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Abstract: In this paper, a one-step fourth-order block scheme for solving fourth order Initial Value Prob-
lems (IVPs) of the Ordinary Differential Equations (ODE) is developed using interpolation and collocation
techniques. The derived schemes contain two hybrid points which are chosen such that 0 < w1 < w2 < 1
where w1 and w2 are defined as hybrid points. The characteristics of the developed schemes are analyzed.
The obtained schemes are applied in block form to solve some fourth-order IVPs and the numerical results
show the accuracy and effectiveness of the block scheme compared with some existing methods.
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1 Introduction

The pursuit of effective and accurate numerical methods for solving fourth-order IVP of the form

µ(iv) = g(x, µ, µ′, µ′′, µ′′′), x ∈ [x0, xN ]

subject to the initial conditions

µ(x0) = µ0, µ′(x0) = µ′
0, µ′′(x0) = µ′′

0 , µ′′′(x0) = µ′′′
0 , (1)

where x0 and xN represent the start and end points of the integration interval respectively, µ0, µ
′
0, µ

′′
0 , µ

′′′
0

are real constants and g(x, µ, µ′, µ′′, µ′′′) is a continuous real function, has been a fundamental attention
of scientific research in the field of mathematical modeling and numerical analysis. The fourth-order IVPs
have its application in electric circuits [8], neural networks [17], fluid dynamics [4], beam-theory [10] and
some other areas of real life problems. The exact solution of some fourth-order IVPs do not exist hence
the need for numerical methods to provide approximate solutions to (1). Some authors had to convert the
fourth-order IVPs to system of first-order IVPs before applying numerical methods to solve the resulting
system of first-order IVPs. The conversion of (1) into systems of first-order initial value problems (IVPs)
has resulted in significant computational challenges and inefficient utilization of computer resources. These
setbacks were addressed by Awoyemi [6, 7] which was also mentioned in Kayode [12]. While some other
scholars solved the fourth-order IVPs directly without reducing to system of first-order IVPs and examples
of such authors are Adesanya et al. [1], Adeyeye and Omar [2], Akinnukawe and Odekunle [3], Areo and
Omole [5], Jator [10], Kayode [11, 12], Kuboye et al. [13, 14], Mohammed [18] to mention few but the
accuracy of their schemes in terms of error can be improved upon.

Hence, this study considers the development of a new numerical method with optimal hybrid points to mark
a significant step in providing efficient numerical solution to fourth-order IVPs. In this study, optimized
hybrid points will be chosen such that 0 < w1 < w2 < 1 holds and these hybrid points are introduced in
the derivation of the block scheme and the developed block method is applied to solve fourth-order IVPs
(1) directly. This approach aims to produce better accuracy compared with the existing methods.

2 Derivation of the One-step Block Algorithm

The solution of equation (1) is assumed on an interval [xn, xn+1] which is locally approximated by a
polynomial of the form
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µ(x) =

(p1+p2−1)∑
r=0

ϕrx
r, (2)

with corresponding derivatives as

µ′(x) =

p1+p2−1∑
r=1

rϕrx
r−1, (3a)

µ′′(x) =

p1+p2−1∑
r=2

r(r − 1)ϕrx
r−2, (3b)

µ′′′(x) =

p1+p2−1∑
r=3

r(r − 1)(r − 2)ϕrx
r−3, (3c)

where p1 = 1 and p2 = 7 are the interpolation and collocation points respectively. The two hybrid points
(w1 and w2) are considered in such a way that 0 < w1 < w2 < 1 holds. Interpolating equation (2) and
collocationg equations (3a)− (3c) at given grid points, we have

µn+j = µ(xn+j), j = 0, (4a)

µ′
n+j = µ′(xn+j), j = 0, (4b)

µ′′
n+j = µ′′(xn+j), j = 0, (4c)

µ′′′
n+j = µ′′′(xn+j), j = 0, (4d)

µ
(iv)
n+j = g(xn+j), j = 0, w1, w2, 1, (4e)

where µn+j and gn+j are approximations for µ(xn+j) and µ(iv)(xn+j) respectively. The system of eight
equations from equations (4a)− (4e) is written in compact form as

µA = G, (5)
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where

µ =



1 xn x2
n x3

n x4
n x5

n x6
n x7

n

0 1 2xn 3x2
n 4x3

n 5x4
n 6x5

n 7x6
n

0 0 2 6xn 12x2
n 20x3

n 30x4
n 42x5

n

0 0 0 6 24xn 60x2
n 120x3

n 210x4
n

0 0 0 0 24 120xn 360x2
n 840x3

n

0 0 0 0 24 120xn+w1
360x2

n+w1
840x3

n+w1

0 0 0 0 24 120xn+w2
360x2

n+w2
840x3

n+w2

0 0 0 0 24 120xn+1 360x2
n+1 840x3

n+1


A = [ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7]

T

and
G = [µn, µ

′
n, µ

′′
n, µ

′′′
n , gn, gn+w1 , gn+w2 , gn+1]

T

.
Solving equation (5) simultaneously gives the corresponding coefficients of ϕr, r = 0(1)7. Substituting the
resulting coefficients ϕr, r = 0(1)7 into equation (2) and its derivatives yields a continuous implicit scheme
of the form,

αzµn+z = α0µn + hβ10µ
′
n + h2β20µ

′′
n + h3β30µ

′′′
n + h4

1∑
j=0

ρjgn+j + h4
2∑

j=1

ρwjgn+wj , z = w1, w2, 1. (6a)

and its first, second and third derivatives as

αzµ
(q)
n+z = α0µn + hβ10µ

′
n + h2β20µ

′′
n + h3β30µ

′′′
n + h4

1∑
j=0

ρjgn+j + h4
2∑

j=1

ρwj
gn+wj

, z = w1, w2, 1. (6b)

where q signifies derivatives, that is, q = 1(1)3 and all the coefficients beta, alpha and rho values will
change at equation (6b). To obtain the approximate values of w1 and w2 hybrid points, optimize the local
truncation errors of one of the schemes in equation (6) and ensure that the hybrid points satisfy the interval
0 < w1 < w2 < 1, specifically we choose µ′

n+1 [19]. To get the local truncation error, expand the Taylor
series about the point xn of the scheme to obtain

L[µ′(xn+1), h] =
h8µ(8)(xn)V1

20160
+O(h9) (7)

where

V1 = −21w1w2 + 7w1 + 7w2 − 3 = 0, (8a)

0 < w1 < w2 < 1. (8b)

Imposing that the principal term (V1) in the local truncation error (7) is zero. Solve (8a) and its constraint
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(8b) to obtain w1 and w2 and this yields the possible solution as w1 = 1
4 and w2 = 5

7 .

The discrete schemes and its derivatives derived by evaluating (6) at grid and non-grid points
(
1
4 ,

5
7 , 1

)
are

given in equations (9)− (12). These schemes are used to form a block of hybrid method and its derivative
methods as 

µn+ 1
4

µn+ 5
7

µn+1

 =


1

1

1

 [
µn

]
+


1
4

5
7

1

 [
hµ′

n

]
+


1
32

25
98

1
2

 [
h2µ′′

n

]

+


1

384

125
2058

1
6

 [
h3µ′′′

n

]
+


0 0 217

1843200

0 0 129125
29647548

0 0 11
900




h4gn− 5
7

h4gn− 1
4

h4gn



+


1

18432 − 49
3686400

1
245760

50000
7411887 − 125

302526
3125

19765032

16
585

49
23400 0




h4gn+ 1
4

h4gn+ 5
7

h4gn+1

 . (9)

The first, second and third derivative block methods are in equations (10)− (12) respectively.


hµ′

n+ 1
4

hµ′
n+ 5

7

hµ′
n+1

 =


1

1

1

 [
hµ′

n

]
+


1
4

5
7

1

 [
h2µ′′

n

]
+


1
32

25
98

1
2

 [
h3µ′′′

n

]

+


0 0 1063

614400

0 0 3875
201684/

0 0 11
300




h4gn− 5
7

h4gn− 1
4

h4gn

+


311

299520 − 3773
15974400

53
737280

80000
1966419

125
214032

625
2420208

64
585

343
15600 − 1

720




h4gn+ 1
4

h4gn+ 5
7

h4gn+1

 . (10)


h2µ′′

n+ 1
4

h2µ′′
n+ 5

7

h2µ′′
n+1

 =


1

1

1

 [
h2µ′′

n

]
+


1
4

5
7

1

 [
h3µ′′′

n

]

+


0 0 229

12800

0 0 1525
28812

0 0 7
100




h4gn− 5
7

h4gn− 1
4

h4gn

+


581

37440 − 1029
332800

43
46080

50000
280917

425
15288

625
172872

176
585

343
2600 − 1

360




h4gn+ 1
4

h4gn+ 5
7

h4gn+1

 . (11)
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h3µ′′′

n+ 1
4

h3µ′′′
n+ 5

7

h3µ′′′
n+1

 =


1

1

1

 [
h3µ′′′

n

]
+


0 0 391

3840

0 0 55
1029

0 0 1
15




h4gn− 5
7

h4gn− 1
4

h4gn



+


103
624 − 2401

99840
11

1536

2000
4459

265
1092 − 125

4116

16
39

343
780

1
12




h4gn+ 1
4

h4gn+ 5
7

h4gn+1

 . (12)

Equations (9)−(12) form the Novel Fourth-order One-step Block Algorithm (NFOBA) with optimal hybrid
points developed for the direct approximation of linear and non-linear fourth-order IVPs of ODEs (1).

3 Analysis of NFOBA

In this section, the properties of the derived method are examined.

3.1 The error constant and order of the method

The local truncation error associated with the derived methods can be defined as the linear difference
operator (see Lambert [15, 16])

L[µ(xn);h] =

1∑
j=0

αjµ(xn + jh)−
3∑

i=1

h(i)βi0µ
(i)(xn)− h4

1∑
j=0

ρjµ
(iv)(xn + jh)

−h4
2∑

j=1

ρwj
µ(iv)(xn + (wj)h). (13)

Assuming that µ(xn) is sufficiently differentiable, then using Taylor series expansion on µ(i)(xn + jh), i =
0(1)4 about xn and substitute into equation (13) to obtain

L[µ(xn);h] = C0µ(xn)+C1hµ
′(xn)+C2h

2µ′′(xn)+C3h
3µ′′′(xn)+ ...+Cm+4h

m+4µ(m+4)(xn)+ . . . , (14)

where Cm,m = 0, 1, 2, . . . are constants given as

C0 =

1∑
j=0

αj +

2∑
j=1

αwj

C1 =

 1∑
j=0

jαj +

2∑
j=1

wjαwj

− β10

...

Cm+4 =
1

(m+ 4)!

 1∑
j=0

jm+4αj +

2∑
j=1

(wj)
m+4αwj

− 1

(m+ 3)!

 1∑
j=0

jm+3β1j +

2∑
j=1

(wj)
m+3β1wj


11
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− 1

(m+ 2)!

 1∑
j=0

jm+2β2j +

2∑
j=1

(wj)
m+2β2wj

− 1

(m+ 1)!

 1∑
j=0

jm+1β3j +

2∑
j=1

(wj)
m+1β3wj



− 1

m!

 1∑
j=0

jmρj +

2∑
j=1

(wj)
mρwj

 (15)

The error constants and order of NFOBA are shown in Table 1.

Table 1: Order and error constants of NFOBA.
S/N Scheme Order(m) Error Constant (Cm+4)

1 µn+ 1
4

4 − 1877
55490641920

2 µn+ 5
7

4 − 53125
34865516448

3 µn+1 4 − 1
423360

4 µ′
n+ 1

4

4 − 13
22020096

5 µ′
n+ 5

7

4 − 8125
1660262688

6 µ′
n+1 5 1

705600

7 µ′′
n+ 1

4

4 − 311
41287680

8 µ′′
n+ 5

7

4 625
135531648

9 µ′′
n+1 4 1

40320

10 µ′′′
n+ 1

4

4 − 83
1474560

11 µ′′′
n+ 5

7

4 2125
19361664

12 µ′′′
n+1 4 1

40320

3.2 Zero-stability

The numerical method is said to be zero-stable if the roots of the first characteristic polynomial γ(R)
satisfy |Ru| ≤ 1, u = 1, . . . , 12 multiplicity not exceeding the order of the differential equation (3). The first
characteristic polynomial γ(R) = 0 of the derived method is calculated as

γ(R) = det(RA(1) −A(0))

where A(1) is a 12 by 12 identity matrix and

12
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A(0) =



0 0 1 0 0 1
4 0 0 1

32 0 0 1
384

0 0 1 0 0 5
7 0 0 25

98 0 0 125
2058

0 0 1 0 0 1 0 0 1
2 0 0 1

6

0 0 0 0 0 1 0 0 1
4 0 0 1

32

0 0 0 0 0 1 0 0 5
7 0 0 25

32

0 0 0 0 0 1 0 0 1 0 0 1
2

0 0 0 0 0 0 0 1 0 0 0 1
4

0 0 0 0 0 0 0 1 0 0 0 5
7

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1



.

γ(R) = Ru−e(R − 1)e, where e is the order of the differential equation and u is the order of the matrices
A(1) and A(0). The NFOBA can be shown to be zero-stable since the first characteristic polynomial γ(R) =
R8(R− 1)4 satisfies |Ru| ≤ 1, u = 1(1)12.

3.3 Consistency

The developed method is concluded to be consistent since according to Lambert [15], the necessary and
sufficient condition for a numerical scheme to be consistent is for it to have order of at least one (m ≥ 1).
The derived method is of order 4 since the least order of the block is of order 4.

3.4 Convergence

A numerical method converges if it is consistent and zero-stable (Lambert [15]). This implies that NFOBA
converges since the method is of order m = 4 > 1 and it satisfies the conditions for zero-stability.

4 Numerical Results

The following problems are considered in order to examine the accuracy and computational efficiency of
the new block method (NFOBA). All computations are done using MATHEMATICA 13.0.

The notations used in representing the existing methods and the derived method in the result Tables are:

h step size
EIFBM Error of order 7 in First Block Method in [13]

EIM Error in [18]
EIFO Error in [9]
EIOK Error in [14]
EIAO Error in [5]

EIBBCM Error in Block Bi-basis Collocation Method [3]
EINFOBA Error in Novel Fourth order One-step Block Algorithm

13
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where,

Error(i) = |y(i)exact − y(i)appro|

These problems are chosen to aid comparison with other existing methods in literature.

Problem 1 [13]

µ(iv)(x)− (µ′)2 + µµ′′′ + 4x2 − ex(1− 4x+ x2) = 0, h =
0.1

32
;

µ(0) = 1, µ′(0) = 1, µ′′(0) = 3,

µ′′′(0) = 1.

The exact solution is

µ(x) = x2 + ex.

Table 2: Comparison of errors for problem 1.
t EIFBM [13] EIFO [9] EIBBCM [3] EINFOBA

0.103125 1.8149238E − 10 9.02145880E − 10 4.44089E − 16 2.22045E − 16
0.206250 1.1543254E − 08 1.21681228E − 09 1.35003E − 13 1.33227E − 15
0.309375 1.2194148E − 07 1.21681228E − 09 1.13887E − 12 1.11022E − 15
0.412500 6.5296082E − 07 1.71379609E − 09 4.53237E − 12 1.9984E − 15
0.515625 2.3972196E − 06 1.48197092E − 08 1.24527E − 12 3.33067E − 15
0.618750 6.7092614E − 06 3.05833850E − 08 2.77791E − 11 2.66454E − 15
0.721875 1.6438756E − 05 4.94185815E − 08 5.39191E − 11 8.88178E − 16
0.825000 3.5549856E − 05 7.12867908E − 08 9.49667E − 11 7.10543E − 15
0.928125 6.9845227E − 05 1.05877308E − 07 1.55466E − 10 1.82077E − 14
1.031250 1.2716790E − 04 1.44552007E − 07 2.40636E − 10 2.53131E − 14

.

Problem 2 [18]

µ(iv)(x)− x = 0, h = 0.1;

µ(0) = 0, µ′(0) = 1, µ′′(0) = µ′′′(0) = 0.

The exact solution is

µ(x) =
x5

120
+ x.

.

Problem 3 [5]

µ(iv)(x)− µ(x) = 0, h =
1

320
;

µ(0) = 1, µ′(0) = 0, µ′′(0) = −2,

µ′′′(0) = 0.

The exact solution is

µ(x) = −1

4
exp(x)− 1

4
exp(−x) +

3

2
cos(x).

14
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Table 3: Comparison of errors for problem 2.
t EIM [18] EIOK [14] EINFOBA
0.1 7.000024E − 10 1.002087E − 12 1.38778E − 17
0.2 8.9999912E − 10 0.000000E + 00 2.77556E − 17
0.3 2.599993E − 09 0.00000E + 00 5.55112E − 17
0.4 5.100033E − 09 0.00000E + 00 5.55112E − 17
0.5 7.799979E − 09 1.002087E − 12 0
0.6 1.180009E − 08 2.755907E − 12 1.11022E − 16
0.7 1.180009E − 08 3.597306E − 12 1.11022E − 16
0.8 1.410006E − 08 3.597306E − 12 2.22045E − 16
0.9 1.880000E − 08 4.175549E − 12 2.22045E − 16
1.0 1.008335E − 08 4.759970E − 12 2.22045E − 16

Table 4: Comparison of errors for problem 3.
t EIAO [5] EIBBCM [3] EINFOBA

0.003125 4.440892E − 16 1.11022E − 16 1.11022E − 16
0.006250 2.176037E − 14 1.11022E − 16 2.22045E − 16
0.009375 7.771916E − 13 1.11022E − 16 2.22045E − 16
0.012500 7.666090E − 13 1.11022E − 16 1.11022E − 16
0.015625 2.367773E − 12 1.11022E − 16 3.33067E − 16
0.018750 5.932477E − 12 1.11022E − 16 1.11022E − 16
0.021875 1.287681E − 11 2.22045E − 16 3.33067E − 16
0.025000 2.517841E − 11 1.11022E − 16 4.44089E − 16
0.028125 4.546752E − 11 2.22045E − 16 5.55112E − 16
0.031250 7.712331E − 11 0.00000E + 00 4.44089E − 16

. Problem 4 [3]
Consider the ship dynamic problem

µ(iv)(x) + 3µ′′ + µ(2 + ρcos(wx)) = 0, x > 0,

µ(0) = µ′(0) = µ′′(0) = µ′′′(0) = 0.

When ρ = 0, the exact solution is
µ(x) = 2cos(x)− cos(

√
2x).

Table 5: Comparison of errors for problem 4.
t Exact NFOBA EIBBCM [3] EINFOBA (h = 0.01)
3 −1.527323135908539 −1.5273230429245035‘ 9.29840E − 08 1.20615E − 12
6 2.510535059206013 2.5105347506092786 3.08597E − 07 7.22977E − 13
9 −2.8092394453688807 −2.8092390262763756 4.19093E − 07 1.15525E − 11
12 1.9910488550789986 1.9910487618540555 9.32249E − 08 2.27867E − 11
15 −0.8070186485444338 −0.8070191456233216 4.97079E − 07 1.75494E − 11

.

Problem 5 [3]

µ(iv)(x) + µ′′(x) = 0, 0 ≤ x ≤ π

2
;

µ(0) = 0,

15
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µ′(0) = − 1.1

72− 50π
,

µ′′(0) =
1

144− 100π
,

µ′′′(0) =
1.2

144− 100π
,

The exact solution is

µ(x) =
1− x− cos(x)− 1.2sin(x)

144− 100π
.

Table 6: Comparison of errors for problem 5.
x Exact NFOBA EIBBCM [3] EINFOBA

0.01 0.00012899562284403668 0.0001289956228439637 7.29668E − 17 3.80555E − 17
0.02 0.0002573965432101358 0.0002573965432102199 8.40799E − 17 2.69424E − 17
0.03 0.00038519579791147405 0.00038519579791140846 6.55942E − 17 6.55942E − 17
0.04 0.000512386483927295 0.000512386483927374 7.89299E − 17 3.20924E − 17
0.05 0.0006389617590932021 0.0006389617590932817 7.95804E − 17 3.14419E − 17
0.06 0.0007649148427853702 0.0007649148427855135 1.43223E − 16 3.22008E − 17
0.07 0.0008902390165986053 0.0008902390165986818 7.64363E − 16 3.45860E − 17
0.08 0.0010149276250181782 0.0010149276250184247 2.46548E − 16 2.51535E − 17
0.09 0.0011389740760853638 0.0011389740760856526 2.88831E − 16 6.87384E − 17
0.10 0.0012623718420566414 0.0012623718420570196 3.78170E − 16 1.56125E − 16

.

Problem 6 [3]

µ(iv)(x)− µ′′′ − µ′′ − µ′ − 2µ = 0, x ∈ [0, 2] ,

µ(0) = µ′(0) = µ′′(0) = 0,

µ′′′(0) = 30,

The exact solution is

µ(x) = 2exp(2x)− 5exp(−x) + 3cos(x)− 9sin(x).

Table 7: Numerical results for problem 6.
t Exact NFOBA EINFOBA (h = 0.01)
0.2 0.04217138626080574 0.04217138626080914 1.01516E − 14
0.4 0.35789952803753966 0.3578995280376137 1.82077E − 13
0.6 1.2904002491766824 1.2904002491771174 1.04916E − 12
0.8 3.2933353381499177 3.2933353381515276 3.80496E − 12
1.0 6.98638304633745 6.986383046342062 1.07914E − 11
1.2 13.239103191447201 13.23910319145849 2.62492E − 11
1.4 23.2971625812907 23.297162581315575 5.76215E − 11
1.6 38.971816809968104 38.971816810019014 1.17545E − 10
1.8 62.92373948426520 62.92373948436379 2.27139E − 10
2.0 99.08750629903315 99.08750629921636 4.21323E − 10

.
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5 Discussion

The developed block scheme (NFOBA) is efficient and effective in the numerical integration of the fourth
order linear and nonlinear initial value problems of ordinary differential equations as seen in Tables 2-7.
NFOBA was compared with existing methods used to solve same problems and it shows superiority to
these methods.

6 Conclusion

A one-step fourth-order block hybrid scheme is derived via interpolation and collocation techniques for
the numerical solution of linear and non-linear fourth-order initial value problems of ordinary differential
equations. The introduced hybrid points w1 and w2 in the derived scheme are computed in such a way
that the points lies in the interval 0 < w1 < w2 < 1. The approximate values of the hybrid points were
obtained by optimizing the local truncation error of the derived scheme and its derivatives. Application of
NFOBA on six problems shows the efficiency of the new scheme as seen in Tables 2-7 and the numerical
results are compared with some existing methods. The analysis of the method were shown to be consistent,
zero-stable and convergent. NFOBA has proven effective in the direct integration of fourth-order initial
value problems of ordinary differential equations.
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