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Abstract: In this paper, we present an efficient approach to solve quadratic Diophantine equations and
analyze their time complexity. We propose a deterministic polynomial-time algorithm that provides an upper
bound on the elementary operations required to solve such equations. We also present a non-deterministic
polynomial-time algorithm for the construction of quadratic non-resiude modulo d, which is a more efficient
alternative to the deterministic approach.
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1 Introduction

Diophantine equations are particularly valuable because their solutions are positive integers. The investi-
gation of a nontrivial integer solution to the quadratic Diophantine equation is of the form x2 − dy2 = N ,
where x, y ∈ Z and N ∈ Z, N ̸= 0, and d > 1 is square-free, which is known as the general Pell’s equation
in [3]. Positive Pell’s equation of the form

x2 − dy2 = 1 (1)

was first investigated by Brahmagupta and Bhaskara in [2]. Lagrange [10] found an infinite number of
solutions to the equation (1). It is found that there is a nontrivial solution (x0, y0), called the least
solution, and other solutions represented by (xn, yn), where (xn + yn

√
d) = (x0 + y0

√
d)n, where n ∈ N.

On the other hand, the negative Pell’s equation of the form

x2 − dy2 = −1 (2)

does not always have a solution. Etienne Fouvry and Jurgen Kluners [5] have also derived an asymptotic
expression for the integer d, where the least solution of the equation (2) has a norm of −1. If the periodic
length of the continued fraction expansion of

√
d is even, the equation (2) is unsolvable. However, if the

periodic length of
√
d is odd, the equation (2) is solvable and there is an infinite number of integer solutions.

In addition, if a prime number d ≡ 3( mod 4) or if d is divisible by 4, the equation (2) is unsolvable. Assume
that the equation (2) is solvable and the least solution is (r0, t0). The general solution of the equation (2)
is (rk, tk), where

rk = r0ak + dt0bk, tk = t0ak + r0bk (3)

and (ak, bk) is the solution of Pell’s equation a2 − db2 = 1, where k ≥ 0. The relationship between (r0, t0)

and (a0, b0) is (a0 + b0
√
d) = (r0 + t0

√
d)2 =

(
(r20 + dt20) + (2r0t0)

√
d
)
. It gives,

a0 = r20 + dt20 ⇒ r0 =

√
a0 − 1

2
, b0 = 2r0t0 ⇒ t0 =

b0
2r0

=
1√
2

√
1

a0 − 1

Therefore, the least solution of the equation (1) is (a0, b0), and for the integer d ≡ 1, 2(mod4), the solution
of the equation (2) is

(r0, t0) =

(√
a0 − 1

2
,
1√
2

√
1

a0 − 1

)
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which is the least solution of the equation (2). Using the general solution (3), the explicit solutions of
equation (2) are as follows:

rk =
1

2

{
(r0 + t0

√
d)(a1 + b1

√
d)k + (r0 − t0

√
d)(a1 − b1

√
d)k
}

tk =
1

2
√
d

{
(r0 + t0

√
d)(a1 + b1

√
d)k + (r0 − t0

√
d)(a1 − b1

√
d)k
}
, k ≥ 1

Mollins and Srinivasan [14] proposed a condition a0 ≡ −1(mod 2d), which is simplified by the elementary
approach, because it is obvious that a0 = r20 + dt20. The continued fraction approach provides a solution
for this equation, but it is not time saving. Lagarias [9] is faster than the continued fraction and provides
an evaluation tool to conclude if an equation (2) has a solution when d is a complete factorization.

Grytczuk, Luca, and Wojtowicz [6] state that the solution of equation (2) can be found in positive integers
x and y if there exists a primitive Pythagorean triple (α;β; γ) and positive integers u and v such that
d = u2+v2, |uα−vβ| = 1, where (α;β; γ) is a primitive Pythagorean triple that is pairwise relatively prime
and satisfies the conditions α2+β2 = γ2. LeVeque [13] states that the solution of the equation (2) contains
the primitive representation of d as the sum of two squares. Pythagorean triples are an essential part of
the necessary and sufficient conditions to complete the solution of equation (2). Hardy and Williams [7]
found that the equation (2) is solvable if and only if d is the sum of u2 and v2, where u, v ∈ N and u are
odd numbers.

The Legendre symbol
(

a
p

)
is a function of a and p, which represents an integer as a quadratic (non) residue

modulo p. Legendre [11] was the first to use this symbol. He found that the equation (2) is unsolvable
if a prime d ≡ 3(mod 4). However, if a prime d ≡ 1(mod 4), the equation (2) is solvable. Dirichlet [4]
states that the equation (2) has a solution if d = pq, where a prime number p ≡ 1(mod4) such that(

p
q

)
= −1, and p, q are distinct primes. Dirichlet also considered the case in which d is the product of three

different primes. The residue symbol obtained from d can be used to create situations on d that prove the
equation (2) is either solvable or unsolvable. For d = p1p2 · · · pN , Tano [16] has found residues among the
pi which, if true, would confirm that the equation (2) is solvable. Scholz [15] used field theory and found

that the equation (2) cannot be solved if
(

p
q

)
4
̸=
(

q
p

)
4
under the condition d = pq with p ≡ q ≡ 1(mod 4).

However, the equation (2) is sometimes solvable and sometimes not in the case
(

p
q

)
4
=
(

q
p

)
4
= 1.

Time complexity, also known as computational complexity, is a measure of the time it takes a computer to
execute an algorithm. The most common method for estimating time complexity is to count the number
of basic operations that the algorithm performs, assuming that each operation takes the same processing
time. This results in the assumption that the time spent and the number of basic operations performed by
the algorithm is related by a constant factor. Lenstra [12] gives an algorithm based on the power products
and smooth numbers. The solution of the equation (1) is faster than the continued fraction in terms of
running time. On the other hand, the residue symbol provides a more complete check of those d for which
equation (2) can be solved. Hua [8] determined the upper bound for the period length of the continued
fraction of

√
d is O(

√
d log d).

2 Approaches to Solving Quadratic Diophantine Equations

In this section, we discuss various efficient approaches for solving quadratic Diophantine equations. One
efficient approach is the continued fraction, which represents a real number as an integer sequence. Another
approach is the use of Pythagorean triples, i.e., sets of three positive integers (α, β, γ) such that α2+β2 = γ2.
The residue symbol plays a particular role in determining whether quadratic Diophantine equations can be
solved.

The simple finite continued fraction expansion of
√
d is the most effective way to find the least solution. If

d > 1 is square-free, there is a positive integer r such that the continued fraction expansion of
√
d is

√
d = [a0; a1, a2, · · · , ar, 2a0]

2
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where a0 = ⌊
√
d⌋ is the greatest integer and ai for all 1 ≤ i ≤ r, is the partial denominator of the continued

fraction. The kth convergent is given by

Pk

Qk
= [a0; a1, a2, · · · , ar, 2a0]

where

Pk = akPk−1 + Pk−2, P−2 = 0, P−1 = 1, Qk = akQk−1 +Qk−2, Q−2 = 1, Q−1 = 0, k ≥ 0

Then the expression is given by

(Pk +
√
d)

Qk
= a0 +

1

a1 +
1

a2 +
1

a3 +
1

a4 +
.. .

where

P0 = 0, Q0 = 1, a0 = ⌊
√
d⌋, Pk = ak−1Qk−1 − Pk−1, ak =

⌊
(Pk +

√
d)

Qk

⌋
, d = P 2

k+1 +QkQk+1, k ≥ 1

The equation (2) can only be solved if the expansion of the continued fractions
√
d has an odd period length

r. Assuming that r = 2n− 1, positive solutions of equation (2) is

(rs, ts) =
(
A2(j−1), B2(j−1)

)
, j = n+ s(2n− 1), s ≥ 0

In fact, the general solution to equation (2) is

(rs + ts
√
d) = (r0 + t0

√
d)2s+1,

where (r0, t0) =
(
A2(n−1), B2(n−1)

)
is the least solution to equation (2).

Moreover, if r = uβ + vα, t = γ, in d = u2 + v2 and α2 + β2 = γ2, then

dy2 = (u2 + v2)(α2 + β2) ⇒ dy2 = x2 + 1

Therefore, (r, t) = (uβ + vα, γ) is a solution of equation (2). The primitive Pythagorean triples (α, β, γ)
with α is even, are

α = 2pq, β = p2 − q2, γ = p2 + q2, p > q > 0, gcd(p, q) = 1

By counter example, if

(p, q) = (2, 1), (α, β, γ) = (2pq, (p2 − q2), (p2 + q2)) = (4, 3, 5), (u, v) = (2, 3), d = 13

satisfies the condition uα−vβ = −1. Hence (x, y) = (18, 5) is the least solution of equation x2−13y2 = −1.

Theorem 2.1. Assume that p1, p2, · · · , pr denotes distinct primes such that d = p1p2 · · · pr, where r is
either 2 or an odd number, and if the following conditions hold

ps ≡ 1(mod 4), 1 ≤ s ≤ r (4)(
ps
pt

)
= −1, 1 ≤ s, t ≤ r, s ̸= t (5)

Then, there exists a solution to the equation x2 − dy2 = −1.

3
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Proof. Assume that (α, β) is no solution of equation x2−dy2 = −1. If (α, β) is the solution of x2−dy2 = 1,
then we use the equation (4) and α2 ≡ β2+1(mod 4). Then we have α is odd and β is even. Consequently,

we have α−1
2d1

· α+1
2d2

= β2

4 where d1d2 = d,
(

α−1
2d1

, α+1
2d2

)
= 1. It follows that

α− 1

2d1
= u2 ⇒ α− 1 = 2d1u

2,
α+ 1

2d2
= v2 ⇒ α+ 1 = 2d2v

2.

If we combine these two values, we get d2v
2 − d1u

2 = 1. Because α ̸= 1, u ̸= 0. Let us assume that neither
d1 nor d2 is equal to 1. Because r must be either 2 or odd, the product of an odd prime number must be
either d1 or d2. If p is divided by d2 and d1 is the product of an odd prime number. Since the result of

equation (5) is
(

d1

p

)
= −1, which is the contradiction our assumption d1u

2 ≡ −1(mod p).

Similarly, it can be proved that it is also impossible for d2 to be the product of an odd prime number.
Therefore, either d1 = 1, d2 = d, or d1 = d, d2 = 1 must be true. The assumption that x2 − dy2 = −1 has
no solutions is refuted by the fact that d1 = 1, d2 = d drives to u2−dv2 = −1. It follows that d1 = d, d2 = 1
and v2 − du2 = 1. We have

u2 =
α− 1

2d
, v2 =

α+ 1

2
⇒ uv =

β

2
⇒ u < β

It gives (α, β) is the least solution of equation x2 − dy2 = −1, which is contradiction our assumption.
Consequently, there exists a solution (α, β) for equation x2 − dy2 = −1.

Mollin established the relationship between the equations (1) and (2) and to solve the equation (2) for
integers r and t, the least solution (a0, b0) of the equation (1) must satisfy a0 ≡ −1(mod 2d).

Theorem 2.2. If d is a non-square integer such that d ≡ 1, 2(mod 4), then a solution of x2 − dy2 = −1
exists if and only if a0 ≡ −1(mod 2d), where (a0, b0) is the least solution of a2 − db2 = 1.

Proof. If the equation x2−dy2 = −1 is solvable whose least solution is (r0, t0), then we have a0 = r20+dt20 ≡
−1(mod 2d) this implies that a0 ≡ −1(mod 2d).

On the other hand, the least solution (a0, b0) to equation a2 − db2 = 1 satisfies a0 ≡ −1(mod 2d). It gives
a0 = −1 + 2dk, where k ∈ Z. This gives

(−1 + 2dk)2 − db20 = 1 ⇒ dk2 − k − b
′2
0 = 0 ⇒ k(dk − 1) = b

′2
0 ,

where b
′

0 = b
2 . Since k and (dk − 1) is relatively prime and we substitute k = v2, dk − 1 = u2, gives

u2 − dv2 = −1. Therefore, the equation x2 − dy2 = −1 is solvable.

Theorem (2.2) describes the solution of equation (2) and relation between to the equation (1). If (a0, b0)
is the smallest solution for equation (1), then finding the solution of equation (2) requires the condition
a0 ≡ −1(mod 2d).

Theorem 2.3. Let us assume that p is an odd prime number. The negative Pell equation x2 − py2 = −1
can be solved iff p ≡ 1(mod 4).

Proof. Assume x2 − py2 = −1 can be solved in positive integers. As p is an odd prime number, there are

positive integers a, b such that a2−pb2 = −1. This means a2−(−1) = pb2 and it gives
(

−1
p

)
= 1. However,

we know that
(

−1
p

)
= (−1)

p−2
2 , which provides p ≡ 1(mod 4).

On the other hand, assume (a0, b0) is the least solution to the Pell’s equation a2−pb2 = 1, then a20−1 = pb20.
If a0 cannot be even, use −1 ≡ p(mod 4). As a result, a0 is odd. The greatest common divisor of a0 − 1
and a0 + 1 is 2. Thus,

a0 ± 1 = 2ξ2, a0 ∓ 1 = 2pη2,

where ξ and η are positive integers such that b0 = 2ξη. It provides η < b0. These relation can be obtained

2ξ2 − 2pη2 = (a0 ± 1)− (a0 ∓ 1) = ±2 ⇒ ±1 = ξ2 − pη2

We are not allowed to have either the upper sign or the lower sign since η < b0. Thus, it is possible to solve
negative Pell’s equation x2 − py2 = −1.

4
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3 Time Complexity of Quadratic Diophantine Equations

The time complexity shows the efficiency of these approaches in terms of their runtime and the number of
elementary operations. In particular, for large values of d, we can determine the time complexity to solving
quadratic Diophantine equations.

The fundamental solution can be provided by the continued fraction expansion of
√
d. But this approach

is inefficient for large values of d since the complexity of the continued fraction expansion of
√
d is usually

a polynomial in the input size, with the running time typically approximating O(
√
d) in [12]. This is the

upper bound on the growth rate of the function, which means that the growth rate of the function is
asymptotically bounded by a constant time of the square root of d for a sufficiently large values of d.

For example, there is a solution to the equation x2−dy2 = 1 in the sense that for a small value of d = 217, we
have a large solution of (x, y) = (3844063, 260952). On the other hand, a small solution of (x, y) = (407, 4)
can exist for a large value of d = 10353.

The binary information of d must be loaded into a circuit using log2 d + 1 elementary operations. The
continued fraction approach is highly efficient for obtaining the solution of the equation x2 − dy2 = −1,
and the solution could be very large, if the least solution of the equation x2 − dy2 = −1 exists.

The investigation of the worst-case complexity shows that an algorithm based on the residue symbol is better
than the continued fraction approach. The residue symbol is described by the prime factors of d, which
can be expanded to find an algorithm for solving quadratic Diophantine equations. In non-deterministic
polynomial time, the quadratic non-residue modulo p can be constructed as O((log p)3) in [9], where the
running time of the algorithm is asymptotically bounded by a constant time of p. The existence of (log p)3

indicates a polynomial growth rate. Then the expression O((log d)5(log log d)(log log log d)) shows how the
number of actions increases with the size of input in [9].

The extended Riemann hypothesis states that for any prime number d, there exists a quadratic non-residue
n(mod d) such that 0 < T < (log d)2, where T is an efficiently computable constant, that is independent
of d. The algorithm describes the upper limit of growth and provides no information about the constant
factors. Then the expression O((log d)3(log log d)(log log log d)) in [9]. The efficiency of an algorithm
increases when d becomes very large, whereas its runtime does not increase significantly. The expression
O((log d)5(log log d)(log log log d)) is a notation for the asymptotic behavior of a function when its argument
becomes large. This means that the function is bounded above by a constant multiple of the expression.
This expression indicates that the function grows very slowly and is efficient for large values of d. The
function is 0 < n < T (ϵ)d

1
4+ϵ in [12], where T (ϵ) is a constant that can be calculated from ϵ. This function

can be used to determine the equation x2−dy2 = −1 has integer solutions for a given d using an algorithm
that run time proportional to d

1
4+ϵ. The exponent 1

4 + ϵ shows how fast the function grows with increasing

the size of input d. The expression O(d
1
4+ϵ) in [12], is a notation for the asymptotic behavior of a function

when its argument becomes large.

For example, if f(d) = O(d
1
4+ϵ), then there exists a constant c such that f(d) ≤ c(d

1
4+ϵ) for all sufficiently

large d. This expression shows that the running time of the algorithm is efficient for large values of d, as
it does not increase much compared to the size of input.

4 Conclusion

In this work, we used some efficient approaches to solving quadratic Diophantine equations and focused on
the solvability of the negative Pell’s equation. Efficient approaches such as continued fractions, Pythagorean
triples, and quadratic residue are investigated to identify the solvability or unsolvability of such equations.
The continued fraction expansion of

√
d provides the least solution but becomes inefficient for large values

of d. Similarly, the residue approach provides better time complexity with a deterministic polynomial
time. An algorithm can be used for the solvability of quadratic Diophantine equations using the prime
factorization of d and quadratic non-residue for each prime divisor of d.
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