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Abstract: Fractional calculus from the nineteenth century to date has gained considerable attention due to
its versatile applications in various scientific and engineering domains. This work examines the complex re-
lationship between fractional-order derivative and basic functions, unraveling the profound interplay between
mathematics and simulation. In this study, we illustrate the Mittag-Leffler function, Grunwald-Letnikov’s,
Riemann-Liouville’s, and Caputo’s fractional derivative and integral are presented with examples of basic
functions and their graphical presentations. The purpose of this study is to examine the features of frac-
tional derivatives from the perspective of researchers’ motivations and interests.
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1 Introduction

Fractional calculus is a branch of calculus that deals with derivatives and integrals of non-integer order,
i.e., fractional derivatives and fractional integrals. The idea of fractional calculus dates back to the mid-
17th century when Leibniz considered the possibility of using non-integer orders in his work on calculus
[9, 23, 36]. However, it was not until the 19th century that the first systematic study of fractional calculus
was carried out by Liouville and Riemann [2, 28, 29]. For suitable functions, the nth derivative of f , namely

Dnf(x) =
dnf(x)

dxn
, is well defined when n is a positive integer. In 1695, L’Hopital asked Leibniz “What

happens if n =
1

2
in Dnf ?”, the insufficient but short answer of Leibniz was: “It leads to a paradox, from

which one day useful consequences will be drawn”. In the same year, the derivative of general order was
mentioned in the letter from Leibniz to J. Bernoulli [3, 10, 15, 29, 45].

Since that time, fractional calculus has drawn the attention of many famous mathematicians, such as N.
H. Abel, M. Caputo, L. Euler, J. Fourier, A. K. Grunwald, J. Hadamard, G. H. Hardy, O. Heaviside, H. J.
Holmgren, P. S. Laplace, G. W. Leibniz, A. V. Letnikov, J. liouville, B. Riemann M. Riesz, and H. Weyl,
who have high contributions to the elaboration of this field [11, 35, 40, 43]. But it was not until 1884
that the theory of generalized operators achieved such a level in its development so as to make it suitable
as a point of departure for the modern mathematician [4, 8, 26]. The attraction behind the development
of fractional calculus is rooted in the desire to generalize the classical calculus to a wider class of func-
tions. Fractional calculus has applications in various fields, including physics, engineering, finance, and
biology [22, 39]. In physics, fractional calculus is used to describe the behavior of complex systems, such
as viscoelastic materials, fractals, and anomalous diffusion [13, 16]. In engineering, fractional calculus is
used in the analysis and design of control systems, signal processing, and image processing [7]. In finance,
fractional calculus is used to model stock price fluctuations and risk managements [11, 21]. In biology,
fractional calculus is used to model the dynamics of biological systems, such as the spread of diseases and
the growth of populations [30, 31, 32]. Fractional integrals and derivatives also appear in the theory of
control of dynamical systems, when the controlled system and the controller is described by a fractional
differential equation [7]. Fractional derivatives are used to describe the attributes of systems and processes
leads to the mathematical modeling and simulation of fractional order differential equations [17, 24].
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The fractional order derivative in differential equations have an ability to describe and capture the behavior
of complex systems and phenomena that cannot be adequately represented by classical integer-order dif-
ferential equations. By introducing non-locality and memory effects, fractional order derivatives provide a
more versatile and accurate mathematical framework for modeling a wide range of natural and engineering
systems [1, 5, 14, 20, 25, 27, 41]. Fractional order derivatives also describes like; anomalous diffusion where
the spreading of particles or quantities deviates from classical diffusion behavior, model diffusion processes
in fractal or heterogeneous media (including geophysics, hydrology and ecology), model wave propagation
in media with power-law attenuation, where the wave amplitude decays in a non-exponential manner, vis-
coelastic system, time-fractional heat conduction and control theory [13, 16, 35, 36, 40, 41, 46].

In this study, we explore fractional order derivative together with basic functions, to uncovering the fun-
damental relationships and insights that appear from their interplay. Basic functions, often comprising
elementary functions like polynomials, exponential functions, trigonometric functions, and power func-
tions, form the building blocks of mathematical relations. We use the computation application software
(MATLAB, Mathematica) for the graphical simulation [6, 37]. In summary, the history and motivation
behind the development of fractional calculus are rooted to generalize the classical calculus to a wider class
of functions and to describe phenomena that cannot be explained by classical calculus.

The present work contained following details: In Section 2, we present a brief summary of the fundamental
concepts of fractional derivative and integration terms with Mittag-Leffler function, Grunwald-Letnikov’s
fractional derivative and integration, Riemann - Liouville’s fractional derivative and integration, and Ca-
puto’s fractional derivative. In Section 3, we simulate the fractional term with basic functions. We discuses
the perceptions between Riemann- Liouville’s and Caputo fractional derivative in Section 4. The conclusion
of the overall analysis is presented in the final section of the article.

2 Terminologies in Fractional Calculus

2.1 Gamma and Beta function

Definition 2.1.1 (Gamma function). The gamma function Γ(z) is defined on a complex plane as

Γ(z) =

∫ ∞

0

e−ttz−1dt, (Re z > 0), (1)

with the relations; Γ(z + 1) = zΓ(z) and Γ(n) = (n− 1)!, n ∈ N.

Definition 2.1.2 (Beta function). The beta function B(z, ω) is defined on a complex plane as

B(z, ω) =

∫ ∞

0

tz−1(1− t)ω−1dt, (Re z > 0,Re ω > 0), (2)

with the relation, B(z, ω) = Γ(z)Γ(ω)
Γ(z+ω) .

2.2 Mittag-Leffler function

Definition 2.2.1. The Mittag-Leffler function appears in 1903 A.D., numerous field of mathematics and
physics, including fractional calculus, probability theory, and the theory of fractional differential equation.
It intimately connected to fractional calculus, which extends the traditional calculus to non-integer orders
[17, 34, 36, 44]. This function is a special in mathematics that generalizes the exponential function to
fractional and complex arguments. And two-parameter function is defined as,

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0 (3)

When the parameter α = β = 1 is equal to 1, the Mittag-Leffler function reduces to the exponential function:
E1(z) = ez. Therefore, the Mittag-Leffler function generalizes the exponential function to fractional orders.
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If β = 1, then we get

Eα,1(z) =

∞∑
k=0

zk

Γ(αk + 1)
= Eα(z)

= 1 +
z

Γ(α+ 1)
+

z2

Γ(2α+ 1)
+

z3

Γ(3α+ 1)
+ . . . , (4)

Where α is a complex parameter and z is a complex variable. This series converges for all complex z and is
an entire function of z. The Mittag -Leffler function in different form as we change the value of parameter
α and β as shown below;

1. E0,1(z) =
1

1− z
, |z| < 1 5. E2,1(−z2) = cos(z)

2. E2,1(z
2) = cosh(z) 6. E2,2(−z2) =

1

z
sin(z)

3. E1,3(z) =
ez − 1− z

z2

4. E1,m(z) =
1

zm−1

{
ez −

m−2∑
k=0

zk

k!

}
Table 1: The different form of Mittag-Leffler function with the value of parameter α and β.

Relations:

1. For all α > 0, β > 0, then Eα,β = zEα,α+β(z) +
1

Γ(β) .

Proof. We know that

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
.

Put k = n+ 1,

Eα,β(z) =

∞∑
n=−1

zn+1

Γ(α(n+ 1) + β)

=

∞∑
n=−1

zn+1

Γ(αn+ α+ β)

=
z0

Γ(β)
+

∞∑
n=0

z(n+ 1)

Γ(αn+ α+ β)

=
1

Γ(β)
+ zEα,α+β(z).

2. The fractional derivative of Eα,β(z) is
1

αz
Eα,β−1(z)−

β − 1

αz
Eα,β(z).

2.3 Grunwald-Letnikov’s (GL) fractional derivative and integration

Grunwald–Letnikov’s derivative is a basic extension of the natural derivative to fractional one. It was
introduced by Anton Karl Grunwald in 1867, and then by Aleksey Vasilievich Letnikov’s in 1868 [9, 33, 36,
42].
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2.3.1 Derivative

Consider the real valued continuous function f(t). From the definition of derivative, we have

f ′(t) =
df

dt
= lim

h→0

f(t− h)− f(t)

−h
= lim

h→0

f(t)− f(t− h)

h
(5)

Applying definition for the second, third and so on upto the nth order, we get

f ′′(t) =
d2f

dt2
= lim

h→0

f(t)− 2f(t− h) + f(t− 2h)

h2
(6)

f ′′′(t) =
d3f

dt3
= lim

h→0

f(t)− 3f(t− h) + 3f(t− 2h)− f(t− 3h)

h3
(7)

By induction we get

fn(t) =
dnf

dtn
= lim

h→0

1

hn

n∑
i=0

(−1)i
(
n

i

)
f(t− ih), (8)

where, the binomial coefficient (
n

i

)
=

n(n− 1)(n− 2), . . . , (n− i+ 1)

i!

If we generalize as a fraction with v, n, i ∈ N and h ∈ R, we get

fv
h(t) = lim

h→0

1

hv

n∑
i=0

(−1)i
(
v

i

)
f(t− ih). (9)

It follows for v ≤ n,

lim
h→0

fv
h(t) = fv(t) =

dvf

dtv
.

By generalizing the order v in natural numbers to the fractional order α, the fractional derivative of a
function f(t) with order α > 0 is obtained as

aD
α
t f(t) = lim

h→0

1

hα

∞∑
i=0

(−1)i
(
α

i

)
f(t− ih), (10)

where, nh = t − a and a and t are called the terminals. The binomial term can be expressed in the form

as

(
α

i

)
=

Γ(α+ 1)

i! Γ(α− i+ 1)
.

2.3.2 Integration

We will now show that for negative v for a regular integration. The binomial coefficient (8) can be expressed
as (

v

i

)
=

v(v − 1)(v − 2) . . . (v − i+ 1)

i!
.

Then, the value of v as negative, we get(
−v

i

)
=

−v(−v − 1)(−v − 2) . . . (−v − i+ 1)

i!
= (−1)i

(
v

i

)
. (11)

Replacing v by −v in the equation (9) we get,

f−v
h (t) = lim

h→0
hv

n∑
i=0

(
v

i

)
f(t− ih). (12)
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Let n be defined by the relation nh = t − a, such that n → ∞ as h → 0, also a and t form the limits of
integration. And fractional integration is defined as

aD
−v
t f(t) = lim

h→0
f−v
h (t).

By generalizing the order v in natural numbers to the fractional order α, the fractional integration of a
function f(t) with order α is obtained as

aD
−α
t f(t) = lim

h→0
hα

n∑
i=0

(
α

i

)
f(t− ih)

=
1

Γ(α)
lim
h→0

hα

t−a
h∑

i=0

Γ(α+ i)

Γ(i+ 1)
f(t− ih)

=
1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds. (13)

We can make similar discussion in Riemann-Liouville’s fractional integral. The GL derivative with arbitrary
order is defined as

aD
α
t f(t) =

n∑
i=0

(t− a)i−αf i(t)

Γ(i− α+ 1)
+

1

Γ(n− α+ 1)

∫ t

a

(t− s)n−αfn+1(s)ds,

=

(
d

dt

)n+1 ∫ t

a

(t− s)n−αf(s)ds. (14)

The formula (14) has been obtained under the assumption that the derivatives f i(t), i = 1, 2, . . . , n + 1
are continuous in the closed interval [a, t] and that n is an integer satisfying the condition n > α− 1. The
smallest possible value for n is determined by the inequality, n < α < n+ 1. This relation (14) is same in
Riemann-Liouville’s fractional derivative.

Example 2.3.1. The GL fractional derivative of aD
α
t f(t) of power function f(t) = (t− a)u

is
Γ(u+ 1)

Γ(u− α+ 1)
(t− a)u−α, where 0 ≤ α < n+ 1.

Example 2.3.2. aD
α
t t

k = 0, for k < α.

2.4 Riemann-Liouville’s fractional derivative and integration

The Riemann-Liouville’s integral operator is named after two scientists Bernard Riemann and Joseph
Liouville’s [35]. The Riemann-Liouville’s (RL) differintegral is very similar to the Grunwald-Letnikov’s
(GL) differintegral [15, 36]. It is based on extending the Cauchy formula for repeated integration for
non-integer values, in order to define fractional integration∫ t

a

∫ tn

a

∫ tn−1

a

· · ·
∫ t3

a

∫ t2

a

f(t1)dt1 dt2 . . . dtn−1 dtn =
1

(n− 1)!

∫ t

a

f(s)

(t− s)1−n
ds,

where fractional integral of order α for the function f(t) can be written as

aD
−α
t f(t) = aI

α
t f(t) =

1

Γ(α)

∫ t

a

f(s)

(t− s)1−α
ds. (15)

Fractional differentiation is defined by first applying fractional integration and afterwards performing regu-
lar differentiation, in a unique way. Positive values of α correspond to differentiation while negative values
of α correspond to integration.
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Definition 2.4.1 (Riemann-Liouville’s fractional derivative). Let α be a real non negative number. For
a positive integer n (n = ⌈α⌉ smallest integer > α) such that n − 1 < α ≤ n, the Riemann-Liouville’s
fractional-order differential operator of a function f(t) of order α is defined by

aD
α
t f(t) =


1

Γ(n− α)

dn

dtn

∫ t

a

(t− s)n−α−1f(s)ds, if n− 1 < α < n,

dnf

dtn
, if α = n.

(16)

When 0 < α ≤ 1, we get

0D
α
t f(t) =

1

Γ(1− α)

d

dt

∫ t

0

(t− s)−αf(s)ds. (17)

Note:. The derivative of

(i) tq is
Γ(q + 1)

Γ(q − α+ 1)
tq−α.

(ii) constant function C is
t−α

Γ(1− α)
C.

Here, the derivative of constant function is not zero. But if a = −∞, then derivative of constant is zero.

Definition 2.4.2 (Riemann-Liouville’s fractional integral). Let α be a real non negative number and f(t)
be piecewise continuous on (0,∞) and integrable on any finite subinterval [0,∞). The Riemann-Liouville’s
fractional integral of f(t) of order α > 0, for s > 0 is defined as

aI
α
t f(t) = aD

−α
t f(t) =


1

Γ(α)

∫ t

a

f(s)

(t− s)1−α
ds, α > 0,

f(t), α = 0.

(18)

Note: The integral of tq is
Γ(q + 1)

Γ(q + α+ 1)
tq+α.

Properties: Some of the properties of Riemann-Liouville’s fractional derivative and integral are listed as

i. For a function f(t) and α, β ≥ 0,

aI
α
t aI

β
t f(t) = aI

α+β
t f(t),

and aI
α
t aI

β
t f(t) = aI

β
t aI

α
t f(t).

ii. For all scalar λ, µ is Dα
t (λf(t) + µg(t)) = λDα

t f(t) + µDα
t g(t).

iii. aD
0
t f(t) = f(t).

iv. aD
α
t aI

α
t f(t) = f(t).

v. aD
α
t (f(t)g(t)) =

∞∑
k=0

(
α

k

)
aD

k
t f(t)aD

α−k
t g(t).

2.5 Caputo’s fractional derivative

The Caputo’s fractional order derivative is a generalization of the classical derivative operator to non-integer
orders [19, 35, 36]. It is a useful mathematical tool for describing and analyzing systems or phenomena
that exhibits fractional dynamics. This makes it particularly suitable for fractional calculus problems and
systems that exhibit memory or non-local behavior. The Caputo’s derivative satisfies several properties,
such as linearity, chain rule, and initial value conditions. It also has connections to other fractional calcu-
lus operators, such as the Riemann-Liouville fractional derivative and the Grunwald-Letnikov’s fractional
derivative [15, 35, 36]. The Caputo’s fractional order derivative has found applications in various scientific
and engineering fields, including physics, biology, signal processing, control systems, and finance. It allows
more appropriate modeling and analysis of complex systems that explore fractional dynamics or anomalous
behaviors [30, 36].
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Definition 2.5.1 (Caputo’s fractional derivative ). Let α be a non negative integer and n = ⌈α⌉ such that
n− 1 < α ≤ n. Then the Caputo’s fractional-order deivative operator of order α is defined by

aD
α
t f(t) =


1

Γ(n− α)

∫ t

a

(t− s)n−1−αfn(s)ds, if n− 1 < α < n,

dnf

dtn
, if α = n.

(19)

When a = 0, we get

0D
α
t f(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−1−αfn(s)ds, t > 0. (20)

Notes: The derivative of

i. a constant C is zero.

ii. tq is zero, q = 0, 1 . . . , ⌈α⌉ − 1.

iii. tβ does not exist, β ∈ R, β < ⌈α⌉ − 1

iv. tq is
Γ(q + 1)

Γ(q + 1− α)
tq−α, q > ⌈α⌉ − 1.

Properties: Some of the properties of Caputo’s fractional derivative are listed as

i. aD
α
t aI

α
t f(t) = f(t).

ii. aD
k
t f(t) = fk(t).

iii. aD
0
t f(t) = f(t).

iv. aI
α
t aD

α
t f(t) = f(t)−

m−1∑
k=0

aD
k
t f(s)

k!
(t− s)k.

v. For all scalar λ, µ is Dα
t (λf(t) + µg(t)) = λDα

t f(t) + µDα
t g(t).

vi. aD
α
t (f(t)g(t)) =

∞∑
k=0

(
α

k

)
aD

k
t f(t)aD

α−k
t g(t).

3 Simulations of Some Functions Using the Definition of Frac-
tional Order Derivative

In this section, we simulate the fractional order derivative of a basic function using various values of α.
The illustrated result demonstrates how the fractional derivative works with small changes, making the
functions more descriptive and acceptable for analysis.

3.1 Mittag - Leffler function

The different form of Mittag - Leffler function are presented in graphical form in the figures from (a)− (d).
The Mittag-Leffler function is computed with one and two variables at different intervals in Fig. (1)(a−d).
A single variable exhibits an exponential curve with a parameter α ∈ (0, 1] and z ∈ [−4, 2]. The curve is
closer to the x-axis when a value is closer to zero. When we have a two-variable function, we get different
types of curves, so converting Mittag-Leffler to a trigonometric function is beneficial while analyzing real-life
situations.
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(a) (b)

(c) (d)

Figure 1: Graphical representation of Mittag- Leffler function of Table (1) (a) Eα(z) with α = 1, 1
2 ,

1
4 ,

1
6 ,

1
8

in interval [−4, 2] (b) Eα,β with different value of (α, β) where (0, 1), (1, 1), (1, 3), (2, 1) in interval [0, 5],
(c) Eα,β with different value of (α, β) where, (0, 1), (1, 1), (1, 3), (2, 1) in interval [−5, 5] and (d) Eα,β with
different value of (α, β) where, (2, 1), (2, 2) in interval [−10, 10].

3.2 Grunwald-Letnikov’s (GL) fractional derivative

The basic function uses Grunwald-Letnikov’s fractional derivative definition and is presented in graphical
form in Fig. (2) for a function with α ∈ [0, 1] and in interval t ∈ [0, 2π].

Relations:

1. The fractional derivative of f(t) = ebt is ebtbα, where, |e−bh| ≤ 1, Re(b) > 0.

Solution: Using the definition of GL fractional derivative (10), we get,

aD
α
t e

bt = lim
h→0

1

hα

∞∑
i=0

(−1)i
(
α

i

)
eb(t−ih),

= ebt lim
h→0

1

hα

∞∑
i=0

(−1)i
(
α

i

)
e−bih,

= ebth → 0
1

hα
(1− e−bh)α, where,

∞∑
i=0

(−1)i
(
α

i

)
= (1− e−bh)α,
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aD
α
t e

bt = ebt lim
h→0

1

hα

(
bh− b2h2

2
+

a3h3

3!
− · · ·

)α

,

= ebtbα, where, |e−bh| ≤ 1 =⇒ Re(b) > 0.

2. The fractional derivative of f(t) = sin(t) and cos(t) is sin(t+ απ
2 ) and cos(t+ απ

2 ).

Solution: We note that eit = cos(t) + i sin(t). Now,

aD
α
t e

it = iα.eit = eα
iπ
2 .eit = ei(t+

απ
2 )

= cos(t+
απ

2
) + i sin(t+

απ

2
)

aD
α
t (cos(t) + i sin(t)) = cos

(
t+

απ

2

)
+ i sin

(
t+

απ

2

)
,

Equating real and imaginary part, we get

aD
α
t cos(t) = cos

(
t+

απ

2

)
, and aD

α
t sin(t) = sin

(
t+

απ

2

)
.

(a) (b)

(c) (d)

Figure 2: Graphical representation of Grunwald-Letnikov’s (GL) fractional derivative of the function (a)
eat, (b) sin(t), (c) cos(t) and (d) t2 for all t ∈ [0, 2π].

All the panels of Fig. (2) are in a 3D mesh plot with α ∈ (0, 1], which integrates the figure dimension
between 0 and 1 perfectly. Graphs of fractional derivatives of special functions such as algebraic functions,
exponential functions, and trigonometric functions are noticeable. This indicates that the fractional order
of the derivatives is an effective solution to many problems. It is additionally helpful in obtaining novel
solutions to many existing problems and in analyzing and designing systems. They also provide a powerful
tool to analyze and control chaotic systems.
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3.3 Riemann-Liouville’s (RL) fractional derivative

The basic function of exponential and trigonometric are used Riemann-Liouville’s fractional derivative
definition and is presented in graphical form as a function with α ∈ (0, 1] and in interval t ∈ [0, 4π] and
t ∈ [0, 6].

(a) (b)

(c) (d)

Figure 3: Graphical representation of Riemann-Liouville’s (RL) fractional derivative of the function (a)
cos(t), (b) sin(t), (c) e2t, and (d) et cos(t) for all t ∈ [0, 4π] and t ∈ [0, 6].

Fig. (3)(a and b) illustrate the trigonometric functions. When t = 0, the derivative of cos(t) captures the
special nature of the curve, as α → 0 the curves display its entire property with a different value of α as
the value of t increases. Similarly, the nature of the derivative for the sin(t) demonstrated with a unique
nature of the curve. In Fig. (3)(c and d), the dynamics of the curve changes as the values of t increase. As α
fluctuates between 0 and 1, the characteristics of the curve changes over the time interval. For illustrative
purposes, some examples can be found on the RL-Fractional integral.

Example 3.3.1. RL fractional integral of the function f(t) = ln 2 of order α = 1
2 .

Solution: Using the definition (18), we get

I
1
2 ln 2 =

1

Γ( 12 )

∫ t

0

(t− s)(
1
2−1) ln 2 ds

=
ln 2

Γ( 12 )

∫ t

0

ln 2√
t− s

ds

=
2 ln 2√

π

√
t

= ln 4

√
π

t
.

Example 3.3.2. The RL fractional integral of the function f(t) = et of order α = 1
2 is eterf (

√
t).

Example 3.3.3. The RL fractional integral of the function f(t) = sin(t), cos(t), ebt of order α > 0 is

sin
(
t− απ

2

)
, cos

(
t+ απ

2

)
,
ebt

bα
, which is true on the interval (−∞, t).
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3.4 Caputo’s fractional derivative

Using Caputo’s definition of the fractional derivative, the basic functions of the exponential and trigono-
metric functions are presented graphically with α ∈ (0, 1] and in interval t ∈ [0, 4π].

(a) (b)

(c) (d)

Figure 4: Caputo’s fractional derivative of the function cos(t), sin(t), e2t, and et cos(t) for t ∈ [0, 4π].

In comparison to the Riemann-Liouville’s fractional derivative, Caputo’s derivative is more effective in
curve nature of trigonometric and exponential functions, which is graphically presented in Fig. (4)[(a−d)].

4 Perceptions on Riemann-Liouville’s and Caputo’s Fractional
Derivative

In this section, we discussed about the Riemann-Liouville and Caputo fractional derivative relations from
the literature [12, 18, 36, 38].

� The derivative of the Riemann-Liouville constant is non-zero, but Caputo’s fractional derivative of
constant function is zero.

� If f(t) ∈ Cn[0,∞) and p− 1 < α < p ∈ Z+, then

C
0 D

α
t f(t) =

RL
0 Dα

t

(
f(t)−

p−1∑
k=0

tk

k!
fk(t)

)
.

� The Riemann-Liouville fractional derivative of an arbitrary function that is not continuous at the
origin. One of the most important advantages of the Caputo fractional derivative is that it allows
the inclusion of traditional boundary and starting conditions into the solution of the problem. The
illustrate form of fractional differential equation for Riemann-Liouville’s and Caputo’s sense are pre-
sented.

For Riemann-Liouville’s inital value problem

0D
α
t g(t) = F (g(t), t), m− 1 ≤ α < m ∈ Z+, t > 0

0D
α−k
t g(t)|t=0 = gk0 , k = 1, 2, . . . ,m (21)
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and it’s Laplace transform

L[0Dα
t g(t)] = sαL[0Dα

t g(t)]−
m−1∑
0

sk0D
α−k−1
t g(t)|t=0, m− 1 ≤ α < m ∈ Z+, t > 0 (22)

For Caputo’s sense initial value problem

0D
α
t g(t) = F (g(t), t), m− 1 < α ≤ m ∈ Z+, t > 0

gk(0) = gk0 , k = 0, 1, 2, . . . ,m (23)

and its Laplace transform

L[0Dα
t g(t)] = sαL[0Dα

t g(t)]−
m−1∑
0

sα−k−1gk(0), m− 1 < α ≤ m ∈ Z+, t > 0 (24)

For example, if g(t) is a displacement, then g′(t) will be the velocity, and g′′(t) the acceleration. Then,
the initial value problem is difficult and complex, which do not have clear physical background and
meaning in Riemann-Liouville’s equation (21). But in Caputo’s equation (23) has a clear physical
meaning. So, Caputo’s fractional order system is often used more for modeling and analysis of different
model equations.

� For the Riemann-Liouville’s fractional derivative, let α1, α2 ∈ R+. Then

0D
α1
t 0D

α2
t g(t) ̸= 0D

α1+α2
t g(t) ̸= 0D

α2
t 0D

α1
t g(t).

For example, 0D
1
2
t 0D

1
tC = 0, 0D

1
t 0D

1
2
t C = C

Γ( 1
2 )
t−

1
2 , 0D

3
2
t C = C

Γ( 1
2 )
t−

3
2 .

And for the Caputo’s fractional derivative, let α1, α2 ∈ R+, α1 + α2 ≤ 1. Then

0D
α1
t 0D

α2
t g(t) = 0D

α1+α2
t g(t) = 0D

α2
t 0D

α1
t g(t).

For example, as α1+α2 ≤ 1, 0D
0.4
t 0D

0.3
t (t) = 1.1142t0.3 = 0D

0.3
t 0D

0.4
t (t) = 0D

0.7
t (t). And α1+α2 > 1,

we get 0D
0.6
t 0D

0.5
t (t) = 1

Γ(0.9) t
−0.1, 0D

1.1
t (t) = 0.

� The fractional derivative of the instantaneous exponential and the Mittag-Leffler function has a sin-
gularity at the origin of an arbitrary function and is constant at the origin. The range of applications
of the Riemann-Liouville fractional derivative is restricted by these limitations. Higher regularity re-
quirements are needed for the differentiability to compute the fractional derivative of a function in the
Caputo sense. To do this, we must first determine the derivative of the function. Caputo derivatives
are defined only for differentiable functions, although fractional Riemann-Liouville derivatives of all
degrees less than one can exist for functions without first-order derivatives.

� Riemann-Liouville’s derivative have a memory effect, that they depend on the entire past history of the
function. In Caputo’s derivatives, along with the memory effect, they incorporate initial conditions
that account for the history of the function making them more suitable for modeling real-world
phenomena.

� Numerical approximations of Riemann-Liouville’s derivative can be more challenging due to the non-
causal nature of the derivative. Caputo’s derivative are often easier to implement and more commonly
used in practical applications.

5 Conclusion

In this study, the graphical simulation of basic functions applying Mittag-Leffler functions, Grunwald-
Letnikov’s fractional derivative, Riemann-Liouville’s fractional derivative, and Caputo’s fractional deriva-
tive yielded a noticeable impact in the generalization of classical functions. The solution of basic functions
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using fractional integrals inspires the solution of other analogous functions. So, we can conclude by dis-
cussing potential options for further exploration and research in the future direction of fractional-order
derivatives with basic functions. Comparison between Riemann-Liouville’s and Caputo’s fractional system,
Caputo’s fractional order sense are appropriate for modeling and analysis of different model equations. As
this field continues to progress, there are promising opportunities to delve deeper into its theoretical un-
derpinnings and extend its practical applications. By unraveling the connections between fractional-order
derivatives and fundamental mathematical constructs, researchers can expand their mathematical toolbox
and pave the way for enhanced problem-solving capabilities across a spectrum of scientific and engineering
domains.
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