On Certain Type of Difference Sequence Spaces Defined by Φ -Function

Jhavi Lal Ghimire*, Narayan Prasad Pahari

Central Department of Mathematics, Tribhuvan University, Kathmandu, Nepal *Correspondence to: Jhavi Lal Ghimire, Email: jhavighimire@gmail.com

Abstract: So far a large number of research works have been studied and investigated in basic sequence spaces c_0 , c, and l_{∞} . In this present work, we introduce the difference sequence spaces $W_0(\Delta, f), W(\Delta, f)$ and $W_{\infty}(\Delta, f)$ defined by non-negative real-valued Φ -function on \mathbb{R} and study some of their topological properties defined by the paranormed structure on these spaces.

Keywords: Sequence spaces, Difference sequence space, Paranormed space, Orlicz function, Normal space

DOI: https://doi.org/10.3126/jnms.v5i2.50020

1 Introduction

The classical sequence space is a special case of function space if the domain is restricted to the set of natural numbers. The vector space of all sequences of complex numbers is denoted by ω . Any linear subspace of ω is called a sequence space. Let l_{∞} , c and c_0 be the linear spaces of bounded, convergent and null sequences with complex terms respectively are defined by

$$l_{\infty} = \{x = (x_k) \in \omega : \sup_k |x_k| < \infty\}$$

$$c = \{x = (x_k) \in \omega : \exists l \in \mathbb{C} \text{ such that } |x_k - l| \to 0 \text{ as } k \to \infty\}$$

$$c_0 = \{x = (x_k) \in \omega : |x_k| \to 0 \text{ as } k \to \infty\}$$

and norm is given by

$$||x|| = \sup_k |x_k|, \quad k \in \mathbb{N}.$$

Definition 1.1. A linear space X is said to be a paranormed space if there is a function $g: X \to \mathbb{R}$ satisfying [22]

- 1. $g(\theta) = 0$ where $\theta = (0, 0, \dots)$ be a zero vector in X,
- 2. g(x) = g(-x),
- 3. $g(x+y) \leq g(x) + g(y)$ (subadditivity), and
- 4. the scalar multiplication is continuous.

A paranorm g is called total if g(x) = 0 if and only if $x = \theta$ [22]. The pair (X, g) is called total paranorm space. Nakano [12] and Simmons [20] introduced the notion of paranormed sequence space. Later on, it was further investigated by some other authors like Maddox [9], Tripathy and Sen [21] and Pahari [13, 14, 15, 16, 17].

Definition 1.2. An Orlicz function is a function $M : [0, \infty) \to [0, \infty)$ which is continuous, non decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \to \infty$ as $x \to \infty$ [7].

An Orlicz function M is said to satisfy Δ_2 -condition [7] if there exists a constant L > 0 such that $M(2x) \leq LM(x)$ for all $x \geq 0$.

W. Orlicz used the idea of Orlicz function to construct the Orlicz sequence space. Lindenstrauss and Tzafriri [8] used the idea of Orlicz function to construct the Orlicz sequence space

$$l_M = \left\{ x = (x_k) \in \omega : \sum_{k=1}^{\infty} \left[M\left(\frac{|x_k|}{\rho}\right) \right] < \infty, \text{ for some } \rho > 0 \right\}.$$

The space l_M becomes a Banach space [8] with the norm

$$||x|| = \inf\left\{\rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1\right\}$$

The space l_M is called an Orlicz sequence space and is closely related to the sequence space l_p with

$$M(x) = x^p, \quad (1 \le p < \infty).$$

The various algebraic and topological properties of sequence spaces with the help of Orlicz function have been introduced and studied as a generalization of various sequence spaces. For instance, we refer a few: Bala [1], Erdem and Demiriz [2], Khan [4], Kolk [6], Mishra et. al [10], Parashar and Chaudhary [18] and Rao and Ren [19].

Definition 1.3. A sequence space S is said to be solid (normal) [11] if for any sequence (x_k) in a sequence space X and for all sequences (λ_k) of scalars with $|\lambda_k| \leq 1$ for all natural number k implies that $(\lambda_k x_k) \in X$.

Definition 1.4. For any sequence $x = (x_k)$, the difference sequence Δx is defined by

$$\Delta x = (\Delta x_k)_{k=1}^{\infty} = (x_k - x_{k-1})_{k=1}^{\infty}.$$

Kizmaz [5] defined the following three sequence spaces $l_{\infty}(\Delta) = \{x \in \omega : \Delta x \in l_{\infty}\},\ c(\Delta) = \{x \in \omega : \Delta x \in c\},\ and\ c_0(\Delta) = \{x \in \omega : \Delta x \in c_0\}.$

A sequence $x = (x_k)$ is called Δ -convergent if the lim x_k is finite and hence exists. Every convergent sequence is Δ -convergent but not conversely. For, consider the sequence $x_k = k + 1$ for all natural numbers k. Then, $(\Delta x_k) = (x_k - x_{k+1}) = -1$ for each natural numbers k. Thus, $x = (x_k)$ is divergent but it is Δ -convergent. This example illustrates the importance of studying the difference sequences.

Definition 1.5. A continuous function $f : \mathbb{R} \to [0, \infty)$ is called a Φ -function [3] if f(t) = 0 if and only if t = 0, even and non- decreasing on $[0, \infty)$. The Φ -function is closely related to the Orlicz function.

Herawati and Gultom [3] in 2019 introduced certain type of sequence spaces defined by Φ -function and studied their paranormed structures on these spaces.

We now introduce the following class of difference sequences by extending the concept of sequence space studied in Herawati and Gultom [3].

•
$$W_0(\Delta, f) = \left\{ x = (x_k) \in \omega : (\exists \rho > 0); \frac{1}{n} \sum_{k=1}^n f\left(\frac{|\Delta x_k|}{\rho}\right) \to 0 \text{ as } n \to \infty \right\}.$$

• $W(\Delta, f) = \left\{ x = (x_k) \in \omega : (\exists \rho > 0)(\exists l > 0); \frac{1}{n} \sum_{k=1}^n f\left(\frac{|\Delta x_k - l|}{\rho}\right) \to 0 \text{ as } n \to \infty \right\}.$

•
$$W_{\infty}(\Delta, f) = \left\{ x = (x_k) \in \omega : (\exists \rho > 0); sup_n \frac{1}{n} \sum_{k=1}^n f\left(\frac{|\Delta x_k|}{\rho}\right) < \infty \right\}.$$

where f is a Φ -function.

2 Main Results

In this section, we shall study some topological properties of the class $W_0(\Delta, f)$.

Theorem 2.1. If Φ -function f satisfies Δ_2 -condition, then $W_0(\Delta, f)$ forms a linear space over \mathbb{C} .

Proof. Let $x = (x_k)$ and $y = (y_k)$ be sequences in $W_0(\Delta, f)$. Then there exist ρ_1 and $\rho_2 > 0$ such that

$$\frac{1}{n}\sum_{k=1}^{n} f\left(\frac{|\Delta x_k|}{\rho_1}\right) \to 0 \text{ as } n \to \infty$$
(1)

and

$$\frac{1}{n}\sum_{k=1}^{n} f\left(\frac{|\Delta y_k|}{\rho_2}\right) \to 0 \text{ as } n \to \infty.$$
(2)

Let us choose $\rho = \max{\{\rho_1, \rho_2\}}$. Using the non-decreasing property of f on $[0, \infty)$ and in view of (1) and (2), we can write

$$\frac{1}{n}\sum_{k=1}^{n} f\left(\frac{|\Delta x_{k} + \Delta y_{k}|}{\rho}\right) \leq \frac{1}{n}\sum_{k=1}^{n} f\left(\frac{|\Delta x_{k}|}{\rho}\right) + \frac{1}{n}\sum_{k=1}^{n} f\left(\frac{|\Delta y_{k}|}{\rho}\right)$$
$$\leq \frac{1}{n}\sum_{k=1}^{n} f\left(\frac{|\Delta x_{k}|}{\rho_{1}}\right) + \frac{1}{n}\sum_{k=1}^{n} f\left(\frac{|\Delta y_{k}|}{\rho_{2}}\right) \to 0 \text{ as } n \to \infty.$$

This shows that

$$x + y \in W_0(\Delta, f).$$

Again, let $x \in W_0(\Delta, f)$ and $\alpha \in \mathbb{C}$. Then

$$\frac{1}{n}\sum_{k=1}^{n} f\left(\frac{|\Delta x_k|}{\rho}\right) \to 0 \text{ as } n \to \infty.$$

We need to show that $\alpha x \in W_0(\Delta, f)$.

The proof is obvious if $\alpha = 0$. So, let $\alpha \neq 0$. Then $|\alpha| > 0$.

By Archimedian property of real numbers, there exists $n_1 \in \mathbb{N}$ such that $|\alpha| \leq 2^{n_1}$. Since f is non-decreasing function on $[0, \infty)$ and f satisfies Δ_2 -condition, there exists M > 0, such that

$$f(|\alpha|x_k) \le f(2^{n_1}x_k) \le M^{n_1}f(x_k) \text{ for all } k \in \mathbb{N}.$$

Hence,

$$\frac{1}{n}\sum_{k=1}^{n} f\left(\frac{|\alpha\Delta x_k|}{\rho}\right) = \frac{1}{n}\sum_{k=1}^{n} f\left(\frac{|\alpha||\Delta x_k|}{\rho}\right) \le \frac{M^{n_1}}{n}\sum_{k=1}^{n} f\left(\frac{|\Delta x_k|}{\rho}\right) \to 0 \text{ as } n \to \infty.$$

This shows that $\alpha x \in W_0(\Delta, f)$ and hence $W_0(\Delta, f)$ is a linear space.

Theorem 2.2. The space $W_0(\Delta, f)$ is a paranormed space with a paranorm $g: W_0(\Delta, f) \to \mathbb{R}$ defined by

$$g(x) = \inf\left\{\rho > 0: \frac{1}{n}\sum_{k=1}^{n} f\left(\frac{|\Delta x_k|}{\rho}\right) \le 1; n \in \mathbb{N}\right\}.$$

Proof. The proof of $g(x) \ge 0$ and g(-x) = g(x) can be easily shown for all $x \in W_0(\Delta, f)$. For the third property of paranorm, let $x, y \in W_0(\Delta, f)$. Then there exist $\rho_1, \rho_2 > 0$ such that

$$\frac{1}{n}\sum_{k=1}^{n} f\left(\frac{|\Delta x_k|}{\rho_1}\right) \to 0 \text{ as } n \to \infty$$

and

$$\frac{1}{n}\sum_{k=1}^{n} f\left(\frac{|\Delta y_k|}{\rho_2}\right) \to 0 \text{ as } n \to \infty.$$

Using non-decreasing property of f on $[0, \infty)$, we can obtain

$$g(x+y) = \inf \left\{ \rho > 0 : \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{|\Delta x_{k} + \Delta y_{k}|}{\rho}\right) \le 1 \right\}$$

$$\leq \inf \left\{ \rho_{1} > 0 : \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{|\Delta x_{k}|}{\rho_{1}}\right) \le 1 \right\} + \inf \left\{ \rho_{2} > 0 : \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{|\Delta x_{k}|}{\rho_{2}}\right) \le 1 \right\}$$

$$= g(x) + g(y).$$

Therefore,

$$g(x+y) \le g(x) + g(y)$$
 for all $x, y \in W_0(\Delta, f)$.

Finally, we prove the continuity of scalar multiplication. Let $x \in W_0(\Delta, f)$ be such that

$$g(x_k^{(n)} - x_k) \to 0 \text{ as } n \to \infty$$

and (α_n) a sequence of scalars such that $\alpha_n \to \alpha$ as $n \to \infty$. Now,

$$\begin{split} g(\alpha_n x_k^{(n)} - \alpha x_k) &= \inf \left\{ \rho > 0 : \frac{1}{n} \sum_{k=1}^n f\left(\frac{|\alpha_n \Delta x_k^{(n)} - \alpha_n \Delta x_k|}{\rho}\right) \le 1 \right\} \\ &\leq \inf \left\{ \rho > 0 : \frac{1}{n} \sum_{k=1}^n f\left(\frac{|\alpha_n \Delta x_k^{(n)} - \alpha \Delta x_k^{(n)}|}{\rho}\right) \le 1 \right\} \\ &\quad + \inf \left\{ \rho > 0 : \frac{1}{n} \sum_{k=1}^n f\left(\frac{|\alpha \Delta x_k^{(n)} - \alpha \Delta x_k|}{\rho}\right) \le 1 \right\} \\ &= |\alpha_n - \alpha| \inf \left\{ \rho_1 = \left(\frac{\rho}{|\alpha_n - \alpha|}\right) > 0 : \frac{1}{n} \sum_{k=1}^n f\left(\frac{|\Delta x_k^{(n)}|}{\rho_1}\right) \le 1 \right\} \\ &\quad + |\alpha| \inf \left\{ \rho_2 = \left(\frac{\rho}{|\alpha|}\right) > 0 : \frac{1}{n} \sum_{k=1}^n f\left(\frac{|\Delta x_k^{(n)} - \Delta x_k|}{\rho_2}\right) \le 1 \right\} \\ &= |\alpha_n - \alpha| g\left(x_k^{(n)}\right) + |\alpha| g\left(x_k^{(n)} - x_k\right) \\ &\rightarrow 0 \text{ as } \alpha_n \to \alpha \text{ and } g\left(x_k^{(n)} - x_k\right) \to 0. \end{split}$$

Hence, $W_0(\Delta, f)$ is a paranormed space.

Theorem 2.3. If f as Φ -function satisfies the convex and Δ_2 -condition, then the space $W_0(\Delta, f)$ is a complete paranormed space.

Journal of Nepal Mathematical Society (JNMS), Vol. 5, Issue 2 (2022); J. L. Ghimire, N. P. Pahari

Proof. Let $\begin{pmatrix} x_k^{(n)} \end{pmatrix}$ be a Cauchy sequence in $W_0(\Delta, f)$, where $\begin{pmatrix} x_k^{(n)} \end{pmatrix} = \begin{pmatrix} x_1^{(n)}, x_2^{(n)}, \cdots \end{pmatrix}$. Then there exists $n_1 \in \mathbb{N}$ such that for every $m \ge n \ge n_1$;

$$g\left(x^{(m)} - x^{(n)}\right) = \epsilon \cdot \frac{1}{s} \sum_{k=1}^{s} f\left(\frac{|\Delta x_k^{(m)} - \Delta x_k^{(n)}|}{\epsilon}\right) \le 1.$$

Using the convexity of f, we have

$$\frac{1}{s}\sum_{k=1}^{s} f\left(|\Delta x_{k}^{(m)} - \Delta x_{k}^{(n)}|\right) \le \epsilon \frac{1}{s}\sum_{k=1}^{s} f\left(\frac{|\Delta x_{k}^{(m)} - \Delta x_{k}^{(n)}|}{\epsilon}\right) < \epsilon$$

Since $\epsilon > 0$ was arbitrary,

$$f\left(|\Delta x_k^{(m)} - \Delta x_k^{(n)}|\right) = 0 \text{ for all } m \ge n \ge n_1.$$

This follows that

$$|x_k^{(m)} - x_k^{(n)}| < \epsilon \text{ for all } m \ge n \ge n_1.$$

This shows that $(x_k^{(n)})$ is a Cauchy sequence in \mathbb{R} . Since \mathbb{R} is complete, there exists $x_k \in \mathbb{R}$ such that $\lim_{n\to\infty} x_k^{(n)} = x_k$. Thus for every $n \ge n_1$,

$$|x_k^{(m)} - x_k| = |x_k^{(m)} - \lim_{n \to \infty} x_k^{(n)}| = \lim_{n \to \infty} |x_k^{(m)} - x_k^{(n)}| < \epsilon^2.$$

Since $\left(x_k^{(n)}\right) \in W_0(\Delta, f)$, we can write

$$\frac{1}{s}\sum_{k=1}^{s} f\left(\frac{|\Delta x_k^{(n)}|}{\rho}\right) \to 0 \text{ as } s \to \infty.$$

Using continuity of f, we have

$$\frac{1}{s}\sum_{k=1}^{s} f\left(\frac{|\Delta x_k|}{\rho}\right) = \frac{1}{s}\sum_{k=1}^{s} f\left(\frac{|\lim_{n\to\infty}\Delta x_k^{(n)}|}{\rho}\right) = \lim_{n\to\infty}\frac{1}{s}\sum_{k=1}^{s} f\left(\frac{|\Delta x_k^{(n)}|}{\rho}\right) = 0 \text{ as } s \to \infty.$$

Thus,

$$\frac{1}{s}\sum_{k=1}^s f\left(\frac{|\Delta x_k|}{\rho}\right) \to 0 \text{ as } s \to \infty.$$

Hence, $(x_k) \in W_0(\Delta, f)$. Finally, we show that $g(x^{(n)} - x) \to 0$ as $n \to \infty$. Using the continuity of f, we have

$$\frac{1}{s}\sum_{k=1}^{s} f\left(\frac{|\Delta x_k^{(n)} - \Delta x_k|}{\rho}\right) \le \frac{1}{s}\sum_{k=1}^{s} f\left(\frac{|\Delta x_k^{(n)} - \lim_{m \to \infty} \Delta x_k^{(m)}|}{\rho}\right) = \frac{1}{s}\sum_{k=1}^{s} f\left(\frac{|\Delta x_k^{(n)} - \Delta x_k^{(m)}|}{\rho}\right) \le 1.$$

Thus

$$g(x^{(n)} - x) = \inf\left\{\rho > 0: \frac{1}{s}\sum_{k=1}^{s} f\left(\frac{|\Delta x_k^{(n)} - \Delta x_k|}{\rho}\right) \le 1\right\}.$$

This implies that $g(x^{(n)} - x) < \rho$ for every $\rho > 0$.

It follows that there exists a real sequence $\left(\frac{p}{2q}\right), q \geq 1$ for a real number p, together with

$$g(x^{(n)} - x) < \frac{p}{2^q}, q \ge 1.$$

Thus we obtain $g(x^{(n)} - x) \to 0$ as $n \to \infty$. Hence, $W_0(\Delta, f)$ is a complete paranormed space.

Theorem 2.4. The space $W_0(\Delta, f)$ is normal.

Proof. Let $x = (x_k) \in W_0(\Delta, f)$. Then there exists $\rho > 0$ such that

$$\frac{1}{n}\sum_{k=1}^{n} f\left(\frac{|\Delta x_k|}{\rho}\right) \to 0 \text{ as } n \to \infty$$

Let (α_k) be a sequence of scalars satisfying $|\alpha_k| \leq 1$ for all $k \geq 1$. Using $|\alpha_k| \leq 1$ for all $k \geq 1$ and non-decreasing property of f, we have

$$f(|\alpha_k|\Delta x_k) \le f(\Delta x_k)$$

Then,

$$\frac{1}{n}\sum_{k=1}^n f\left(\frac{|\alpha_k\Delta x_k|}{\rho}\right) = \frac{1}{n}\sum_{k=1}^n f\left(\frac{|\alpha_k||\Delta x_k|}{\rho}\right) \le \frac{1}{n}\sum_{k=1}^n f\left(\frac{|\Delta x_k|}{\rho}\right) \to 0 \text{ as } n \to \infty.$$

This shows that $\alpha_k x_k \in W_0(\Delta, f)$ and hence $W_0(\Delta, f)$ is normal.

3 Conclusions

Here we established some of the results that characterize the linear topological properties of the difference sequence space $W_0(\Delta, f)$ defined by non-negative real valued Φ -function on \mathbb{R} . Moreover, the results can be used to prove the results related to the linear and topological properties of the classes $W(\Delta, f)$ and $W_{\infty}(\Delta, f)$.

References

- Bala, I., 2012, Cesaro sequence space defined by an Orlicz function, Communications in Mathematics and Applications, 3, 197-204.
- [2] Erdem, S., and Demiriz, S., 2019, On the new generalized block difference sequence space, Applications and Applied Mathematics, 5, 68-83.
- [3] Herawati, E., and Gultom, S. N. R., 2019, On a certain type of sequence spaces defined by Φ-function, JoRMTT, 1, 61-67.
- [4] Khan, V. A., 2008, On a new sequence space defined by Orlicz functions, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 57, 25-33.
- [5] Kizmaz, H., 1981, On Certain Sequence Spaces, Canadian Mathematical Bulletin, 24, 169-176.
- [6] Kolk, E., 2011, Topologies in generalized Orlicz sequence spaces, *Filomat*, 25, 191-211.

Journal of Nepal Mathematical Society (JNMS), Vol. 5, Issue 2 (2022); J. L. Ghimire, N. P. Pahari

- [7] Krasnoselskii, M. A., and Rutickii, Y. B., 1961, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd, Netherland.
- [8] Lindenstrauss, J., and Tzafriri, L., 1977, Classical Banach Spaces, Springer-Verlag, New York.
- [9] Maddox, I. J., 1969, Some properties of paranormed sequence spaces, Journal of the London Mathematical Society, 2, 316-322.
- [10] Mishra, V. N., Deepmala, Subramanian, N., and Mishra, L. N., 2016, The generalized seminormed difference of χ^3 sequence spaces defined by Orlicz function, J. Appl. Computat. Math., 5.
- [11] Musielak, J., 1983, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034.
- [12] Nakano, H., 1951, Modular sequence spaces, Proceedings of the Japan Academy, 27, 508-512.
- [13] Pahari, N. P., 2014, On a certain topological structures of Banach space valued paranormed sequence space $l_{\infty}((S, ||.||)), \Phi, \bar{\mu})$ defined by Orlicz function, Journal of Rajasthan Academy of physical sciences, 13, 51-56.
- [14] Pahari, N. P., 2014, On normed space valued total paranormed Orlicz space of null sequences and its topological structures, *International Journal of Mathematics Trends and Technology*, 6, 105-112.
- [15] Pahari, N. P., 2013, On a certain topological structures of Orlicz space $(S, ((X, ||.||), \phi, \bar{\alpha}, \bar{\mu}), F)$ of vector valued sequences, *International Journal of Mathematical Archive*, 4, 231-241.
- [16] Pahari, N. P., 2014, On a certain topological structures of normed space valued generalized Orlicz function space, *International Journal of Scientific Engineering and Research*, 2, 61-66.
- [17] Pahari, N. P., 2014, On normed space valued paranormed Orlicz space of bounded functions and its topological structures, *International Journal of Science and Research (IJSER)*, 3, 141-146.
- [18] Parashar, S. D., and Choudhary, B., 1994, Sequence spaces defined by Orlicz functions, Indian Journal of Pure and Applied Mathematics, 25, 419-428.
- [19] Rao, M. M., and Ren, Z. D., 1991, Theory of Orlicz spaces, Marcel DekkerInc, New York.
- [20] Simmons, S., 1965, The sequence spaces (pv) and m(pv), Proceedings of the London Mathematical Society, 422-436.
- [21] Tripathy, B. C., and Sen, M., 2004, On generalized statistically convergent sequence spaces, Indian Journal of Pure & Applied Mathematics, 32, 1689-1694.
- [22] Wilansky, A., 1984, Summability through functional analysis, North-Holland Math. Stud., 85.