stronger approach than the Result 3
and also, the Results of Srivastava et al. [21] and Paikray et al. [13].

Example 5.2. We consider Bernstein polynomial Bm(f ; ξ) on C[0, 1] given by

Bm(f ; ξ) =

n∑
m=0

f
(m
n

)(
n

m

)
ξm(1− ξ)n−m (ξ ∈ [0, 1]).

Next, we define martingale positive linear operators by using Bm(f ; ξ) over C[0, 1] as follows,

L
′

m(f ; ξ) = [1 + (Xn,Fn)]Bm(f ; ξ) (∀ f ∈ C[0, 1]) (5.18)

where (Xn,Fn) already mentioned in Example 3.1.

Now, we calculate the values of all the functions 1, 2ξ and 3ξ2 by using our defined operators (5.9),

L′
m(1; ξ) = [1 + (Xm,Fm)] · 1

L′
m(2ξ; ξ) = [1 + (Xm,Fm)] · 2ξ

and

L′
m(3ξ2; ξ) = [1 + (Xm,Fm)] · 3

{
ξ2 +

ξ(1− ξ)

m

}
so that we have

statDUI lim
m→∞

∫
[0,1]

| L′
m(1;x)− 2x | dP = 0,

statDUI lim
m→∞

∫
[0,1]

| L′
m(2x;x)− 2x | dP = 0

and

statDUI lim
m→∞

∫
[0,1]

| L′
m(3x2;x)− 3x2 | dP = 0.
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Consequently, the sequence L′
m(f ; ξ) fulfills the conditions (5.15) to (5.17). Therefore, by Result 4, we have

statDUI lim
m→∞

∫
[0,1]

| L′
m(f ;x)− f(x) | dP = 0

Here, the given martingale sequence (Xm,Fm) in Example 3.1 is statistically deferred Cesàro uniformly
summable, but not statistically deferred Cesàro statistically uniformly integrable. Thus, our operators
(5.18) satisfy the Result 4; however, it is not satisfying the Result 3.

Likewise, in view of the Definitions 4.1 and 4.2, we present the following results.

Result 5. Let Lm : C[0, 1] → C[0, 1] be the sequences of martingale positive linear operators, and let
f ∈ C[0, 1]. Then

statDC lim
m→∞

∥Lm(f ;x)− f(x)∥∞ = 0 (5.19)

if and only if

statDC lim
m→∞

∥Lm(1;x)− 1∥∞ = 0, (5.20)

statDC lim
m→∞

∥Lm(2x;x)− 2x∥∞ = 0 (5.21)

and

statDC lim
m→∞

∥Lm(3x2;x)− 3x2∥∞ = 0. (5.22)

Result 6. Let Lm : C[0, 1] → C[0, 1] be the sequences of martingale positive linear operators, and let
f ∈ C[0, 1]. Then

statDDC lim
m→∞

∥Lm(f ;x)− f(x)∥∞ = 0 (5.23)

if and only if

statDDC lim
m→∞

∥Lm(1;x)− 1∥∞ = 0, (5.24)

statDDC lim
m→∞

∥Lm(2x;x)− 2x∥∞ = 0 (5.25)

and

statDDC lim
m→∞

∥Lm(3x2;x)− 3x2∥∞ = 0. (5.26)

Next for our Results 5 and 6, we present an example for the distribution functions with a martingale
sequence in conjunction with the Bernstein polynomial, that does not satisfy the conditions of the distri-
bution convergence (DC) in statistical versions of Result 5 and also the results of Srivastava et al. [21],
and Paikray et al. [13], but it satisfies the deferred Cesàro distribution convergence (DDC) in statistical
versions of our Result 6. Thus, our Result 6 is quite a stronger approach than the Result 5 and also, the
Results of Srivastava et al. [21] and Paikray et al. [13].

Next in view of our Example 5.3, consider the operator introduced by Al-Salam [1] (also, see [23])

ν(1 + νD)

(
D =

d

dν

)
.

Example 5.3. We consider Bernstein polynomial Bm(f ; ν) on C[0, 1] given by

Bm(f ; ν) =

n∑
m=0

f
(m
n

)(
n

m

)
νm(1− ν)n−m (ν ∈ [0, 1]).
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Next, we define the martingale sequences by using Bm(f ; ν) and ν(1+νD) operators over C[0, 1] as follows,

L∗
m(f ; ν) = [1 + F(Xn,Fn)(x)]ν(1 + νD)Bm(f ; ν) (∀ f ∈ C[0, 1]) (5.27)

where F(Xn,Fn)(x) mentioned in Example 4.1.

Now, we calculate the values of the each functions 1, 2ν and 3ν2 by using our proposed operators (5.27),

L∗
m(1; ν) = [1 + F(Xn,Fn)(x)]ν(1 + νD)1 = [1 + F(Xn,Fn)(x)]ν,

L∗
m(2ν; ν) = [1 + F(Xn,Fn)(x)]ν(1 + νD)2ν = [1 + F(Xn,Fn)(x)]ν(1 + 2ν),

and

L∗
m(3ν2; ν) = [1 + F(Xn,Fn)(x)]ν(1 + νD)3

{
ν2 +

ν(1− ν)

m

}
= [1 + F(Xn,Fn)(x)]

{
ν2

(
6− 9ν

m

)}
,

so that we have

statDDC lim
m→∞

∥L∗
m(1; ν)− 1∥∞ = 0,

statDDC lim
m→∞

∥L∗
m(2ν; ν)− 2ν∥∞ = 0

and

statDDC lim
m→∞

∥L∗
m(3ν2; ν)− 3ν2∥∞ = 0.

Consequently, the sequence L∗
m(f ; ν) satisfies the conditions (5.24) to (5.26). Therefore, by Result 6, we

have

statDDC lim
m→∞

∥L∗
m(f ; ν)− f∥∞ = 0.

Here, the given continuous distribution functions of martingale sequence F(Xn,Fn)(x) in Example 4.1 is
deferred Cesàro statistically distribution summable but not deferred Cesàro distribution convergent in
statistic. Thus, our operators defined by (5.27) satisfies the Result 6; however, it is not satisfying the
Result 5.

6 Remarkable Conclusion and Observations

In this remarkable segment of our investigation, we establish a few further remarks and observations with
reference to several results which we have illustrated here.

Remark 6.1. Suppose (Xn,Fn;n ∈ N) be a martingale sequence as already mentioned in Example 2.1.
Then, since

statDMC lim
m→∞

(Xn,Fn;n ∈ N) =
1

2
on [0, 1],

we have

statDMC lim
m→∞

∥Lm(fj ;x)− fj(x)∥∞ = 0 (j = 0, 1, 2).

So, by Result 2, we write

statDMC lim
m→∞

∥Lm(f ;x)− f(x)∥∞ = 0,
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where
f0(x) = 1, f1(x) = 2x and f2(x) = 3x2.

Here, the martingale sequence (Xn,Fn;n ∈ N) is neither convergent in statistic nor ordinary convergent;
thus, the usual and statistical versions of approximation of the Korovkin-type results do not work for the
already mentioned operators (5.9). Hence, this observation indicates that the Result 2 is a non-trivial
extension (or generalization) of the usual and statistical versions of results (see [5] and [12]). Moreover, the
martingale sequence (Xn,Fn;n ∈ N) is not deferred Cesàro statistically convergent but it is statistically
deferred Cesàro summable. Thus, Result 2 is certainly a non-trivial extension of Result 1. Therefore,
Result 2 is quite stronger than Result 1.

Remark 6.2. Suppose (Xn,Fn) be a martingale sequence already mentioned in Example 3.1. Then, since

statDUI lim
m→∞

(Xn,Fn) < ϵ on [0, 1],

so we have

statDUI lim
m→∞

∫
[0,1]

| L′
m(fj ;x)− f(x) | dP = 0 (j = 0, 1, 2).

So, by Result 4, we write

statDUI lim
m→∞

∫
[0,1]

| L′
m(f ;x)− f(x) | dP = 0

where
f0(x) = 1, f1(x) = 2x and f2(x) = 3x2.

Here, the martingale sequence (Xn,Fn) is neither uniformly integrable in statistic nor simply uniformly
integrable; thus, the martingale sequence (that is, usual and statistical versions) of approximation of the
Korovkin-type results do not work for the already mentioned operators (5.18). Hence, this observation
indicates that the Result 4 is a non-trivial generalization of the usual and statistical versions of uniformly
integrable Korovkin-type results (see [12] and [22]). Moreover, the martingale sequence (Xn,Fn) is de-
ferred Cesàro statistically uniformly integrable but not statistically deferred Cesàro uniformly summable.
Therefore, the Result 4 is a non-trivial generalization of Result 3.

Remark 6.3. Suppose (F(Xn,Fn)(x)) be the distribution functions of martingale sequence mentioned in
Example 4.1. Then, since

statDDC lim
m→∞

(F(Xn,Fn)(x)) = 0 on [0, 1],

so we have

statDDC lim
m→∞

∥L∗
m(fj ;x)− fj(x)∥∞ = 0 (j = 0, 1, 2).

So, by Result 6, we write

statDDC lim
m→∞

∥L∗
m(f ;x)− f(x)∥∞ = 0,

where
f0(x) = 1, f1(x) = 2x and f2(x) = 3x2.

Here (Xn,Fn;n ∈ N), the distribution functions is neither distribution convergent in statistic nor usual dis-
tribution convergent; thus, the distribution convergence (usual and statistical versions) of approximation of
the Korovkin-type results do not work for the already mentioned operators (5.27). Hence, the observation
indicates that the Result 6 is a non-trivial generalization of the usual and statistical versions distribution
convergence of Korovkin-type results (see [3] and [12]). Furthermore, the distribution (Xn,Fn;n ∈ N) func-
tions is not statistical distribution convergent, but it is deferred Cesàro statistical distribution convergent.
Therefore, the Result 6 is a non-trivial generalization of our Result 5.
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