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Abstract: The aim of this paper is to introduce and study a new class ℓ2((X, ||.||), γ̄, ω̄) of double sequences
with their terms in a normed space X as a generalization of the familiar sequence space ℓ. Besides the
investigation of the condition pertaining to the containment relations of the class ℓ2((X, ||.||), γ̄, ω̄) of same
kind in terms of γ̄ and ω̄, our primary interest is to explore some of the preliminary results that characterize
the linear topological structures of ℓ2((X, ||.||), γ̄, ω̄) when topologized it with suitable natural paranorm.
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1 Introduction

We begin with recalling some notations and basic definitions that are used in this paper. The concept of
paranorm is closely related to the linear metric space; see Wilansky [26] and its studies on sequence spaces
were initiated by Maddox [9], and many others. Basarir and Altundag [1], Ghimire, & Pahari [2, 3], Parasar
and Choudhary[15], Paudel and Pahari [18, 20, 21] and many others further studied the various types of
paranormed sequence spaces.

A paranormed space (X,G) is a linear space X with the zero element θ together with the function G :
X → R+ (called a paranorm on X ) which satisfy the following axioms

P.N1: G(θ)= 0 ;

P.N2: G(x) = G(−x) for all x ∈ X;

P.N3: G(x+ y) ≤ G(x) +G(y) for all x, y ∈ X; and

P.N4: Scalar multiplication is continuous

Note that the continuity of scalar multiplication is equivalent to
i. G(xk) → 0 and λk → λ as k → ∞ then G(λk, xk) → 0 as k → ∞, and
ii. λk → 0 as k → ∞ and x be any element in X, then g(λk, x) → 0 see Wilansky [26].

A paranorm is called total if G(x) = θ implies x = θ.

Let X be a normed space over the field of complex numbers. Let ω(X) denotes the space of all sequences
x̄ = (xi) with xi ∈ X, i ≥ 1. We shall denote ω(C) by ω. Any subspace S of ω is then called a sequence
space. A normed space valued sequence space or a generalized sequence space is a linear space of sequences
with their terms in a normed space. Several workers like Gupta and Patterson [5], Kamthan and Gupta
[6], Kolk [7], Köthe [8], Maddox [10], and Pahari [12] etc. have introduced and studied some properties of
vector and scalar-valued single sequence spaces, when sequences are taken from a Banach space.

The concept of various types of linear spaces of single sequences and their special kind of convergence was
studied by several workers for instances we refer a few: Pahari [12, 13, 14], Pokharel, Pahari and Ghimire
[22], Srivastava and Pahari [24, 25]. They also studied the various types of topological structures of vector
valued sequence spaces defined by Orlicz function endowed with suitable natural paranorms and extended
some of them in 2-normed spaces. Recently, Paudel, Pahari and et al. [17, 18, 19, 20, 21, 22] has extended
the the concepts of sequence space of complex numbers to the sequences of fuzzy real numbers.
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The theory of single sequence spaces has also been extended to the spaces of double sequences and studied by
several workers. Gupta and Kamthan [4], Morics [11] and many others have made significant contributions
and enriched the theories in this direction. In the recent years, Savas [22], Subramanian et al. [25] and
many others have introduced and studied various types of double sequence spaces using Orlicz function.

2 The Class ℓ2 ((X, ||.||) , γ̄, w̄) of Double Sequences

Let w̄ = (wnk) and v̄ = (vnk) be any double sequences of strictly increasing positive real numbers and
γ̄ = (γnk) and µ̄ = (µnk), n, k ≥ 1 be double sequences of non-zero complex numbers. Let (X, ||.||), and
(Y, ||.||) be Banach spaces over the field of complex numbers and B ((X, ||.||) , Y ) be the Banach space of all
bounded linear operators from (X, ||.||) into Y . The zero element of the Banach spaces X,Y,B ((X, ||.||) , Y )
will be denoted by θ.

Throughout the work,
∑∑

will denote

∞∑
n=1

∞∑
k=1

in the sense that lim
K→∞

∑ ∑
2≤n+k≤K

We now introduce and study the following class of Banach space-valued double sequences

ℓ2 ((X, ||.||) , γ̄, w̄) =

x̄ = (xnk) : xnk ∈ X,n, k ≥ 1 and lim
K→∞

∑ ∑
2≤n+k≤K

||γnkxnk||wnk → θ as n+ k → ∞


Further, when γnk = 1 for all n and k, then ℓ2 ((X, ||.||) , γ̄, w̄) will be denoted by ℓ2 ((X, ||.||) , w̄) and when
wnk for all n and k ; then ℓ2 ((X, ||.||) , γ̄, w̄) will be denoted by ℓ2 ((X, ||.||) , γ̄).
Further, by w̄ = (wnk) ∈ ℓ2∞, we mean supwnk < ∞. We denote A(λ) = max(1, |λ|) and the zero element
of this class by θ̄ = (θ, θ, θ, . . . )

3 Main Results

In this section, we investigate some conditions in terms of w̄ and γ̄ so that a class ℓ2 ((X, ||.||) , γ̄, w̄) is con-
tained in or equal to another class of the same kind and then explore some of the preliminary results that
characterize the linear topological structure of ℓ2 ((X, ||.||) , γ̄, w̄) when topologized it with suitable natural
paranorm. As far as the linear space structure of ℓ2 ((X, ||.||) , γ̄, w̄) over the field of complex numbers is
concerned, we throughout take the coordinatewise operations, i.e, for

x̄ = (xnk), ȳ = (ynk) and scalar λ, x̄+ ȳ = (xnk + ynk) and λx̄ = (λxnk).

Theorem 3.1. For any w̄, ℓ2 ((X, ||.||) , µ̄, w̄) ⊂ ℓ2 ((X, ||.||) , γ̄, w̄) if and only if

lim sup
n+k→∞

∣∣∣∣ γnkµnk

∣∣∣∣wnk

< ∞.

Proof. Suppose lim sup
n+k→∞

∣∣∣ γnk

µnk

∣∣∣wnk

< ∞ and x̄ ∈ ℓ2 ((X, ||.||) , µ̄, w̄). Then there exists a constant L > 0 such

that |γnk|wnk < L|µnk|wnk for all sufficiently large value of n, k. This means that for all sufficiently large
values of n, k,

|γnk xnk|wnk < L|µnk xnk|wnk

Thus
∑∑

||µnkxnk||wnk < ∞ implies that
∑∑

||γnkxnk||wnk < ∞, i.e., x̄ ∈ ℓ2 ((X, ||.||) , γ̄, w̄) and hence
ℓ2 ((X, ||.||) , µ̄, w̄) ⊂ ℓ2 ((X, ||.||) , γ̄, w̄).
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Conversely, let the inclusion holds but lim sup
n+k→∞

∣∣∣ γnk

µnk

∣∣∣wnk

= ∞. Then there exist subsequences (n(i)) of (n)

and (k(i)) of (k) respectively such that for each i ≥ 1,

|γn(i)k(i)|wn(i)k(i) > i|µn(i)k(i)|wn(i)k(i) (1)

Thus for znk ∈ X with ||znk|| = 1, the sequence x̄ = (xnk) defined by

xnk =

{
µ−1
nk i

−2/wnk , n = n(i), k = k(i), i ≥ 1
θ, otherwise

(2)

is in ℓ2 ((X, ||.||) , µ̄, w̄), since for n = n(i), k = k(i), i ≥ 1 and in view of (1) and (2),

lim
K→∞

∑ ∑
2≤n+k≤K

∥µnkxnk∥wnk =

∞∑
i=1

∥∥µn(i)k(i)xn(i)k(i)

∥∥wn(i)k(i) =

∞∑
i=1

1

i2
< ∞.

But x̄ does not belong to ℓ2((X, ∥.∥), γ̄, w̄), since for n = n(i), k = k(i), i ≥ 1,

lim
K→∞

∑ ∑
2≤n+k≤K

∥µnkxnk∥wnk =

∞∑
i=1

∥∥µn(i)k(i)xn(i)k(i)

∥∥wn(i)k(i)

=

∞∑
i=1

∣∣∣∣λn(i)k(i)

µn(i)k(i)

∣∣∣∣wn(i)k(i) 1

i2
>

∞∑
i=1

1

i
= ∞,

a contradiction. This completes the proof.

Theorem 3.2. For any w̄ = (wnk) , ℓ
2((X, ∥.∥), γ̄, w̄) ⊂ ℓ2((X, ∥.∥), µ̄, w̄)

if and only if lim inf
n+k→∞

∣∣∣∣ γnkµnk

∣∣∣∣wnk

> 0.

Proof. Suppose lim inf
n+k→∞

∣∣∣ γnk

µnk

∣∣∣wnk

> 0 and x̄ = (xnk) ∈ ℓ2((X, ∥∥), .γ̄, w̄). Then there exists I > 0 such that

I |µnk|wnk < |γnk|wnk for all sufficiently large values of n, k. Thus

I ∥µnkxnk∥wnk ≤ ∥γnkxnk∥wnk

for all sufficiently large values of n, k. From the above inequality and we see that

lim
K→∞

∑ ∑
2≤n+k≤K

∥µnkxnk∥wnk < ∞

i.e., x̄ ∈ ℓ2 ((X∥.∥) , µ̄, w̄) and hence

ℓ2((X, ∥ · ∥), γ̄, w̄) ⊂ ℓ2((X, ∥ · ∥), µ̄, w̄).

Conversely, let the inclusion holds but lim inf
n+k→∞

∣∣∣ γnk

µnk

∣∣∣wnk

= 0. Then there exist subsequences (n(i)) of (n)

and (k(i)) of (k) respectively such that for each i ≥ 1

i
∥∥γn(i)k(i)∥∥wn(i)k(i) ≥

∥∥µn(i)k(i)

∥∥wn(i)k(i) (3)

For znk ∈ X and ∥znk∥ = 1, we define a sequence x̄ = (xnk) by

xnk =

{
γ−1
nk i

−2/wnkznk, k = k(i), i ≥ 1
θ, otherwise.

(4)

Then as proved in Theorem 3.1, for n = n(i), k = k(i), i ≥ 1 and in view of (3) and (4), we can prove that
x̄ is in ℓ2 ((X, ∥.∥), γ̄, w̄) and x̄ ∈ ℓ2((X, ∥ · ∥), µ̄, w̄), a contradiction. This completes the proof.
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On combining Theorems 3.1 and 3.2, we get

Theorem 3.3. For any w̄ = (wnk) , ℓ
2((X, ∥ · ∥), γ̄, w̄) = ℓ2((X, ∥ · ∥), µ̄, w̄) if and only if

0 < lim inf
n+k→∞

∣∣∣ γnk

µnk

∣∣∣wnk

≤ lim sup
n+k→∞

∣∣∣ γnk

µnk

∣∣∣wnk

< ∞.

Theorem 3.4. For any γ̄ = (γnk), if wnk ≤ vnk for all but finitely many n, k, then

ℓ2((X, ∥ · ∥), γ̄, w̄) ⊂ ℓ2((X, ∥ · ∥), γ̄, v̄).

Proof. Let wnk ≤ vnk for all finitely many n, k. If x̄ = (xnk) ∈ ℓ2((X, ∥ · ||), γ̄, w̄) then clearly x̄ ∈
ℓ2((X, ∥.∥), γ̄, v̄) because ∥γnkxnk∥ ≤ 1 for all large values of n, k. This completes the proof.

On combining Theorems 3.1 and 3.4, we get

Theorem 3.5. For any γ̄ = (γnk) , µ̄ = (µnk) , w̄ = (wnk) and v̄ = (vnk) if lim inf
n+k→∞

∣∣∣ γnk

µnk

∣∣∣wnk

> 0, and

wnk ≤ vnk for all but finitely many n, k, hold together, then

ℓ2((X, ∥ · ∥), γ̄, w̄) ⊂ ℓ2((X, ∥ · ∥), µ̄, v̄).

Theorem 3.6. ℓ2((X, ∥ · ||), γ̄, w̄) forms a linear space over the field of complex number C if and only if
w̄ = (wnk) ∈ ℓ2∞.

Proof. Let w̄ = (wnk) ∈ ℓ2∞ and x̄ = (xnk) , ȳ = (ynk) ∈ ℓ2((X, ∥ · ∥), γ̄, w̄) then

lim
K→∞

∑ ∑
2≤n+k≤K

∥γnkxnk∥wnk < ∞ and lim
K→∞

∑ ∑
2≤n+k≤K

∥γnkynk∥wnk < ∞.

Now,

lim
K→∞

∑ ∑
2≤n+k≤K

∥γnk (xnk + ynk)∥wnk ≤ lim
K→∞

∑ ∑
2≤n+k≤K

∥γnkxnk∥wnk+ lim
K→∞

∑ ∑
2≤n+k≤K

∥γnkynk∥wnk < ∞.

Hence x̄+ ȳ ∈ ℓ2((X, ∥.∥), γ̄, w̄). Also, it is clear that for any scalar λ,

λx̄ ∈ ℓ2((X, ∥.∥), γ̄, w̄), since

lim
K→∞

∑ ∑
2≤n+k≤K

∥λγnkxnk∥wnk = lim
K→∞

∑ ∑
2≤n+k≤K

|λ|wnk ∥γnkxnk∥wnk

≤ A(λ) lim
K→∞

∑ ∑
2≤n+k≤K

∥γnkxnk∥wnk < ∞.

Conversely, if w̄ = (wnk) /∈ ℓ2∞ then there exist subsequences (n(i)) of (n) and (k(i)) of (k) such that

wn(i) k(i) > i for each i ≥ 1. (5)

Now taking znk ∈ X with ∥znk∥ = 1, we define a sequence x̄ = (xnk) by

xnk =

{
γ−1
nk i

−2/wnkznk, n = n(i), k = k(i), i ≥ 1 and
θ, otherwise.

(6)

Then for n = n(i), k = k(i), i ≥ 1 and in view of (5) and (6), we have

lim
K→∞

∑ ∑
2≤n+k≤K

∥γnkxnk∥wnk =

∞∑
i=1

∥∥γn(i)k(i)xn(i)k(i)

∥∥wn(i)k(i) =

∞∑
i=1

1

i2
< ∞
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This shows that x̄ is in ℓ2((X, ∥.∥), γ̄, w̄). But on the other hand for n = n(i), k = k(i), i ≥ 1 and for the
scalar λ = 4 we have

∥γnkλxnk∥wnk = ∥γn(i)k(i)4xn(i)k(i)∥wn(i)k(i)

= |4|wn(i)k(i)
1

i2
>

4i

i2
> 1

for each i ≥ 1, and therefore

lim
K→∞

∑ ∑
2≤n+k≤K

∥γnkλxnk∥wnk > ∞,

which shows that

λx̄ /∈ ℓ2((X, ∥ · ∥), γ̄, w̄).

Hence ℓ2((X, ∥.∥), γ̄, w̄) is a linear space if and only if, w̄ = (wnk) ∈ ℓ2∞. This completes the proof.

In the following, let w̄ = (wnk) ∈ ℓ2∞ and consider x̄ ∈ ℓ2((X, ∥ · ∥), γ̄, w̄), we define

G(x̄) = lim
K→∞

∑ ∑
2≤n+k≤K

∥γnkxnk∥wnk (7)

Theorem 3.7. Let w̄ = (wnk) ∈ ℓ2∞ for each n, k ≥ 1 andX be a normed space. Then
(
ℓ2((X, ∥.∥), γ̄, w̄), G

)
defined by (7) forms a total paranormed space.

Proof. For any x̄, ȳ ∈ ℓ2((X, ∥ · ∥), γ̄, w̄), it can be easily verified that G satisfy following properties of
paranormed space.
Clearly, G(x̄) ≥ 0 and G(x̄) = 0 if and only if x̄ = θ̄.

G(x̄+ ȳ) ≤ G(x̄) +G(ȳ), and G(λx̄) ≤ A(λ) ·G(x̄), where λ ∈ C.

So obviously PN1, PN2 and PN3 follow.

Here we prove the continuity of scalar multiplication, i.e., PN4. For this, it suffices to prove that
(a) if x̄(i) → θ̄ as i → ∞ and λi → λ imply G

(
λix̄

(i)
)
→ 0 as i → ∞.

(b) if λi → 0 as i → ∞ implies G
(
λix̄

(i)
)
→ 0 as i → ∞ for each x̄ ∈ ℓ2((X, ∥.∥), γ̄, w̄).

Now to prove (a) suppose that |λi| ≤ L for all i ≥ 1. Then

G
(
λix̄

(i)
)
≤ sup

n,k
|λi|wnk lim

K→∞

∑ ∑
2≤n+k≤K

∥∥∥γnkx(i)
nk

∥∥∥wnk

≤ A(λ)G
(
x̄(i)

)
whence (a) follows.
Next if x̄ ∈ ℓ2((X, ∥ · ∥), γ̄, w̄) then for ε > 0 there exists I such that∑

n+k≥I

∥γnkxnk∥wnk <
ε

2
.

Further if γi → 0, we can find K such that when i ≥ K, we have∑ ∑
2≤n+k≤i−1

|λi|wnk ∥γnkxnk∥wnk <
ε

2
and |αi| ≤ 1.

Thus

G(λix̄) ≤
∑ ∑

2≤n+k≤i−1

∥λiγnkxnk∥wnk +
∑ ∑

n+k≥i

∥γnkxnk∥wnk < ε for all i ≥ K

and hence (b) follows.

Theorem 3.8. Let w̄ = (wnk) ∈ ℓ2∞ for each n, k ≥ 1 andX be a Banach space. Then
(
ℓ2((X, ∥ · ∥), γ̄, w̄), G

)
is complete with respect to the metric d(x̄, ȳ) ≤ Q(x̄− ȳ).
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Proof. Let
(
x̄i
)
be a Cauchy sequence in ℓ2((X, ∥ · ∥), γ̄, w̄). Thus for 0 < ε < 1, there exists K such that

G
(
x̄i − x̄ℓ

)
= lim

K→∞

∑
2≤n+k≤K

∥∥γnkxi
nk − γnkx

ℓ
nk

∥∥wnk
< ε, for all i, ℓ ≥ K.

Hence for each n, k ≥ 1 ∥∥xi
nk − xℓ

nk

∥∥ < |γnk|−1
ε1/wnk < |γnk|−1

ε, for all i, ℓ ≥ K.

This shows that for each n, k,
(
xi
nk

)∞
i=1

is a Cauchy sequence in X and because of completeness of X,xi
nk →

xnk in X, say i → ∞ for each n, k ≥ 1. Being a Cauchy sequence
(
x̄i
)
is bounded, that is there exists an

L > 0 such that for all i and K ≤ 2, ∑ ∑
2≤n+k≤K

∥∥γnkxi
nk

∥∥wnk ≤ L

. First taking i → ∞ and then N → ∞ we easily obtain that

lim
K→∞

∑ ∑
2≤n+k≤K

∥γnkxnk∥wnk ≤ L

which implies that x̄ = (xnk) ∈ ℓ2((X, ∥ · ∥), γ̄, w̄). Now for any K1, by (3.8), we have∑ ∑
2≤n+k≤K

∥∥γnkxi
nk − γnkx

ℓ
nk

∥∥wnk
< ε, for all i, ℓ ≥ K.

and so letting ℓ → ∞ first and then K → ∞, we get

G
(
x̄(i) − x̄

)
= lim

K→∞

∑ ∑
2≤n+k≤K

∥∥γnkxk
nk − γnkxnk

∥∥wnk ≤ ε.

This shows that x̄k → x̄ in ℓ2((X, ∥.∥), γ̄, w̄) as i → ∞. This proves the completeness of ℓ2((X, ∥.∥), γ̄, w̄).

4 Conclusion

In this paper, we have explored some conditions that characterize the linear topological structures and
containment relations on double sequence space with their terms in a normed space as a generalization of
the familiar sequence space. In fact, these results can be used for further generalization to investigate many
other properties of the normed spaces, 2-normed spaces, and other vector-valued sequences.
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