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Abstract: In this paper, we study error estimates in the maximum norm in the context of solving Pois-
son’s equation numerically when approximated the Five-Point Laplacian method using the discrete maximum
principle. The primary objective is to assess the accuracy of this numerical approach in solving Poisson’s
equation and to provide insights into the behavior of error estimates. We focus on the estimates of maxi-
mum norm of the discrete functions defined on a grid in a unit square as well as in a square of side s, and
estimate errors measured in the maximum norm.
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1 Introduction

1.1 Definitions

Poisson’s equation: It is a second-order partial differential equation that defines a scalar field when
there are localized sources. Poisson’s equation commonly arises in electrostatics, where it describes the
electric potential produced by a charge distribution. Mathematically, two dimensional Poisson’s equation
is expressed as [6]

∂2α(x, y)

∂x2
+

∂2α(x, y)

∂y2
= f(x, y) (1)

where the non-homogeneous term f : Ω → R is called a source term, depending on the application.

On the other hand, Laplace’s equation that describes a steady-state or equilibrium situation in which a
scalar field, does not vary with time. It represents situations where the field is in a state of equilibrium
and has no sources or sinks. Mathematically, two dimensional Laplace’s equation is expressed as [5],[6]

∂2α(x, y)

∂x2
+

∂2α(x, y)

∂y2
= 0. (2)

Harmonic function[5]: A function α ∈ C2(Ω)∩C(Ω) is said to be harmonic in Ω if it satisfies the Laplace’s
equation. If △α ≥ 0 then α is called sub-harmonic in Ω. If △α ≤ 0, then α is called super-harmonic in Ω.

1.2 Maximum principle

Maximum and minimum values are crucial concepts used in a wide range of fields, including mathematics,
statistics, optimization, programming, and real-world applications, to determine the maximum and mini-
mum values or to optimize various parameters.

The maximum principles have been applied in mathematical literature since the early 19th century for so-
lutions of second-order elliptic partial differential equations (PDEs). The maximum principle of harmonic
functions was introduced by Gauss in 1839 on the basis of the mean-value theorem. Over the years, it
has been further developed and expanded by various authors. In 1927, H. Hopf extended strong maximum
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principle for harmonic function, stating that the function cannot have an interior maximum unless it is
constant [7],[15]. It had an amazing impact in the theory and applications of PDEs which later became an
essential tool for establishing important results of linear and non-linear PDEs.

Indeed, the maximum principle is intricately linked to the non-negativity property, a fundamental trait of
classical solutions for second-order PDEs. The significant attributes of the maximum principles encompass
solution uniqueness and stability, the comparison principle, and the non-negativity characteristic. These
principles hold substantial importance in both theoretical and numerical aspects of solving such equations.
They are critical for understanding the behavior of solutions and ensuring their reliability in various math-
ematical and computational contexts [1],[4].

The applicability of the maximum principle is primarily limited to second-order elliptic equations, notably
Laplace’s and Poisson’s equations. This limitation stems from the fact that second-order derivatives of
a function provide insights into the function’s behavior at extrema, essentially stating that the gradient
of a function at a maximum or minimum point is zero. The strong maximum principle asserts that if a
function attains its maximum value within the domain’s interior, the function must be uniformly constant
throughout. On the other hand, the weak maximum principle indicates that the maximum value of the
function is located on the boundary of the domain [2],[10],[12] as shown in Figure 1.

Figure 1: Extreme temperature at the boundaries.

1.3 Discrete maximum principle

The term ’discrete’ implies that the numerical solution is available at finite number of specific points within
the domain. The discrete maximum principles, appeared in early 1970s which are the modified form of
the maximum principles. Over the past few decades, there has been extensive research conducted on them
within the realm of linear PDEs and more recently also in non-linear PDEs. This is used to determine the
highest and lowest values of grid function at grid points of the mesh [13],[15].

It is an important property of finite difference schemes of second-order PDEs that is the Poisson’s equation is
employed to derive various outcomes, including but not limited to uniqueness, boundedness, the comparison
principle, and the non-negativity property. In brief, the discrete maximum principle mirrors the traditional
maximum principle in a discrete version. It forms a fundamental attribute when dealing with solutions to
elliptic PDEs, such as Poisson’s equation, in the discrete domain. Essentially, it is a crucial concept for
understanding and analyzing discrete solutions of these equations. When approximating Poisson’s equation
using the five-point Laplacian, the maximum principle ensures that the numerical solution satisfies certain
qualitative properties, which can help us assess the correctness of the solution.

1.4 Error estimates

To estimate the error in the maximum norm when approximating solutions to Poisson’s equation using the
five-point Laplacian method, it is necessary to grasp various key concepts. These include comprehending
the finite difference method, having a clear understanding of the maximum norm, and being skilled in
error analysis techniques. These elements collectively contribute to the accurate assessment of error in the
context of solving Poisson’s equation.

It approximates derivatives by finite differences and discretizes the domain into a grid. In the context of
solving Poisson’s equation, we use a central difference scheme to approximate the second-order derivatives.
The maximum norm, also known as the infinity norm or supremum norm, is a way to measure the maximum
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absolute value of a function over a given domain. The maximum norm of α(x, y) on D (domain) is defined
as

∥α∥∞ = max{|α(x, y)| : (x, y) ∈ D.

Regarding solutions of Poisson’s equation, we want to estimate the error in this maximum norm. In the
process of assessing the error using the maximum norm in the finite difference method for approximating
solutions, it is a standard procedure to compare the numerical solution to the exact solution. This com-
parative analysis serves as a common approach to ascertain the accuracy of the numerical approximation.
This approach involves assessing the disparity between the computed result and the theoretically precise
outcome. It is a standard procedure for evaluating the accuracy of the numerical approximation. The error
E is defined as [12]

E = ∥αexact − αnumerical∥∞.

To estimate this error, we need to have the exact solution, which may not always be possible. If we have
an analytical solution, we can compute the error directly.

However, in many practical cases, we might not have an exact solution, and we would rely on convergence
analysis. This involves solving the problem on grids of increasing resolution (i.e., refining the mesh) and
comparing the solutions. The error should decrease as we refine the mesh, and estimate the convergence
rate. The convergence rate tells how fast the error decreases as we refine the grid. For many numerical
methods, including finite differences, the error often scales with the grid spacing, i.e., h raised to a power,
which can be determined through empirical observations or analysis. Hence, estimating the error in the
maximum norm of Poisson’s equation approximated by the five-point Laplacian involves comparing the
numerical solution to the exact solution or using convergence analysis on successively refined grids to
estimate the order of convergence. The precision of numerical solutions is assessed using the maximum
norm as the measuring method. Regarding error estimates in the maximum norm, the maximum principle
provides a useful qualitative check on the accuracy of the numerical solution.

1.5 Discrete form of Poisson’s equation

The two dimensional Poission’s equation is ∂2α
∂x2 + ∂2α

∂y2 = f(x, y), where α(x, y) is the exact solution of

Poisson’s equation [3],[12]. Using the finite difference approximations and difference notations [14], we
obtain the following finite difference schemes for Poission’s equation.

The five point Laplacian scheme:
Let βl,m be the grid function at grid point (l,m). Using the central-difference operator for the second-order
derivatives are [13]

δ2xβl,m =
βl+1,m − 2βl,m + βl−1,m

h2

and

δ2yβl,m =
βl,m+1 − 2β(l,m) + βl,m−1

k2
.

Substituting in discrete version of Poisson’s equation

δ2xβl,m + δ2yβl,m = fl,m.

We obtain

βl+1,m − 2βl,m + βl−1,m

h2
+

βl,m+1 − 2βl,m + βl,m−1

k2
= fl,m. (3)

For h = k,

▽2
hβ =

1

h2
[βl+1,m + βl−1,m + βl,m+1 + βl,m−1 − 4βl,m] (4)

is the five-point Laplacian for Poisson’s equation.

30



Error Estimates in the Maximum Norm for the Solution of Poisson’s Equation Approximated by . . .

2 Discrete Maximum Principle for Poisson’s Equation

The maximum principle for Poisson’s equation is fundamental property that governs the behavior of its
solutions in a domain. The maximum principle of Poisson’s equation states that if α is the solution of

Poisson’s equation ∂2α
∂x2 + ∂2α

∂y2 = f(x, y) in a bounded domain D with certain regularity conditions, then

maximum (or minimum) value of α occurs on the boundary ∂D, rather than in the interior of D, provided
that f is continuous [5]. Likewise, the strong maximum principle states that the maximum (or minimum)
value of α attain at the interior point of the domain D, then α must be a constant [5].

On the other hand, the discrete maximum principle adapted to the numerical solutions obtained through
discretization methods, that is, the continuous domain is discretized Poisson’s equation (3) on a grid in a
domain D. Then the maximum (or minimum) value of βl,m over all grid points in the interior of D cannot
be larger than the maximum value of βl,m on the boundary of D. It is important in ensuring the stability
and accuracy of numerical solutions and preventing unphysical behaviors in the computed results. It is a
discrete analog of the maximum principle [2].

Theorem 2.1. [13]
If condition ▽2

hβ ≥ 0 is met within a specific region, then the highest value of β within that region is
reached at its boundary. Likewise, if condition ▽2

hβ ≤ 0 holds true, then the lowest value of β is achieved
at the boundary of that region where ▽2

h = δ2x + δ2y .

Proof. (Using five-point Laplacian)
From the equation (3), the discrete version of Poisson’s equation is

βl+1,m − 2βl,m + βl−1,m

h2
+

βl,m+1 − 2βl,m + βl,m−1

k2
= fl,m

1

h2
[βl+1,m − 2βl,m + βl−1,m + η(βl,m+1 − 2βl,m + βl,m−1)] = fl,m, where h ̸= k, η =

h2

k2
.

For h ̸= k, the five-point Laplacian is

▽2
hβ =

1

h2
[βl+1,m − 2βl,m + βl−1,m + η(βl,m+1 − 2βl,m + βl,m−1)].

Since ▽2
hβ ≥ 0,

1

h2
[βl+1,m − 2βl,m + βl−1,m + η(βl,m+1 − 2βl,m + βl,m−1)] ≥ 0

βl+1,m + βl−1,m + ηβl,m+1 + ηβl,m−1 ≥ 2(1 + η)βl,m.

Let the maximum of β is obtained on an interior point βl,m and one of its neighborhood has value strictly
less than βl,m. Then,

2(1 + η)βl,m > βl+1,m + βl−1,m + ηβl,m+1 + ηβl,m−1 ≥ 2(1 + η)βl,m,

which is a contradiction. Hence, On the boundary, β reaches its maximum value for this region.
In the same manner, when ▽2

hβ ≤ 0 by considering ▽2
h(−β) ≥ 0, we conclude that max(−β) is reached on

the boundary and hence minimum (β) is reached on the boundary.

3 Applications of Discrete Maximum Principle

The discrete maximum principle, which ensures that numerical solutions to partial differential equations
maintain certain properties, is a crucial concept in various fields of science and engineering. Its applications
are widespread and play a vital role in ensuring the accuracy, stability, and physical realism of numerical
simulations. There are many more applications of discrete maximum principle, among them we focus on
the error estimate of maximum norm of discrete version of Poisson’s equation where discrete maximum
principle provides a valuable tool for obtaining upper and lower bounds in the numerical solution [13].
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3.1 Error in the maximum norm

Estimating the error in the maximum norm of discrete version Poisson’s equation involves comparing nu-
merical solutions to exact solutions. For a discrete function βl,m define on a domain Ω, the maximum norm
is defined as [8],[12],[13]

||β||∞ = ||β||∞,Ω = maxl,m |βl,m|, where βl,m is discrete function.

The global error global E is defined by [9],[12]

E = ||α− β||∞ = sup|α(xl, ym)− βl,m|. (5)

Local Truncation Error: Local truncation error is the discrepancy at grid points between the differential
equation and its finite difference approximation. It assesses the degree to which a discretization with finite
differences approximates the differential equation.

For Poisson’s equation with Dirichlet’s boundary value is
∂2α

∂x2
+

∂2α

∂y2
= f(x, y), 0 < x, y < 1 and

α(x, 0) = α(x, 1) = α(0, y) = α(1, y) = 0,
where α(x, y) is the exact solution of Poisson’s equation.

Using central finite difference schemes for second-order derivatives in the x- and y-directions respectively.
Let βl,m be the grid function at grid point (l,m). Then the discrete version of Poission’s equation is

βl−1,m − 2βl,m + βl+1,m

h2
2

+
βl,m−1 − 2βl,m + βl,m+1

h2
1

= flm + Tlm, (6)

where l = 1, 2, ...,m− 1,m = 1, 2, ..., n− 1 and Tlm is the local truncation error at the grid point [9], where
the solution is unknown, that is

Tlm ≈ h2
1

12

∂4

∂x4
α(xl, ym) +

h2
2

12

∂4

∂y4
α(xl, ym) + ◦(h4

1, h
4
2).

When h = max{h1, h2}, Tlm ≈ h2

12 [
∂4

∂x4α(xl, ym) + ∂4

∂y4α(xl, ym)] (7)

If ▽α(x, y) =
∂2α

∂x2
+
∂2α

∂y2
= f(x, y) and ▽hβl,m =

βl−1,m+βl+1,m+βl,m−1+βl,m+1−4βl,m

h2 (five point Laplacian)

Then, T (xl, ym) = ▽hβl,m −▽α(xl, ym).

A finite difference scheme is consistent if T (xl, ym) = limh→0T (xl, ym) = limh→0▽h βl,m−▽α(xl, ym) = 0

Consider Aα = F + T , Aβ = F and E = β − α,
where A is the coefficient matrix of the finite difference equations, F is the modified source term, T is the
local truncation error at the grid point, E is the global error.
Then, A(α− β) = T ⇒ −AE = T .
If A is non-singular then ∥ E ∥=∥ A−1T ∥ ≤ ∥ A−1 ∥∥ T ∥ [9].
Hence, global error E depends on both ∥ A−1 ∥ and local truncation error ∥ T ∥.
Hence, finite difference method for BV P is stable if A is invertiable and ∥ A−1 ∥≤ C (bounded by a
constant) for all 0 < h < h0, where constants C and h0 are independent of h.
Therefore, a finite difference method is consistent and stable iff it is convergent.

For example, for Poisson’s equation with Dirichlet’s boundary values is
∂2α

∂x2
+

∂2α

∂y2
= f(x, y), 0 < x, y < 1

and α(x, 0) = α(x, 1) = α(0, y) = α(1, y) = 0,
where α(x, y) = cosπxcosπx is the exact solution of Poisson’s equation. The plot of comparative solutions
that is exact and numerical solutions with error as shown in the Figure 2.
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Figure 2: Numerical and exact solutions of Poission’s equation with error.

Theorem 3.1. [8],[13] If a discrete function βl,m is defined on a grid in a square of side s with βl,m = 0
on the boundary, then

∥ β ∥∞≤ s2

8
∥ ▽2

h ∥∞ .

Proof. Define the function fl,m in the interior of the square of side s by

▽2
hβl,m = fl,m and βl,m|∂Ω = 0,

where Ω is an open, connected and bounded open set in R2.
We have

||β||∞ = max
(l,m)∈I

|βl,m|, where I = {(l,m) : (xl, ym) ∈ (0, s)× (0, s)}.

Since ▽2
hβl,m = fl,m,

−max|fl,m| ≤ ▽2
hβl,m ≤ max|fl,m| ⇒ −||f ||∞ ≤ ▽2

hβl,m ≤ ||f ||∞ (i)

Let us construct a grid function,

γl,m =
1

4
[(xl −

s

2
)2 + (ym − s

2
)2],

on all grid-points including those on the boundary. Note that γ is non-negative.
Claim-1:

▽2
hγl,m = 1 and γl,m ≥ 0.

Clearly, γl,m ≥ 0.
We have,

▽2
hγl,m = δ2xγl,m + δ2yγl,m (ii)

From the second-order symmetric central difference approximation to the second derivative of the grid
function γl,m, we have

δ2xγl,m =
γl+1,m − 2γl,m + γl−1,m

h2

=
1

4h2
{[(xl+1 −

s

2
)2 + (ym − s

2
)2]− 2[(xl −

s

2
)2 + (ym − s

2
)2] + [(xl−1 −

s

2
)2 + (ym − s

2
)2]}
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=
1

4h2
[(xl + h− s

2
)2 − 2(xl −

s

2
)2 + [(xl − h− s

2
)2] =

1

2
.

Similarly, δ2yγl,m = 1
2 .

Hence, from (ii), we obtain ▽2
hγl,m = 1.

Claim-2: γl,m ≤ s2

8 on ∂Ω
We have,

γl,m =
1

4
[(xl −

s

2
)2 + (ym − s

2
)2] ≤ 1

4
[(s− s

2
)2 + (s− s

2
)2] =

1

4
(
s2

4
+

s2

4
) =

s2

8
.

By using inequality (i) and linearity, we obtain

▽2
h(βl,m + ||f ||∞γl,m) = ▽2

hβl,m + ||f ||∞ ▽2
h γl,m) = ▽2

hβl,m + ||f ||∞ ≥ 0.

By the discrete maximum principle,

βl,m ≤ βl,m + ||f ||∞γl,m ≤ βl,m|∂Ω + ||f ||∞γl,m|∂Ω = 0 + ||f ||∞γl,m|∂Ω ≤ s2

8
||f ||∞.

Similarly, using inequality (i), we obtain βl,m ≥ − s2

8 ||f ||∞.
Combining them, we obtain

−s2

8
||f ||∞ ≤ βl,m ≤ s2

8
||f ||∞ ⇒ |βl,m| ≤ s2

8
||f ||∞ ⇒ max|βl,m| ≤ s2

8
||f ||∞

||β||∞ ≤ s2

8
||f ||∞.

Since
|| ▽2

h β||∞ = max
(l,m)∈I

| ▽2
h β| = max

(l,m)∈I
|fl,m| = ||f ||∞.

Therefore,

||β||∞ ≤ s2

8
|| ▽2

h βl,m||∞.

Corollary 3.1. [13] If a discrete function βl,m is defined on a grid on the unit square with βl,m = 0 on the
boundary, then

∥ β ∥∞≤ 1

8
∥ ▽2

h ∥∞ .

Theorem 3.2. [8],[13] If βl,m is a discrete function defined on a grid on the domain −1 < x < 1, −1 <
y < 1, except for 0 < x < 1, −1 < y < 0, i.e., the points in quadrants first, second and third with
|x| and |y| less than 1 and βl,m = 0 on the boundary. For this domain prove the estimate

∥ β ∥∞≤ 5

2
∥ ▽2

hβ ∥∞ .

Proof. Let given domain be Ω = {(x, y) ∈ first, second and third quadrants with |x|, |y| < 1}.
Define the function fl,m in the interior of the Ω by

▽2
hβl,m = fl,m and βl,m|∂Ω = 0.

Since ▽2
hβl,m = fl,m, −max|fl,m| ≤ ▽2

hβl,m ≤ max|fl,m|

−||f ||∞ ≤ ▽2
hβl,m ≤ ||f ||∞ (i)

Let us construct a grid function,
γl,m = (xl+

1
2 )

2+(ym− 1
2 )

2, on all grid-points including those on the boundary. Note that γ is non-negative.
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Claim-1: ▽2
hγl,m = 4 and γl,m ≥ 0,

We have,
▽2

hγl,m = δ2xγl,m + δ2yγl,m. (ii)

From the second-order symmetric central difference approximation to the second derivative of the grid
function γl,m, we obtain

δ2xγl,m =
γl+1,m − 2γl,m + γl−1,m

h2

=
1

h2
{[(xl+1+

1

2
)2+(ym− 1

2
)2]−2[(xl+

1

2
)2+(ym− 1

2
)2]+[(xl−1+

1

2
)2+(ym− 1

2
)2]}

=
1

h2
[(xl + h+

1

2
)2 − 2(xl −

1

2
)2 + [(xl − h+

1

2
)2] = 2.

Similarly, δ2yγl,m = 2.
Hence, from (ii), we obtain ▽2

hγl,m = 4.

Claim-2: γl,m ≤ 5
2 on ∂Ω

We have, γl,m = [(xl +
1
2 )

2 + (ym − 1
2 )

2] ≤ [(1 + 1
2 )

2 + (1− 1
2 )

2] ≤ 5
2 .

By using linearity and inequality (i), we obtain

▽2
h(βl,m + ||f ||∞γl,m) = ▽2

hβl,m + ||f ||∞ ▽2
h γl,m) = ▽2

hβl,m + 4||f ||∞ ≥ 0.

By the discrete maximum principle,

βl,m ≤ βl,m + ||f ||∞γl,m ≤ βl,m|∂Ω + ||f ||∞γl,m|∂Ω = 0 + ||f ||∞γl,m|∂Ω ≤ 5

2
||f ||∞.

∴ βl,m ≤ 5
2 ||f ||∞.

Similarly, by using inequality (i), we obtain, βl,m ≥ − 5
2 ||f ||∞.

Combining them, we obtain

−5

2
||f ||∞ ≤ βl,m ≤ 5

2
||f ||∞ ⇒ |βl,m| ≤ 5

2
||f ||∞ ⇒ max|βl,m| ≤ 5

2
||f ||∞ ⇒ ||β||∞ ≤ 5

2
||f ||∞.

Since
|| ▽2

h β||∞ = max
(l,m)∈I

| ▽2
h β| = max

(l,m)∈I
|fl,m| = ||f ||∞.

Therefore, ||β||∞ ≤ 5
2 || ▽

2
h βl,m||∞.

Theorem 3.3. [8],[13] Let α(x, y) be the solution to▽2α = f on the unit-square having Dirichlet boundary
conditions and let βl,m be the solution to ▽2

hβ = f with βl,m = α(xl, ym) on the boundary. Then,

∥ E ∥∞=∥ α− β ∥∞≤ ch2 ∥ ∂4α ∥∞,

where ∥ ∂4β ∥∞ represents the greatest absolute value among all the fourth derivatives of β within the
interior of the square.

Proof. We have,

∥ ∂4α ∥∞= max
(x,y)∈Ω

{|∂
4u

∂x4
|, |∂

4α

∂y4
|}.

Now,
▽2

hαl,m = ▽2
hα(xl, ym) = δ2xαl,m + δ2yαl,m

=
αl+1,m − 2αl,m + αl−1,m

h2
+

αl,m+1 − 2αl,m + αl,m−1

h2
. (i)

By Taylor series expansion, we obtain

αl±1,m = α(xl±h, ym) = αl,m±h
∂

∂x
α(xl, ym)+

h2

2

∂2

∂x2
α(xl, ym)±h3

6

∂3

∂x3
α(xl, ym)+

h4

24

∂4

∂x4
α(xl+θ1h, ym).
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and

αl,m±1 = α(xl, ym±h) = αl,m±h
∂

∂y
α(xl, ym)+

h2

2
h
∂2

∂y2
α(xl, ym)±h3

6

∂3

∂y3
α(xl, ym)+

h4

24

∂4

∂y4
α(xl, ym+θ2h).

Putting these values in (i), we obtain

▽2
hαl,m = [

∂2

∂x2
α(xl, ym) +

∂2

∂y2
α(xl, ym)] +

h2

12
[
∂4

∂x4
u(xl + θ1h, ym) +

∂4

∂y4
u(xl + ymθ2h)]

= ▽2
hα(xl, ym) +

h2

12
[
∂4

∂x4
α+

∂4

∂y4
u]

= f(xl, ym) +
h2

12
[
∂4

∂x4
α+

∂4

∂y4
α] [since▽2 α = f ]

= ▽2
hβl,m +

h2

12
[
∂4

∂x4
α+

∂4

∂y4
α].

Thus, we have {
▽2

h(αl,m − βl,m) = h2

12 [
∂4

∂x4α+ ∂4

∂y4α]

αl,m − βl,m = 0 on ∂Ω.

Then, by above mentioned corollary

∥ E ∥∞=∥ αl,m − βl,m ∥∞≤ 1

8
∥ h2

12
[
∂4

∂x4
α+

∂4

∂y4
α] ∥∞≤ h2

96
∥ [

∂4

∂x4
α+

∂4

∂y4
α] ∥∞= ch2 ∥ ∂4α ∥∞ .

Therefore,

∥ α− β ∥∞≤ ch2 ∥ ∂4α ∥∞, where c =
1

96
.

4 Conclusion

In conclusion, this study was addressed the critical issue of error estimation in the maximum norm for
numerical solution of Poisson’s equation when employing the five-points Laplacian and the discrete maxi-
mum principle. Our finding have demonstrated the importance of accurate error assessment in ensuring the
reliability and precision. We have observed that maximum norm of discrete function βl,m with βl,m = 0 on
the boundary is estimated on grid points in a square of side s as well as grid points in first, second and third
quadrants on the unit square with |x| < 1, |y| < 1. We, also, observed that error estimates of analytic and
numerical solutions of Poisson’s equation on the unit square with Dirichlet’s boundary condition. These
insights have implications not only for the field of numerical method but also for practical applications in
real-world phenomena like fluid dynamics as well as structural analysis.

Looking ahead, there are several promising direction for future research such as the application of error es-
timates to non-linear Poisson-like equation as well as extend to three-dimensional Poisson-like problem and
time dependent equations. As we continue to refine error estimation techniques and explore new avenues,
we can contribute to the ongoing advancement of scientific computing and mathematical modeling.
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