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Abstract: Let G(«, 8), A(a, B) and H(«, B), respectively, be the geometric mean, arithmetic mean and har-
monic mean of o and B. In this paper, we prove that G(v'(2),v¢'(1/2)) > 72/6, A(W'(2),¢'(1/2)) > n%/6
and H(W'(2),¢'(1/2)) < w2/6. This extends the previous results of Alzer and Jameson regarding the
digamma function . The mathematical tools used to prove the results include convexity, concavity and
monotonicity properties of certain functions as well as the convolution theorem for Laplace transforms.

Keywords: Gamma function, Digamma function, Trigamma function, Harmonic mean inequality

1 Introduction
The classical gamma function which is an extension of the factorial function is frequently defined as
I'(z) = / r* e "dr
0

for z > 0. Closely connected to the gamma function is the the digamma (or psi) function which is defined
as
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where + is the Euler-Mascheroni constant. Derivatives of the digamma function which are called polygamma
functions are defined as
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for z > 0 and ¢ € N. The particular case ¢’(z) is what is referred to as the trigamma function. Also, it is
well known in the literature that the integral
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holds for z > 0 and ¢ € Np.

In 1974, Gautschi [I1] presented an elegant inequality involving the gamma function. Precisely, he proved
that, for z > 0, the harmonic mean of I'(z) and I'(1/z) is at least 1. That is,
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for z > 0 and with equality when z = 1. As a direct consequence of , the inequalities
I'(z)+T(1/z) > 2 (8)
and
[()I(1/z) > 1 (9)

are obtained for z > 0. Attributing to the importance of this inequality, some refinements and extensions
have been investigated [T}, 2, [3] 4, [l [6] 12} [13].

In 2017, Alzer and Jameson [§] established a striking companion of which involves the digamma function
¥(z). They established that the inequality

2(2)p(1/z)
¥(z) +9(1/z)
holds for z > 0 and with equality when z = 1. Thereafter, Alzer [7] refined by proving that
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holds for z > 0 and with equality when z = 1.
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In 2018, Yin et al. [25] extended inequality to the k-analogue of the digamma function by establishing
that
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forz>Oand37§§k§1.
In 2020, Yildirim [24] improved on the inequality by establishing that
25 (2)¢(1/2)
— L > 1 13

for z > 0 and k > 0. When k = 1, inequalities and both return to inequality .

In 2021, Bouali [10] extended inequalities and to the g-analogues of the gamma and digamma
functions by proving that
LA (1/) "
[q(2) +Ty(1/2)
for z > 0 and
20pq(2)¢q(1/2)
Pq(2) +1q(1/2)
for z > 0 and ¢ € (0, pg), where pg ~ 3.239945.

> (1) (15)

For similar results involving other special functions, one may refer to the works [14, [I5] 16} [T'7, [18] [T9] 20].
In the present investigation, our objective is to extend the results of Alzer and Jameson [8] to the trigamma
function v’ among other things. Specifically, we prove that

(a) for z > 0, the geometric mean of ¥’(z) and v/(1/z) can never be less than 72/6.
(b) for z > 0, the arithmetic mean of ¢’(z) and 9’(1/2) can never be less than 72 /6.
(c) for z > 0, the harmonic mean of ¢’(z) and 9'(1/2) can never be greater than 2 /6.

We present our results in Section [2| In order to establish our results, we require the following preliminary
definitions and lemmas.

Definition 1.1 ([21I]). A function H : Z C Rt — R is referred to as GG-convex if
H(a'*y*) < H(x)' " H(y)* (16)
for all ,y € 7 and k € [0, 1]. If the inequality in is reversed, then H is said to be GG-concave.
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Definition 1.2 (|21]). A function H : Z C R* — R is referred to as GA-convex if
H(x'™"y*) < (1= k)H (x) + kH (y) (17)

for all x,y € Z and k € [0,1]. If the inequality in is reversed, then H is said to be GA-concave.

Lemma 1.3 ([21]). A function H : T C RT — R is GG-convex (or GG-concave) if and only if zggg) is

increasing (or decreasing) on T respectively.
Lemma 1.4 ([26]). A function H : T C Rt — R is GA-convez if and only if

H'(z)+zH"(2) >0 (18)
for all z € Z. The function H is said to be GA-concave if and only if the inequality in is reversed.

The following lemma is well known in the literature as the convolution theorem for Laplace transforms.

Lemma 1.5 ([23]). Let f(r) and g(r) be any two functions with convolution f =g = [ f(r — s)g(s)ds.
Then the Laplace transform of the convolution is given as

L{f*g}=L{f}L{g}.

L[ o= watas|esrar= [T rmerar [T g 19)

Lemma 1.6 ([22]). Let —oo < u < v < 0o and p and q be continuous functions that are differentiable on
(u,v), with p(u+) = q(u+) = 0 or p(v—) = q(v—) = 0. Suppose that q(z) and ¢'(z) are nonzero for all

z € (u,v). If 2’:8 is increasing (or decreasing) on (u,v), then % is also increasing (or decreasing) on

(u,v).

In other words,

2 Results

Theorem 2.1. The function ¢'(z) is GG-convezx on (0,00). In other words,

O (@ Ry < @) [ ()] (20)

is satisfied for x >0, y > 0 and k € [0,1].

Y(2)

Proof. As a result of Lemma it suffices to show that the function z% 2 is increasing on (0, 00) and
this follows from Lemma 2 of [7]. O

Corollary 2.2. The inequality
n2\?
v/ = () (21)
holds for z € (0,00) and with equality when z = 1.

Proof. By letting x =2, y=1/z and k = % in , we obtain

2
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which gives the desired result. O

Lemma 2.3. Forr > 0, we have
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Proof. By direct computation, we obtain

and then

Gy ——
¢, (r)
Thus, Z :1843 is decreasing and as a result of Lemma the function B(r) is also decreasing. Hence

0= rl;nolo B(r) < B(r) < rl_i}r(x)ﬂ_ B(ry=1
which completes the proof.
Theorem 2.4. The function ¢'(z) is GA-convex on (0,00). In other words,
V(@ FyR) < (1= k) (2) + k' (y)
is satisfied for x >0, y > 0 and k € [0,1].
Proof. As a result of Lemma [1.4] it suffices to show that
$(z) = ¥"(2) + 29" (2) 2 0
for z € (0,00). By applying , @ and Lemma we obtain
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where

Then by direct computations and as a result of 7 we have
3r2 rde”" r?
l—em (1—eT7)?2 1—e7"

2 -
r re
=— |2 > 0.
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Hence A(r) is increasing and this implies that

A'(r) =

A(r) > lim A(r) =0.

r—0+

Therefore, ¢(z) > 0 which completes the proof.
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Remark 2.5. Inequality implies that the function zv¢”(z) is increasing.

Corollary 2.6. The inequality

772

e P/ 2 T (25)
holds for z € (0,00) and with equality when z = 1.
Proof. By letting x = z, y = 1/z and k = § in (23), we obtain
which gives the desired result. O
Lemma 2.7 ([9]). For z > 0, the inequality
V()" (2) =2 [ ()] <0 (26)
is satisfied.
Lemma 2.8. For z > 0, the function ,
F) = e 1)
s decreasing.
Proof. By applying Lemma [2.7] we obtain
[/ ()P F'(2) = ¥/ (2)9" (2) + 29 ()" () — 229" (2))?
=" (2) + = [ ()" () — 2 [0 ()]
< 0.
Hence F’(z) < 0 which completes the proof. O
Theorem 2.9. For z > 0, the inequality
/ / 2
S = 5 &

holds and equality is attained if z = 1.
Proof. The case for z =1 is apparent. For this reason, we only prove the case for z € (0,1) U (1,00). Let
29" (2)y'(1/z2)
V'(z) +¢'(1/2)

for z € (0,1) U (1, 00). Then direct calculations gives

gy = Q) LY W) - (/)
V(z) 22 ¢(1)z2) W (2) + (1))

K(z) = and B(z) =InK(z)

which implies that
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As a result of Lemma [2.8] we conclude that T'(z) > 0 if z € (0,1) and T'(z) < 0 if z € (1, 00). Thus, 3(2) is
increasing on (0,1) and decreasing on (1,00). Accordingly, K(z) is increasing on (0, 1) and decreasing on
(1,00). Therefore, on both intervals, we have

71_2

K(z) < lim K(z) =¢'(1) = —

z—1 6

completing the proof. O

3 Conclusion

By using convexity, concavity and monotonicity properties of certain functions as well as the convolution
theorem for Laplace transforms, we have proved that

(a) for z > 0, the geometric mean of ¥’(z) and v’(1/z) can never be less than 72/6.
(b) for z > 0, the arithmetic mean of ¥’(z) and v’(1/z) can never be less than 72/6.
(c) for z > 0, the harmonic mean of ¥(z) and v’(1/z) can never be greater than 72 /6.

This extends the earlier results of Alzer and Jameson regarding the digamma function. In a future study,
we will like to investigate whether it is possible to extend these results to the polygamma function.
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