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Abstract: In this study, we introduce the Cauchy modified inverse Gompertz distribution as a new prob-
ability model. Utilizing the modified inverse Gompertz distribution as its baseline distribution, this model
blends the Cauchy family of distributions. Our aim is to utilize this model for lifetime data analysis. We
have inferred formulas for some basic properties of the model. We have also included graphic representations
of the hazard rate and probability density curves. We observed that the probability density function displays
positive skewness, while the hazard rate function plot shows an increasing-decreasing pattern. We used the
Cramer-Von Mises method, the least squares approach, and maximum likelihood estimation to estimate the
model parameters. We employed several statistical criteria to validate our model, including the corrected
Akaike’s, the Bayesian, the Hannan-Quinn, as well as Akaike’s information criterion. We also utilized
Q-Q and P-P graphs for further confirmation. To assess goodness of fit, we used the Kolmogorov-Smirnov,
Anderson-Darlin, and Cramer-von Mises tests. The empirical results of the study show that it gives a better
fit to the real data set. All numerical computations were conducted using the R programming language.

Keywords: Cauchy family of distribution, Estimation methods, Failure rate function, Inverse Gompertz
distribution, Survival function

1 Introduction

The Gompertz model stands as one of the extensively employed probability models, drawing from the
laws of mortality to formulate its survival function. It finds application in analyzing lifetime data related
to human mortality and behavioral sciences data, enabling exploration of actuarial tables. Originally
introduced by Gompertz [18], the Gompertz distribution has found utility not only in mortality analysis
but also as a growth model and in fitting tumor growth patterns. By leveraging the Gompertz model’s
function, a significant array of life table data can be synthesized into a single function. This function
facilitates the calculation of the number of individuals expected to survive to a specific age, as a function
of their live age. This calculation involves utilizing the Gompertz function, which provides insights into
the likelihood of individuals reaching various ages. By applying this model, researchers and actuaries
can gain a deeper understanding of mortality patterns and make informed decisions regarding insurance,
healthcare, and other related fields. The Gompertz model’s versatility and accuracy make it a valuable
tool in demographic analysis and risk assessment, contributing to advancements in public health and social
policy. The article presented here is the formulation and study of a new probability model. Here we have
discussed some important characteristics of the probability distribution relating to proposed model. Model
is based on the scientific study as the proposed model and their features follow the properties of scientific
probability models. This study will help the researchers in study of probability as well as formulation of
new models in future. In this study, we have discussed a real data set and the proposed model may be
suitable to analyze other real-life datasets.

The Gompertz distribution is particularly suited for modeling phenomena where the risk of failure or
mortality increases exponentially with age or time. With a scale parameter of α and a shape parameter
of λ, let x be the non-negative random variable that follows the Gompertz distribution. Consequently, the
Gompertz distribution’s cumulative distribution function (CDF) is provided by

HGD(x) = 1− exp

{
λ

α

(
1− eα/x

)}
;x > 0, α > 0, λ > 0 (1)

However, in numerous practical fields like lifetime analysis, behavioral sciences, and describing adult mortal-
ity patterns for insurance purposes, there is a clear need for more comprehensive versions of these categories.
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This is because traditional distributions frequently fall short in accurately capturing real-world data across
different practical situations. As a result, there is a rising interest in developing more flexible models, with
one notable approach being the ”Inverse Distribution.” Eliwa et al. [15] introduced new distribution called
the inverse Gompertz distribution (IGD) with an upside-down bathtub-shaped hazard rate function. Let
x be the non-negative random variable. Then the distribution function of Inverse Gompertz distribution
(IGD) described by Eliwa et al.[15] is given by

HIGD(x) = exp

{
λ

α

(
1− eα/x

)}
;x > 0, α > 0, λ > 0 (2)

The Gompertz distribution has been extensively explored and applied, as detailed in the work of Ahuja
and Nash [6]. Gompertz-Sinh distributions are a family of distributions that Cooray and Ananda [12]
established and used to examine reliability data with distributions that were extremely negatively skewed.
The flexible model known as the generalized Gompertz distribution was introduced by El-Gohary et al.
[14]. Depending on the shape parameter, this model can display failure rates that are declining, increasing,
constant, or bathtub-shaped. Abu-Zinadah and Al-Oufi [2] have investigated various estimation methods
for the exponentiated Gompertz distribution. Additionally, the inverse generalized Gompertz distribution
has been introduced by Chaudhary and Kumar [9]. Telee and Kumar [32] developed new distribution called
Half-Cauchy Gompertz distribution by compounding Gompertz distribution with Half- Cauchy family of
distribution. The Kumaraswamy inverse Gompertz distribution is an expansion of the inverse Gompertz
distribution first presented by El-Morshedy et al. [16]. It includes a hazard rate function shaped like an
upside-down bathtub, determined by its shape parameters. This extension provides a refined framework
for modeling data with characteristics that align with the inverse Gompertz distribution, offering valuable
insights and applications in various fields. Chaudhary et al. [10] created the Half-Cauchy inverse Gompertz
distribution by combining the inverse Gompertz distribution with the Half-Cauchy family of distributions.
This improves the accuracy of utilizing the inverse Gompertz distribution to fit real data. Some further
Gompertz distribution extensions found in the literature are the gamma-Gompertz distribution [28], the
transmuted generalized Gompertz distribution [22], the Marshall Olkin exponential Gompertz distribution
[21], the exponentialized generalized inverted Gompertz distribution [17]. On the inverse power Gompertz
distribution [1], Bayesian and classical estimations of transmuted inverse Gompertz distribution [4], the
inverted Gompertz-Fréchet distribution [5], Topp-Leone inverse Gompertz distribution [3]. A generalized
Gompertz distribution with hazard power parameter and its bivariate extension [25]. New generalized
Weibull inverse Gompertz distribution [7]. On the moments of the 3-parameter Gompertz distribution [20]
and a weighted Gompertz-G family of distributions for reliability and lifetime data analysis [13]. Chaudhary
et al. [11] also created novel model called Cauchy modified generalized exponential distribution. To enhance
the accuracy of fitting real data with the inverse Gompertz distribution, we propose the Cauchy modified
inverse Gompertz distribution. This alternative distribution offers greater flexibility with two additional
parameters. We analyze the characteristics of the Cauchy modified inverse Gompertz distribution and
demonstrate its suitability and potential applications.

The following are the discussion of the remaining sections: in section 2, we present a new distribution
known as the Cauchy modified inverse Gompertz distribution and explore some statistical features. We use
three widely used estimation techniques to estimate the parameters listed in section 3, namely, LSE, CVM,
and MLE. A real-time dataset is used in section 4 to illustrate the applicability of the proposed model.
Here, we assess the goodness-of-fit attained by the Cauchy modified inverse Gompertz distribution using
statistics like AIC, AICC, HQIC, and BIC. Lastly, in section 5, we present some conclusions drawn from
our analysis.

2 Model Formulation

Adding an extra scale parameter β to modify the inverse Gompertz distribution (2), resulting a new
probability distribution called modified inverse Gompertz distribution (MIG) is provided by

GMIG(x) = exp

{
λ

α

(
1− exp

(
αe−βx

x

))}
;x > 0, α > 0, λ > 0, β > 0 (3)
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Here, we have used Cauchy family of distribution to introduce a new probability distribution called Cauchy
Modified Inverse Gompertz (CMIG) distribution taking distribution function GMIG(x) of the modified
inverse Gompertz distribution as base function. Distribution function of the Cauchy family of distribution
is provided by

F (x) = 1− 2

π
arctan

(
−1

θ
logGMIG (x)

)
; x > 0, θ > 0 (4)

The new distribution called Cauchy modified inverse Gompertz (CMIG) distribution is formulated by
combining Cauchy family distribution with modified inverse Gompertz distribution as the base line dis-
tribution. The CMIG distribution’s cumulative distribution function is obtained by applying GMIG(x) to
F (x) in equation (4). Given a non-negative random variable x that follows CMIG (α, β, λ, θ), the CDF
can be found by

F (x;α, β, λ, θ) = 1− 2

π
arctan

{
λ

αθ

(
1− exp

(
αe−βx

x

))}
; x > 0, α, β, λ, θ > 0 (5)

The suggested model CMIG’s corresponding density function is provided by

f (x;α, β, λ, θ) =
2λ

πθx2
e−βx (1 + βx) exp

(
αe−βx

x

)
[
1 +

{
λ

αθ

(
1− exp

(
αe−βx

x

))2
}]−1

; x > 0, α, β, λ, θ > 0

(6)

2.1 Survival function

The CMIG’s survival function is

S(x) =
2

π
arctan

{
λ

αθ

(
1− eαe

−βx/x
)}

; x > 0, α, β, λ, θ > 0. (7)

2.2 Hazard rate function

The CMIG’s Hazard rate function is

h (x) =
λ

θx2
e−βx (1 + βx) exp

(
αe−βx

x

)
[
arctan

{
λ

αθ

(
1− exp

(
αe−βx

x

))}{
1 +

{
λ

αθ

(
1− exp

(
αe−βx

x

))2
}}]−1

; x > 0, α, β, θ > 0

(8)

2.3 Reversed hazard rate function

The Reversed hazard rate function is

hrev(x) =
2λ

πθx2
e−βx (1 + βx) eαe

−βx/x

[
1 +

{
λ

αθ

(
1− exp

(
αe−βx

x

))2
}]−1

[
1− 2

π
arctan

{
λ

αθ

(
1− exp

(
αe−βx

x

))}]−1

; x > 0, α, β, λ, θ > 0

(9)

2.4 Cumulative hazard rate function

: The suggested model’s cumulative hazard rate function is given by

H (x) = − log

[
2

π
arctan

{
λ

αθ

(
1− exp

(
αe−βx

x

))}]
(10)
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The various shapes of PDF and HRF of with various possible parameter values at α = 56.71 and θ =0.0065
are displayed in Figure [1]. The PDF graph illustrates a distribution that peaks once with a positive skew.
In contrast, the hazard rate function plot demonstrates a trend of increasing followed by decreasing.
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Figure 1: Probability density curves (Left) and hazard rate function (Right).

2.5 Quantile function

Assuming X is a non-negative random variable with CDF Fx(x), the quantile function is

QX(p) = FX
−1 (p)

Qx (p) = αe−βx − x log

[
1 +

(
αθ

λ

)
tan(1− p)

(π
2

)]
; 0 ≤ p ≤ 1

(11)

The random deviate generation is

αe−βx − x log

[
1 +

(
αθ

λ

)
tan(1− u)

(π
2

)]
= 0; 0 < u < 1 (12)

2.6 Skewness and Kurtosis

The quantile coefficient of measure of symmetry is

SB =
Q

(
1
4

)
− 2Q

(
2
4

)
+Q

(
3
4

)
Q

(
3
4

)
−Q

(
1
4

)
Expression for testing normality by using octiles of the data [24] is

K −Moors =

[
Q

(
3

8

)
−Q

(
5

8

)
−Q

(
1

8

)
+Q

(
7

8

)][
Q

(
3

4

)
−Q

(
1

4

)]−1

3 Parameter Estimation

Maximum Likelihood Estimation
In this subsection, we have shown the CMIG model’s MLE approach for parameter estimation. Let x

−
=
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(x1, . . . , xn) be sample with n items from CMIG. Log likelihood function of CMIG is

l(x;α, β, λ, θ) = n log

(
2λ

πθ

)
+ 2

n∑
i=1

log xi − β

n∑
i=1

xi +

n∑
i=1

log (1 + βx) + α

n∑
i=1

e−βx/x

−
n∑

i=1

log

[
1 +

{
λ

αθ

(
1− eαe

−βx/x
)2

}] (13)

The MLE of the CMIG(α, β, λ, θ) can be found by taking the first order derivative of (13) with respect
to α, β, λ, and θ, and equating ∂l

∂α = ∂l
∂λ = ∂l

∂β = ∂l
∂θ = 0, and solving for the α, β, λ, and θ simultaneously.

These non-linear equations are normally unsolvable, but we can solve them with ease if we use the suitable
computer language. Let ∆

−
= (α, β, λ, θ) be the parameter vector and the related maximum likelihood

estimation for be represented by ∆̂
−

= (α̂, β̂, λ̂, θ̂), then resulting asymptotic normality is

(
∆̂
−
−∆

−

)
→

N4

[
0,

(
K

(
∆
−

))−1
]
. Here, Fisher’s information matrix is denoted by K

(
∆
−

)
which is given by

K

(
∆
−

)
= −E



E
(

∂2l
∂α2

)
E
(

∂2l
∂α∂β

)
E
(

∂2l
∂α∂λ

)
E
(

∂2l
∂α∂θ

)
E
(

∂2l
∂β∂α

)
E
(

∂2l
∂β2

)
E
(

∂2l
∂β∂λ

)
E
(

∂2l
∂β∂θ

)
E
(

∂2l
∂α∂λ

)
E
(

∂2l
∂β∂λ

)
E
(

∂2l
∂λ2

)
E
(

∂2l
∂θ∂λ

)
E

(
∂2l

∂α∂θ

)
E

(
∂2l

∂β∂θ

)
E

(
∂2l

∂λ∂θ

)
E

(
∂2l

∂θ2

)



We actually do not know ∆
−
, thus the asymptotic variance

(
K

(
∆
−

))−1

of the MLE is worthless. Therefore,

we approximate the asymptotic variance by substituting the calculated parameter values. An approximation

of the information matrixK

(
∆
−

)
is given by the observed Fisher information matrix, denoted by the symbol

O(∆̂
−
). Thus, we approximate the asymptotic variance using the calculated parameter values

O(∆̂
−
) = −



(
∂2l
∂α2

) (
∂2l

∂α∂β

) (
∂2l

∂α∂λ

) (
∂2l

∂α∂θ

)(
∂2l

∂β∂α

) (
∂2l
∂β2

) (
∂2l

∂β∂λ

) (
∂2l

∂β∂θ

)(
∂2l

∂α∂λ

) (
∂2l

∂β∂λ

) (
∂2l
∂λ2

) (
∂2l
∂θ∂λ

)
(

∂2l

∂α∂θ

) (
∂2l

∂β∂θ

) (
∂2l

∂λ∂θ

) (
∂2l

∂θ2

)


|(α̂,β̂,λ̂)

= −H

(
∆
−

)
|(

∆
−

=∆̂
−

) ,

where H denotes the Hessian.

To maximize the likelihood, the Newton-Raphson method constructs the observed information matrix.
This method iteratively updates the parameter estimates by leveraging the information contained in the
observed data matrix, ultimately aiming to optimize the likelihood function. Consequently, it is possible
to provide the matrix for variance-covariance through−H

(
∆
−

)
|(

∆
−

=∆̂
−

)


−1

=


A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44
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where, A11 = V ar of α̂, A22 = V ar of β̂, A33 = V ar of λ̂, A44 = V ar of θ̂

A12 = Co-var of α̂ & β̂, A13 = Co-var of α̂ & λ̂ , A14 = Co-var of α̂ & θ̂

A21 = Co-var of β̂, & α̂ , A23 = Co-var of β̂ & λ̂ , A24 = Co-var of β̂ & θ̂

A31 = Co-var of λ̂, & α̂ , A32 = Co-var of λ̂ & β̂ , A34 = Co-var of λ̂ & θ̂

A41 = Co-var of θ̂, & α̂ , A42 = Co-var of θ̂ & β̂ , A43 = Co-var of θ̂ & λ̂

If Zδ/2 is upper percentile for standard normal distribution, then the following method can be employed
to estimate confidence intervals, with a confidence level of 100(1-δ)% for computing α, β, λ, and θ. This
approach relies on the asymptotic normality of maximum likelihood estimators (MLEs). The confidence

intervals are estimated by α̂±Zδ/2

√
var(α̂) , β̂±Zδ/2

√
[var(β̂)], λ̂±Zδ/2

√
[var(λ̂)] and θ̂±Zδ/2

√
[var(θ̂)]

respectively.

Least-Square Estimation
The function is minimized when the unknown parameters of the CMIG distribution, α, β, λ, and θ, are
estimated via least-square estimation

B (X;α, β, λ, θ) =

n∑
i=1

[
F (Xi)−

i

n+ 1

]2
(14)

with respect to α, β, λ, and θ. Let us consider {X1, X2, . . . , Xn} be a random sample with n units from
ordered random variable X(1) < X(2) < . . . < X(n) having CDF as λ = the LSE of α, β, λ, and θ can be
calculated by minimizing the relation (15) with respect to α, β, λ, and θ

B (X;α, β, λ, θ) =

n∑
i=1

[
1− 2

π
arctan

{
λ

αθ

(
1− eαe

−βx(i)/x(i)

)}
− i

n+ 1

]2
(15)

The estimated parameters can be found by differentiating the relation (16) with respect to α, β, λ, and
θ, and then solving the simultaneous equation. We can minimize following relation to get weighted least
square estimators as

B (X;α, β, λ, θ) =

n∑
i=1

wi

[
1− 2

π
arctan

{
λ

αθ

(
1− eαe

−βx(i)/x(i)

)}
− i

n+ 1

]2
, (16)

where wi are weight and is given as

wi =
1

V ar(X(i))
=

(n+ 1)
2
(n+ 2)

i (n− i+ 1)

We can estimate unknown parameters α, β, λ, and θ using the weighted least square technique by minimizing
relation (17) with respect to α, β, λ, and θ

B (X;α, β, λ, θ) =

n∑
i=1

(n+ 1)
2
(n+ 2)

i (n− i+ 1)

[
1− 2

π
arctan

{
λ

αθ

(
1− eαe

−βx(i)/x(i)

)}
− i

n+ 1

]2
(17)

Cramer-Von Mises estimation
By minimizing relation (18) we can get estimated values of unknown parameters α, β, λ, and θ using
Cramer-Von Mises technique of estimation

C (X;α, β, λ, θ) =
1

12n
+

n∑
i=1

[
F (xi:n|α, β, λ, θ)−

2i− 1

2n

]2

=
1

12n
+

n∑
i=1

[
1− 2

π
arctan

{
λ

αθ

(
1− eαe

−βx(i)/x(i)

)}
− 2i− 1

2n

]2
(18)
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The CVM estimators of the parameters can be obtained by differentiating equation (18) with respect to α,
β, λ, and θ and by solving the non-linear equations

∂C

∂α
= 0,

∂C

∂β
= 0,

∂C

∂λ
= 0 and

∂C

∂θ
= 0

4 Application to Real Dataset

Data set
This segment includes a study of an real dataset that validates the suggested model. Because atoms in
circuits migrate about and create microcircuit failures, electromigration can occasionally occur in a circuit.
59 conductors were used in the accelerated life test [26, 29], where without any observational censoring,
failure time in hours was determined as follows

6.545, 4.700, 7.543, 9.289, 6.492, 6.956, 8.120, 5.459, 8.687, 4.706, 8.591, 2.997, 11.038, 6.129, 6.958, 5.381,
6.522, 4.288, 7.459, 4.137, 6.573, 7.495, 5.589, 6.538, 6.725, 5.807, 9.663, 8.532, 7.024, 6.369, 9.218, 8.336,
6.869, 7.945, 6.087, 6.352, 9.254, 6.948, 7.489, 5.009, 6.033, 7.398, 7.496, 10.092, 8.799, 7.974, 7.224, 7.683,
6.923, 7.365, 5.434, 5.640, 6.515, 7.937, 6.071, 10.491, 6.476 ,4.531, 5.923.

Exploratory Data Analysis (EDA)
Exploratory data analysis is crafted by combining various statistical analyses that elucidate and summarize
the dataset used in research. Gaining a thorough understanding of the data set being used is the aim of
this. In addition to the graphical displays of the data, it could also contain some descriptive statistics. The
key metrics that can be incorporated into EDA are listed below.

� The density curve, histogram, boxplot, and so forth are the graphical plots that aid in identifying
patterns in the data as well as identifying any odd patterns or findings.

� Certain aspects and characteristics of the data are revealed by measurements such as location, scatter,
skewness, kurtosis, and so forth.

The data summary was found using the R programming language, and the results are shown in the table
below.

The data is positively skewed and non-normal, according to summary statistics.

Table 1: Descriptive statistics of the data
Min Q1 Median Mean Q3 Max Skewness Kurtosis
2.997 6.052 6.923 6.980 7.9417 11.038 0.1931723 3.087389

The boxplot, histogram, and density fit of the suggested CMIG model are shown in Figure [2]. The data
set’s boxplot and TTT plot are also shown in Figure [2]. Using R software (R Core Team[27]) having optim
() function, by maximizing the likelihood function (13), calculations of MLEs of CMIG model is done. We
got the value of Log-Likelihood as l = -111.2442. Table [2] contains the estimated parameter values of α,
β, λ, and θ. The Probability-Probability plot on the left and the Quantile-Quantile plot on the right of

Table 2: Estimated parameters
Methods Alpha Beta Lambda Theta
MLE 56.7169 0.7480 7.7269 0.0065
LSE 51.9078 0.7001 7.8161 0.0093

CVME 51.9078 0.7297 7.8161 0.0075

Figure[3] have also been included to assess the model’s normality. Using above estimated parameter values
by all three methods we have calculated log-likelihood and AIC criterion and are presented in Table [3].

7
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Figure 2: Boxplot (Left) and TTT plot (Right).
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Figure 3: P-P plot (Left) and Q-Q plot (Right).

Table 3: Log likelihood (LL), AIC, BIC, CAIC and HQIC
Model LL AIC BIC CAIC HQIC
MLE -111.259 230.518 238.828 231.259 233.762
LSE -111.324 230.647 230.647 231.388 233.891
CVM -111.259 230.518 238.828 231.259 233.762

Table [4] presents the A2, W and KS statistics together with the corresponding p-values of the LSE, MLE,
and CVE estimations for evaluating the model’s goodness of fit.

The suggested model CMIG distribution’s empirical CDF, fitted CDF plot, density function and histogram
of fitted distributions of estimation techniques utilizing LSE, MLE, and CVM are displayed in Figure [4].
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Table 4: KS, W, and (A2) statistics with corresponding p-values
Methods KS(p-value) W(p-value) A2(p-value)
MLE 0.0531(0.9932 ) 0.0199( 0.9974) 0.1321(0.9995)
LSE 0.0488(0.9977) 0.0205 (0.9967) 0.1329(0.9995)

CVME 0.0515(0.9953) 0.0194(0.9978) 0.1264(0.9997)
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Figure 4: Histogram versus density curve (Left) and ECDF versus CDF (Right) for different estimation
methods.

Model Comparison
Here, we’ve evaluated how well the CMIG model applies compared to other models used by researchers with
the same dataset. Here we have chosen five distributions to compare the potentiality of the CMIG. Five
distributions considered are Exponential Power (EP) model [30], Generalized Exponential (GE) model [19],
Modified Weibull (MW) Model [23], Weibull Extension (WE) Model [31]), and Lindley-Exponential (LE)
model [8]. The estimated parameters of both the competing models under investigation and the suggested
model are shown in Table[5]. We also displayed the histogram of the dataset, graph for goodness-of-fit of

Table 5: Estimated parameters models
Model Alpha Beta Lambda Theta
CMIG 56.7170 0.7480 7.7270 0.0066
WE 32.2529 4.6823 26.6786 -
GE 52.4066 - 0.6424 -
LE - - 0.6422 53.3296
EP 3.14011 0.1138 - -
MW 0.0070 0.2216 0.5782 -

CMIG model along with models taken in considerations in left panel of Figure[5]. In right panel of the
graph, empirical CDF and fitted CDF are shown. From plotting it is observed that CMIG distribution
fits the dataset better than other models taken in consideration. Examples of the HQIC, BIC, AIC, and
CAIC can be used to determine the applicability of the CMIG distribution. These values are presented in
Table[6]. Validation criteria obtained clearly show that model CMIG has fewer values than the value of
other considered models. This suggests that proposed model fit data better than other models taken in
considerations.
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Figure 5: Histogram versus density curves (Left) and ECDF versus CDFs (Right) models.

Table 6: Log likelihood (LL), AIC, BIC, CAIC and HQIC
Model LL AIC BIC CAIC HQIC
CMIG -111.2590 230.5180 238.8284 231.2591 233.7620
WE -112.5054 231.0108 237.2434 231.447 233.4437
GE -114.9471 233.8946 238..0497 234.109 235.5166
LE -114.9525 233.9055 238.0606 234.1198 235.5275
EP -116.5015 237.0029 241.1580 237.2090 238.6249
MW -117.3520 240.7041 246.9367 241.1404 243.1370

Testing of goodness of fit of fitted model and comparing it with other model is essential part of statistical
modeling. We generated the statistics for the Anderson-Darling (AD), Cramer-Von Mises (CVM), and
Kolmogorov-Smirnov (KS) tests in order to assess the goodness-of-fit of the CMIG distribution in compar-
ison to alternative distributions. These test statistic values are displayed in Table[7]. It is found that the
CMIG distribution has lesser values of the test statistics and higher p-value in every method of goodness
of fit. This concludes that the CMIG distribution fits real data set more consistently compared to other
models taken in consideration.

Table 7: KS, W, and A2 statistics with p-values
Model KS W A2

CMIG 0.0531(0.9932) 0.0199(0.9973) 0.1321(0.9995)
WE 0.0964(0.6089) 0.0858(0.6606) 0.4845(0.7619)
GE 0.1042(0.5103) 0.1173(0.5079) 0.7368(0.5282)
LE 0.1042(0.5099) 0.1173(0.5077) 0.7373(0.5279)
EP 0.1365(0.2021) 0.2398(0.2021) 1.3735(0.2098)
MW 0.1345(0.2160) 0.2236(0.2263) 1.3349(0.2213)
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5 Conclusion

The Cauchy Modified Inverse Gompertz Distribution is a newly introduced distribution that is featured
here. Some fundamental statistical properties of the new model are thoroughly examined. We have derived
some important expression for the hazard rate, survival, the quantile function etc. We have also calculated
summary of the data as mean, median skewness and kurtosis etc. and are displayed. For estimating the
unknown parameters, three important and more effective methods of estimation as MLE, LSE and CVME
are used. In this case, we discovered that the CVM approach outperforms the MLE and LSE approaches.
PDF curve of the proposed model CMIG has different shaped density curve for different values of parameters
showing that curve is positively skewed having increasing-decreasing hazard rate curve. Here, we have also
taken into account a real dataset and have compared the applicability and suitability of the suggested model
with a few other models that have been introduced by previous researchers utilizing the same dataset and
parameter estimation techniques. The suggested model outperforms the other models that were considered
in terms of data fit. We also considered different methods of model validation techniques to test the validity
showing that proposed model has lesser values of information criteria than competing models. So, we can
conclude that model CMIG will play significant role in data analysis and new model formulations. The
model CMIG is original and new probability model so it can be useful in data analysis and probability
model formulation. The main limitation of the study is that we have applied on a single data set. To
generalize the model application of model on different data sets may be required.

References

[1] Abdelhady, D. H., and Amer, Y. M., 2021, On the inverse power Gompertz distribution, Annals of
Data Science, 8(3), 451-473. https://doi.org/10.1007/s40745-020-00246-4

[2] Abu-Zinadah, H. H., and Al-Oufi, A. S., 2016, Different method estimations of the three parameters of
exponentiated Gompertz distribution, Applied Mathematics and Information Sciences, 10(2), 705-710.
http://dx.doi.org/10.18576/amis/100230

[3] Adegoke, T. M., Oladoja, O. M., Bashiru, S. O., Mustapha, A. A., Aderupatan, D. E., and Nzei, L.
C., 2023, Topp-Leone inverse Gompertz distribution: Properties and different estimations techniques
and applications, Pakistan Journal of Statistics, 39(4),433.

[4] Adegoke, T. M., Obisesan, K. O., Oladoja, O. M., and Adegoke, G. K., 2023, Bayesian and classical
estimations of transmuted inverse Gompertz distribution, Reliability: Theory and applications, 18(2
(73)), 207-222. http://dx.doi.org/10.24412/1932-2321-2023-273-207-222

[5] Akarawak, E. E., Adeyeye, S. J., Khaleel, M. A., Adedotun, A. F., Ogunsanya, A. S., and Amalare, A.
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