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1 Introduction

In 1922, Banach [5] first introduced the fixed point (FT) for contraction mapping in a metric space, which is
also known as the Banach contraction mapping theorem (BCMT) or Banach fixed point theorem (BFPT).
After that, many researchers have extended and generalized BFPT or BCMT for different types of mappings
in various metric spaces.

The concept of b-metric space was introduced by Bakthin [4] and Czerwik [12, 13] as an extension of metric
space by weakening the triangular inequality. As a result, many authors have generalized and improved
the extension of fixed point theorems in b-metric space (for example, [1, 2, 3, 8, 9, 10, 11, 14, 15, 16, 17,
19, 22, 23, 24, 29, 30].

The concept of coupled fixed point was started by Guo and Lakshmikanthan [18] for partially ordered sets.
Bhaskar and Lakshmikanthan [7] investigated the existence and uniqueness of coupled fixed point results in
partially ordered metric space using the concept of mixed monotonic property. After that, various authors
have studied the coupled fixed point and discussed its application (see, for instance, [6, 20, 21, 25, 27, 28].

The aim of this article is to construct and obtain new results on common coupled fixed points for a pair of
mappings satisfying rational type contraction. The found results are extended and change various results
from the existing literature of [26].

2 Basic Concept and Mathematical Preliminaries

In this section, we give some prominent definitions and mathematical preliminaries, which are needed for
our main results.

Definition 2.1. [4, 12, 13] A mapping ξb : Σ×Σ → R+, where Σ is a non empty set, is called a b-metric,
if there exists a number σ such that for all κ1, κ2, κ3 ∈ Σ

(a) ξb(κ1, κ2) ≥ 0 and ξb(κ1, κ2) = 0 if and only if κ1 = κ2,

(b) ξb(κ1, κ2) = ξb(κ2, κ1),

(c) ξb(κ1, κ3) ≤ σ[ξb(κ1, κ2) + ξb(κ2, κ3)].
Then the pair (Σ, ξb) is a b-metric space with parameter σ ≥ 1. Clearly, every metric space is b-metric
space with σ = 1, but the converse is not true in general. In fact, the class b-metric space is larger
than the class of metric spaces.
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Definition 2.2. [14] Let (Σ, ξb) be a b-metric space with σ ≥ 1. Then a sequence {ek} in Σ is called
(i) a Cauchy sequence if for every δ > 0, ∃ k0 ∈ N such that ξb(ek, el) < δ for all k, l ≥ k0.
(ii) convergent to e ∈ Σ if for every δ > 0, ∃ k0 ∈ N such that ξb(ek, e) < δ for all k ≥ k0.
(iii) The b-metric space(Σ, ξb) is complete if every Cauchy sequence in Σ converges in Σ.

Remark 2.1. In a b-metric space(Σ, ξb) the following assertions hold.
(1) A convergent sequence has a unique limit.
(2) Every convergent sequence is Cauchy.

Definition 2.3. [7] An element (e, λ) ∈ Σ × Σ is said to be a coupled fixed point of ζ : Σ × Σ → Σ if
e = ζ(e, λ) and λ = ζ(λ, e).

Definition 2.4. [25] An element (e, λ) ∈ Σ×Σ is called a common coupled fixed point of ζ1, ζ2 : Σ×Σ → Σ
if
e = ζ1(e, λ) = ζ2(e, λ) and λ = ζ1(λ, e) = ζ2(λ, e).

Example 2.1. Let X = R and ζ1, ζ2 : Σ×Σ → Σ defined as ζ1(e, λ) = eλ and ζ2(e, λ) = e+ (λ− e)2 for all
e, λ ∈ Σ. Then (0, 0) and (1, 1) are common coupled fixed points of ζ1 and ζ2.

Lemma 2.1. [24] Suppose that (Σ, ξb) is a b-metric space with coefficient σ ≥ 1 and e : Σ → Σ is a
mapping and {ek} is a sequence in Σ induced by ek+1 = ζ1ek such that ξb(ek, ek+1) ≤ α ξb(ek−1, ek), for all
k ∈ N , where α ∈ [0, 1) is a constant. Then {ek} is a Cauchy sequence.

3 Main Results

In this section, we present main results and deliver theirs proofs.

Theorem 3.1. Let (Σ, ξb) be complete b-metric space with σ ≥ 1 and ζ1, ζ2 : Σ × Σ → Σ be any two
mappings satisfying the condition

ξb(ζ1(e, λ), ζ2(θ, v) ≤ iξb(e, θ) + j

[
ξb(e, ζ1(e, λ))ξb(e, ζ2(θ, v)) + ξb(θ, ζ2(θ, v))ξb(θ, ζ1(e, λ))

ξb(e, ζ2(θ, v)) + ξb(θ, ζ1(e, λ))

]
(3.1)

∀e, λ, θ, v ∈ Σ, where i, j ≥ 0, σ(i+ j) < 1 and ξb(e, ζ2(θ, v) + ξb(θ, ζ1(e, λ)) ̸= 0.
Then ζ1, ζ2 have unique common coupled fixed point in Σ.

Proof. Suppose that, (e0, λ0) ∈ Σ and define the sequence {e2k} and {λ2k} in Σ such that
e2k+1 = ζ1(e2k, λ2k), λ2k+1 = ζ1(λ2k, e2k)
and
e2k+2 = ζ1(e2k+1, λ2k+1), λ2k+1 = ζ2(λ2k+1, e2k+1) .
Then from (3.1), we have

ξb(e2k, e2k+1) = ξb[ζ1(e2k−1, λ2k−1), ζ2(e2k, λ2k)]

≤ iξb(e2k−1, e2k) + j

[
xib(e2k−1, e2k)ξb(e2k−1, e2k+1) + ξb(e2k, e2k+1)ξb(e2k, (e2k)

ξb(e2k−1, (e2k+1 + ξb(e2k, (e2k)

]
≤ (i+ j)ξb(e2k−1, e2k).

This implies that
ξb(e2k, e2k+1) ≤ rξb(e2k−1, e2k), where r = (i+ j) < 1

σ .
By Lemma 2.1 {e2k} and {λ2k} are Cauchy sequence in Σ. Since Σ is a complete b-metric space, there
exist e, λ ∈ Σ such that e2k → e and λ2k → λ, i.e., limk→∞ e2k = e, limk→∞ λ2k = λ.
Now we will show that e = ζ1(e, λ) and λ = ζ1(λ, e), i.e., we will show that (e, λ) is a common fixed point
in Σ.
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Now cosider

ξb(e, ζ1(e, λ)) ≤ σ[ξb(e, e2k) + ξb(e2k, ζ1(e, λ))]

≤ σ[ζ2(e2k−1, λ2k−1, ζ1(e, λ] + σξb(e, e2k)

≤ σiξb(e2k−1, e) + σ

[
j
ξb(e, ζ1(e, λ)).ξb(e, ζ2(e2k−1, λ2k−1)) + ξb(e2k−1, ζ2(e2k−1, λ2k−1))

ξb(e, ζ2(e2k−1, λ2k−1)) + ξb(e2k−1, ζ1(e, λ))

]
+ σξb(e, e2k)

= iσξb(e2k−1, e) + σ

[
j
ξb(e, ζ1(e, λ).ξb(e, e2k + ξb(e2k−1, e2k.ξb(e2k−1, ζ1(e, λ)

ξb(e, e2k) + ξb(e2k1 , ζ1(e, λ)

]
+ σξb(e, e2k.

Taking limit as k → ∞, we have ξb(e, ζ1(e, λ) = 0 ⇒ ζ1(e, λ) = e. Similarly, we can prove that λ = ζ1(λ, e).
Now it follow similarly that e = ζ2(e, λ) and λ = ζ2(λ, e). Therefore, (e, λ) is a common coupled fixed point
in Σ.
Now to prove the uniqueness of common coupled fixed point in Σ× Σ.
Let (e∗, λ∗) be another common coupled fixed point of ζ1, ζ2. Then from (1) we get

ξb(e, e
∗) = ξb(ζ1(e, λ), ζ2(e

∗, λ∗))

≤ iξb(e, e
∗) + j

[
ξb(e, ζ1(e, λ)).ξb(e, ζ2(e

∗, λ∗) + ξb(e
∗, λ2)), ξb(e

∗, ζ1(e, λ))

ξb(e, ζ2(e∗, λ∗)), ξb(e∗, ζ1(e, λ))

]
.

= iξb(e, e
∗) + j

[
ξb(e, e)ξb(e, e

∗) + ξb(e
∗, e∗), ξb(e

∗, e)

ξb(e, e∗) + ξb(e∗, e)

]
.

This implies that (1− i)ξb(e, e
∗) ≤ 0. Similarly, one can easily prove that

(1 − i)ξb(λ, λ
∗) ≤ 0. Now adding both equation, we get (1 − i)[ξb(e, e

∗) + ξb(λ, λ
∗)] ≤ 0, Implying that

ξb(e, e
∗) + ξb(λ, λ

∗) = 0. Therefore, e = e∗ and λ = λ∗.
Thus, (e, λ) is a unique common coupled fixed point of ζ1 and ζ2 of Σ.

Example 3.1. Let Σ = {0, 1}. Consider a b-metric ξ : Σ × Σ → R defined as ξb(e, λ) = |e − λ|3, for all
e, λ ∈ Σ. Then (Σ, ξb) is a b-metric space with parameter σ = 4. Define ζ1, ζ2 : Σ× Σ → Σ as follows

ζ1(e, λ) =

{
0 for e = λ = 1
3
4 , for 0 otherwise

= ζ2(e, λ)

for all e, λ ∈ Σ. It can be easily verified that the maps ζ1 and ζ2 satisfying all the conditions of Theorem
3.1 and ( 34 ,

3
4 ) are its unique common coupled fixed point in Σ. From Theorem 3.1 yields the following

corollary by taking ζ1 = ζ2 = ζ.

Corollary 3.1. Let (Σ, ξb) be complete b-metric space with σ ≥ 1 and ζ : Σ×Σ → Σ be any two mappings
satisfying the condition

ξb(ζ(e, λ), ζ(θ, v) ≤ iξb(e, θ) + j

[
ξb(e, ζ(e, λ))ξb(e, ζ(θ, v)) + ξb(θ, ζ(θ, v)).ξb(θ, ζ(e, λ))

ξb(e, ζ(θ, v)) + ξb(θ, ζ(e, λ))

]
∀e, λ, θ, v ∈ Σ, where i, j ≥ 0, σ(i+ j) < 1 and ξb(e, ζ(θ, v) + ξb(θ, ζ(e, λ)) ̸= 0.
Then ζ has unique coupled fixed point in Σ.

Theorem 3.2. Let (Σ, ξb) be complete b-metric space with σ ≥ 1 and ζ1, ζ2 : Σ × Σ → Σ be any two
mappings satisfying the condition

ξb(ζ1(e, λ), ζ2(θ, v) ≤ pξb(e, θ) + q

[
ξb(θ, ζ2(θ, v)){1 + ξb(e, ζ1(e, λ))}

1 + ξb(e, θ)

]
+ r

[
ξb(θ, ζ2(θ, v)) + ξb(θ, ζ1(e, λ))

1 + ξb(θ, ζ2(θ, v)).ξb(θ, ζ1(e, λ))

]
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∀e, λ, θ, v ∈ Σ, where p, q, r ≥ 0 and σ(p+ q + r) < 1. Then ζ1, ζ2 have unique common coupled fixed point
in Σ.

Proof. Suppose that, (e0, λ0) ∈ Σ and define the sequence {e2k} and {λ2k} in Σ such that
e2k+1 = ζ1(e2k, λ2k), λ2k+1 = ζ1(λ2k, e2k) and e2k+2 = ζ1(e2k+1, λ2k+1), λ2k+1 = ζ2(λ2k+1, e2k+1).
Then from (2), we have

ξb(e2k, e2k+1) = ξb[ζ1(e2k−1, λ2k−1), ζ2(e2k, λ2k)]

≤ pξb(e2k−1, e2k) + q

[
ξb(e2k, ζ2ξb(e2k, λ))1 + ξb(e2k−1, eζ1(e2k−1, λ2k−1))

1 + ξb(e2k−1, e2k)

]
+ r

[
ξb(e2k, ζ2(e2k, λ2k)) + ξb(e2k, ζ1(e2k−1, λ2k−1))

1 + ξb(e2k, λ2k)).ξb(e2k, ζ1(e2k−1, λ2k−1))

]
= p ξb(e2k−1, e2k) + q

[
ξb(e2k, e2k−1)1 + ξb(e2k−1, (e2k−1, e2k))

1 + ξb(e2k−1, e2k)

]
+ r

[
ξb(e2k, e2k+1) + ξb(e2k, (e2k)

1 + ξb(e2k, e2k+1).ξb(e2k, (e2k)

]
This implies that
ξb(e2k, e2k+1) ≤ h ξb(e2k−1, e2k), where r = p

1−q−r < 1
σ . By Lemma 2.1, {e2k} and {λ2k} are Cauchy

sequences in Σ. Since Σ is a complete b-metric space, there exist e, λ ∈ Σ such that e2k → e and λ2k → λ.
i.e., limk→∞ e2k = e, limk→∞ λ2k = λ.
Now we will show that e = ζ1(e, λ) and λ = ζ1(λ, e), i.e., we will show that (e, λ) is a common fixed point
in Σ.
Now cosider

ξb(e, ζ1(e, λ)) ≤ σ[ξb(e, e2k) + ξb(e2k, ζ1(e, λ))]

≤ σ[ζ2(e2k−1, λ2k−1, ζ1(e, λ] + σξb(e, e2k)

≤ σpξb(e2k−1, e) + σ

[
q
ξb(e2k−1, ζ2(e2k−1, λ2k−1))1 + ξb(e, ζ1(e, λ))

1 + ξb(e2k−1, e))

]
+ σ

[
r
ξb(e2k−1, ζ2(e2k−1, λ2k−1)) + ξb(e2k−1, ζ1(e, λ))

1 + ξb(e2k−1, ζ2(e2k−1, λ2k−1)).ξb(e2k−1, ξb(e, λ))

]
+ σ ξb(e, e2k)

= σpξb(e2k−1, e) + σ

[
q
ξb(e2k−1, e2k)1 + ξb(e, e2k, ζ1(e, λ)

1 + ξb(e2k1
, e)

]
+ σ

[
r
ξb(e2k−1, e2k) + ξb(e2k−1, ζ1(e, λ))

1 + ξb(e2k−1, e2k).ξb(e2k−1, ζ1(e, λ))

]
+ σ ξb(e, e2k)

Since {e2k} and {λ2k} are convergent. So, by taking limit as k → ∞, we get ξb(e, ζ1(e, λ) = 0⇒ ζ1(e, λ) = e.
Similarly, we can prove that λ = ζ1(λ, e). Now it follows similarly that e = ζ2(e, λ) and λ = ζ2(λ, e).
Therefore, (e, λ) is a common coupled fixed point of ζ1 and ζ2 in Σ.
Now to prove the uniqueness of common coupled fixed point in Σ× Σ.
Let (e∗, λ∗) be another common coupled fixed point of ζ1, ζ2. Then from (2) we get

ξb(e, e
∗) = ξb(ζ1(e, λ), ζ2(e

∗, λ∗))

≤ pξb(e, e
∗) + q

[
ξb(e

∗, ζ2(e
∗, λ∗)){1 + ξb(e, ζ1(e, λ))}
1 + ξb(e, e∗)

]
+ r

[
ξb(e

∗, ζ2(e
∗, λ∗)) + ξb(e

∗, ζ1(e, λ))

1 + ξb(e∗, ζ2(e∗, λ∗)).ξb(e∗, ζ1(e, λ))

]

= pξb(e, e
∗) + q

[
ξb(e

∗, e∗){1 + ξb(e, e
∗) + ξb(e, e)}

1 + ξb(e, e∗)

]
+ r

[
ξb(e

∗, e∗) + ξb(e
∗, e)

1 + ξb(e∗, e∗).ξb(e∗, e)

]
= (p+ r)ξb(e, e

∗).
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Thus, (1− p− r)ξb(e, e
∗) = 0. Similarly, (1− p− r)ξb(λ, λ

∗) = 0.
Adding both equation(1− p− r)[ξb(e, e

∗)+ ξb(λ, λ
∗)] = 0 ⇒ ξb(e, e

∗)+ ξb(λ, λ
∗) = 0. Therefore, e = e∗ and

λ = λ∗. Thus, (e, λ) is a unique common coupled fixed point of ζ1 and ζ2 of Σ.

Corollary 3.2. Let (Σ, ξb) be a complete b-metric space with σ ≥ 1 and ζ : Σ × Σ → Σ be the mapping
satisfying the condition

ξb(ζ(e, λ), ζ(θ, v) ≤ pξb(e, θ) + q

[
ξb(θ, ζ(θ, v)){1 + ξb(e, ζ(e, λ))}

1 + ξb(e, θ)

]
+ r

[
ξb(θ, ζ(θ, v)) + ξb(θ, ζ(e, λ))

1 + ξb(θ, ζ(θ, v)).ξb(θ, ζ(e, λ))

]
∀e, λ, θ, v ∈ Σ, where p, q, r ≥ 0 and σ(p+ q + r) < 1. Then ζ has unique coupled fixed point in Σ.

Proof. From Theorem 3.2, we take ζ1 = ζ2 = ζ and get the above corollary.

4 Conclusion

The theory of fixed points is a very amusing technique for contractive mapping. A number of authors
have defined contractive type mapping in numerous directions. In this work, we found two main results,
which are given in Theorem 3.1 and Theorem 3.2. with Corollaries 3.1 and 3.2, respectively. The present
Theorem 3.1 and Theorem 3.2 extend, modify, and generalize the results of the Theorems 2.2 and 2.3 of
the literature [26].
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