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1 Introduction

Frames, introduced by Duffin and Schaefer [4] in 1952 to analyse some deep problems in nonharmonic
Fourier series by abstracting the fundamental notion of Gabor [7] for signal processing. Today, frame
theory is an exciting, dynamic and fast paced subject with applications to a wide variety of areas in math-
ematics and engineering, including sampling theory, operator theory, harmonic analysis, nonlinear sparse
approximation, pseudodifferential operators, wavelet theory, wireless communication, data transmission
with erasures, filter banks, signal processing, image processing, geophysics, quantum computing, sensor
networks, and more. The last decades have seen tremendous activity in the development of frame theory
and many generalizations of frames have come into existence, g-frame was first proposed using a sequence
of adjointable operators to deal with all the existing frames as a united object. In fact, the g-frame is an
extension of ordinary frames. Generalized frames with adjointable operators called K-g-frame is a gener-
alization of a g-frame. It can be used to reconstruct elements from the range of a adjointable operator K.
K-g-frames have a certain advantage compared with g-frames in practical applications.

In 2000, Frank-Larson [6] extended the theory for the elements of C∗-algebra and Hilbert C∗-modules.
Recentely, Khosravi and Khosravi [9] introduced the g-frame theory in Hilbert C∗-modules. Afterwards,
Alijani and Dehghan [2] consider frames with C∗-valued bounds [2] in Hilbert C∗-modules. Bounader and
Kabbaj [3] and Alijani [1] introduced the ∗-g-frames which are generalizations of g-frames in Hilbert C∗-
modules. In 2016, Xiang and Li [12] gave a generalization of g-frames for operators in Hilbert C∗-modules.
In this paper, we establish some new results for K-g-frames in Hilbert C∗-modules. Moreover, we investi-
gate the duals of them. We also discuss the stability problem.

The paper is organized as follow, we continue this introductory section by briefly recalling the definitions
and basic properties of Hilbert C∗-modules. In section 2, we construct some new K-g-frames and we char-
acterize the concept of K-g-frames by quotient maps in Hilbert C∗-module. In section 3, we investigate
the notion of dual K-g-Bessel sequence in Hilbert C∗-modules.

In the following, we briefly recall the definition and basic properties of Hilbert C∗-modules. For a C∗-algebra
A if a ∈ A is positive we write a ≥ 0 and A+ denotes the set of positive elements of A.
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Definition 1.1. [8]. Let A be a unital C∗-algebra and H be a left A-module, such that the linear structures
of A and U are compatible. H is a pre-Hilbert A-module if H is equipped with an A-valued inner product
⟨., .⟩ : H ×H → A, such that is sesquilinear, positive definite and respects the module action. In the other
words,

(i) ⟨x, x⟩ ≥ 0 for all x ∈ H and ⟨x, x⟩ = 0 if and only if x = 0.

(ii) ⟨ax+ y, z⟩ = a⟨x, z⟩+ ⟨y, z⟩ for all a ∈ A and x, y, z ∈ H.

(iii) ⟨x, y⟩ = ⟨y, x⟩∗ for all x, y ∈ H.

For x ∈ H, we define ||x|| = ||⟨x, x⟩|| 12 . If H is complete with ||.||, it is called a Hilbert A-module or a

Hilbert C∗-module over A. For every a in C∗-algebra A, we have |a| = (a∗a)
1
2 and the A-valued norm on

H is defined by |x| = ⟨x, x⟩ 1
2 for x ∈ H.

Throughout this paper, H is considered to be a countably generated Hilbert A−module. Let {Hi}i∈I be
a collection of Hilbert A-modules, where I is a finite or countable index set. End∗A(H,Hi) is the set of all
adjointable operator from H to Hi. In particular, End∗A(H) denote the set of all adjointable operators on
H. PW denotes the orthogonal projection onto the closed submodule orthogonally complemented W of H,
the range and null of K are denoted by R(K) and N (K), respectively. Define the module

l2({Hi}i∈I) = {{xi}i∈I : xi ∈ Hi, ∥
∑
i∈I

⟨xi, xi⟩∥ < ∞}

with A−valued inner product ⟨x, y⟩ =
∑

i∈I⟨xi, yi⟩, where x = {xi}i∈I and y = {yi}i∈I , clearly l2({Hi}i∈I)
is a Hilbert A−module.

We need the following lemmas to prove our results.

Lemma 1.2. [5] Let E,H and L be Hilbert A-modules, T ∈ End∗A(E,L) and T
′ ∈ End∗A(H,L). Then the

following two statements are equivalent.

(1) T
′
(T

′
)∗ ≤ λTT ∗ for some λ > 0.

(2) There exists µ > 0 such that ∥(T ′
)∗z∥ ≤ µ∥T ∗z∥ for all z ∈ L.

Lemma 1.3. [5] Let E,H be Hilbert A-modules and T be in End∗A(E,H). Then the following statements
are equivalent.

(1) R(T ∗) is orthogonally complemented.

(2) For any Hilbert A−module L and any T
′ ∈ End∗A(L,H), the equation T

′
= TX for X ∈ End∗A(L,E)

is solvable whenever R(T
′
) ⊆ R(T ).

(3) The equation S = TX for X ∈ End∗A(G,E) is solvable, where G and S are defined by G = R(T ∗)
and S be the restriction of T on G.

Now, we recall the definitions of g-frames and K-g-frames in Hilbert C∗-modules.

Definition 1.4. [9] A sequence {Λi ∈ End∗A(H,Hi) : i ∈ I} is called a g-frame for H with respect to
{Hi}i∈I if there exist constants 0 < A ≤ B < ∞, such that

A⟨x, x⟩ ≤
∑
i∈I

⟨Λix,Λix⟩ ≤ B⟨x, x⟩, ∀x ∈ H. (1.1)

the constants A and B are called the lower and upper bounds of g-frames, respectively. If A = B, we call
{Λi}i∈I a tight g-frame; in particular if A = B = 1, {Λi}i∈I is called a Parseval g-frame. If only the right
hand inequality of (1.1) holds, {Λi}i∈I is called a g-Bessel sequence for H.
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Then we can define the adjointable operator T : H → l2({Hi}i∈I) by

T (x) = {Λix}i∈I , ∀x ∈ H.

The adjoint operator T ∗ : l2({Hi}i∈I) → H is given by

T ∗({xi}i∈I) =
∑
i∈I

Λ∗
i xi, ∀{xi}i∈I ∈ l2({Hi}i∈I).

By composing T ∗ with T , we can obtain the adjointable operator S : H → H defined by

Sx = T ∗Tx =
∑
i∈I

Λ∗
iΛix, ∀x ∈ H.

T, T ∗ and S are called the analysis operator, synthesis operator and g-frame operator, respectively.

Definition 1.5. [12] Let K ∈ End∗A(H). A sequence {Λi ∈ End∗A(H,Hi) : i ∈ I} is called a K-g-frame
for H with respect to {Hi}i∈I if there exist constants 0 < A ≤ B < ∞ such that

A⟨K∗x,K∗x⟩ ≤
∑
i∈I

⟨Λix,Λix⟩ ≤ B⟨x, x⟩, ∀x ∈ H. (1.2)

The constants A and B are called the lower and upper bounds of K-g-frames, respectively.

It should be noted that the K-g-frame operator S is not invertible in general, however If K has closed
range, then

SΛ : R(K) → S(R(K)) (1.3)

is invertible and self-adjoint.

2 Construction of Some New K-g-Frames in Hilbert C∗-Modules

In inequality (1.2) we are comparing the positive elements in A. The following theorem which characterize
K-g-frames, we show that one can replace (1.2) with two inequalities in terms of the norm of elements.
That we will used in the proof of the next results.

Theorem 2.1. Let K ∈ End∗A(H) and {Λi ∈ End∗A(H,Hi) : i ∈ I} be a sequence. Then {Λi}i∈I is a
K-g-frame for H if and only if there exist two constants A,B > 0 such that

A∥K∗x∥2 ≤ ∥
∑
i∈I

⟨Λix,Λix⟩∥ ≤ B∥x∥2, ∀x ∈ H. (2.1)

Proof. Assume that {Λi}i∈I be a K-g-frame for H, then it is clear that we have (2.1).
Conversely, suppose that (2.1) holds.
We define the operator T : H → l2({Hi}i∈I) by Tx = {Λix}i∈I .
Let {xi}i∈H ∈ l2({Hi}i∈I)

∥
∑
i∈I

Λ∗
i xi∥ = sup

∥y∥=1

∥⟨Λ∗
i xi, y⟩∥

= sup
∥y∥=1

∥
∑
i∈I

⟨xi,Λiy⟩∥

≤ sup
∥y∥=1

∥
∑
i∈I

⟨xi, xi⟩∥
1
2 ∥

∑
i∈I

⟨Λiy,Λiy⟩∥
1
2

≤
√
B∥{xi}i∈I∥.

Then,
∑

i∈I Λ
∗
i xi converge unconditionally in H, and we have ∀x ∈ H, ∀{xi}i∈I ∈ l2({Hi}i∈I),

⟨Tx, {xi}i∈I⟩ =
∑
i∈I

⟨Λix, xi⟩ = ⟨x,
∑
i∈I

Λ∗
i xi⟩,
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so T is adjointable and T ∗({xi}i∈I) =
∑

i∈I Λ
∗
i xi, also we have

A∥K∗x∥2 ≤ ∥Tx∥2, ∀x ∈ H.

Hence, by lemma 1.2, there exists a constant µ > 0 such that

KK∗ ≤ µT ∗T,

therefore,
1

µ
⟨K∗x,K∗x⟩ ≤

∑
i∈I

⟨Λix,Λix⟩, ∀x ∈ H.

And we have for each x ∈ H,∑
i∈I

⟨Λix,Λix⟩ = ⟨Tx, Tx⟩ ≤ ∥T∥2⟨x, x⟩, ∀x ∈ H.

The proof is completed.

The question of stability plays an important role in various fields of applied mathematics. The classical
theorem of the stability of a base is due to Paley and Wiener [11]. It is based on the fact that a bounded
operator T on a Banach space is invertible if ∥I − T∥ < 1.

Theorem 2.2. [11] Let {fi}i∈N be a basis of a Banach space X, and {gi}i∈N be a sequence of vectors in
X. If there exists a constant λ ∈ [0, 1) such that∥∥∥∑

i∈N
ci(fi − gi)

∥∥∥ ≤ λ
∥∥∥∑

i∈N
cifi

∥∥∥
for all finite sequences {ci}i∈N of scalars, then {gi}i∈N is also a basis for X.

The following theorem is a Paley–Wiener type stability theorem for K-g-frames in Hilbert C∗-modules.

Theorem 2.3. Let {Λi}i∈I be a K-g-frame for End∗A(H,Hi) and Γi ∈ End∗A(H,Hi), for all i ∈ I. If
there exist constants 0 ≤ µ, ν < 1 such that for all x ∈ H

∥
∑
i∈I

⟨(aiΛi − biΓi)x, (aiΛi − biΓi)x∥
1
2 ≤ µ∥

∑
i∈I

⟨aiΛix, aiΛix⟩∥
1
2 + ν∥

∑
i∈I

⟨biΓix, biΓix⟩∥
1
2 .

Then, {Γi}i∈I is a K − g−frame for End∗A(H,Hi) where {ai}i∈I and {bi}i∈I are positively confined se-
quences.

Proof. Let x ∈ H, we have

∥
∑
i∈I

⟨biΓix, biΓix⟩∥
1
2 = ∥{biΓix}i∈I∥

= ∥{biΓix− aiΛix}i∈I + {aiΛix}i∈I∥
≤ ∥{biΓix− aiΛix}i∈I∥+ ∥{aiΛix}i∈I∥

= ∥
∑
i∈I

⟨(aiΛi − biΓi)x, (aiΛi − biΓi)x∥
1
2 + ∥

∑
i∈I

⟨aiΛix, aiΛix⟩∥
1
2

≤ (1 + µ)∥
∑
i∈I

⟨aiΛix, aiΛix⟩∥
1
2 + ν∥

∑
i∈I

⟨biΓix, biΓix⟩∥
1
2 .

Then,

(1− ν)∥
∑
i∈I

⟨biΓix, biΓix⟩∥
1
2 ≤ (1 + µ)∥

∑
i∈I

⟨aiΛix, aiΛix⟩∥
1
2 .

Hence,

(1− ν)(inf
i∈I

|bi|)∥
∑
i∈I

⟨Γix,Γix⟩∥
1
2 ≤ (1 + µ)(sup

i∈I
|ai|)∥

∑
i∈I

⟨Λix,Λix⟩∥
1
2 .
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Therefore,

∥
∑
i∈I

⟨Γix,Γix⟩∥ ≤ B

(
(1 + µ)(supi∈I |ai|)
(1− ν)(infi∈I |bi|)

)2

∥x∥2. (2.2)

On the other hand for each x ∈ H, we have

∥
∑
i∈I

⟨aiΛix, aiΛix⟩∥
1
2 = ∥{aiΛix}i∈I∥

≤ ∥{aiΛix− biΓix}i∈I∥+ ∥{biΓix}i∈I∥

≤ (1 + ν)∥
∑
i∈I

⟨biΓix, biΓix⟩∥
1
2 + µ∥

∑
i∈I

⟨aiΛix, aiΛix⟩∥
1
2 ,

then,

(1− µ)∥
∑
i∈I

⟨aiΛix, aiΛix⟩∥
1
2 ≤ (1 + ν)∥

∑
i∈I

⟨biΓix, biΓix⟩∥
1
2 ,

hence,

(1− µ)(inf
i∈I

|ai|)∥
∑
i∈I

⟨Λix,Λix⟩∥
1
2 ≤ (1 + ν)(sup

i∈I
|bi|)∥

∑
i∈I

⟨Γix,Γix⟩∥
1
2 ,

therfore,

A

(
(1− µ)(infi∈I |ai|)
(1 + ν)(supi∈I |bi|)

)2

∥K∗x∥2 ≤ ∥
∑
i∈I

⟨Γix,Γix⟩∥. (2.3)

From inequality (2.2) and (2.3), we conclude that {Γi}i∈I is a K-g-frame for End∗A(H,Hi).

The following corollaries are consequences of Theorem 2.3.

Corollary 2.4. Let {Λi}i∈I be a K-g-frame for End∗A(H,Hi) and Γi ∈ End∗A(H,Hi) for all i ∈ I. Then,
the following statements hold.

(1) If there exist 0 < µ < 1, such that for every x ∈ H

∥
∑
i∈I

⟨(Λi − Γi)x, (Λi − Γi)x⟩∥
1
2 ≤ µ∥

∑
i∈I

⟨Λix,Λix⟩∥
1
2 ,

then {Γi}i∈I is a K-g-frame for End∗A(H,Hi).

(2) If supi∈I ∥Λi∥ <
√
2
2 , then the sequence {Λi + Λ2

i }i∈I is a K-g-frame for End∗A(H,Hi).

Corollary 2.5. Let T ∈ End∗A(H) with ∥T∥ <
√
2
2 , Hi be invariant for T and Λi ∈ End∗A(H,Hi) for all

i ∈ I. Then, the following assertions are equivalent.

(1) {Λi}i∈I is a K-g-frame for End∗A(H,Hi).

(2) For every n ∈ N, the sequence {Λi + TnΛi}i∈I is a K-g-frame for End∗A(H,Hi).

(3) There exists n ∈ N, such that the sequence {Λi + TnΛi}i∈I is a K-g-frame for End∗A(H,Hi).

In the sequel, we show that K-g-frame is invariant under a adjointable operator.

Theorem 2.6. Let K be surjective, T ∈ End∗A(H) and {ΛiT}i∈I be a K-g-frame for H. Then, the
following statements hold:

(1) T is injective.

(2) If T is self-adjoint and has closed range, then T is invertible and {Λi} is a T−1K-g-frame for H.

(3) If T is self-adjoint and TK = KT , then {Λi}i∈I is a K-g-frame for H.
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Proof. (1) There exists two constants A,B > 0 such that

A⟨K∗x,K∗x⟩ ≤
∑
i∈I

⟨ΛiTx,ΛiTx⟩ ≤ B⟨x, x⟩.

Then, N (T ) ⊆ N (K∗). And we have N (K∗) = R(K)⊥, since K is surjective then, N (K∗) = {0}, therefore
N (T ) = {0} i.e, T is injective.

(2) Since T is self-adjoint and has closed range, then R(T ) = N (T ∗)⊥ = N (T )⊥ = {0}⊥ = H. So, T is
surjective, hence invertible.

To complete the proof, let x ∈ H, we have∑
i∈I

⟨Λix,Λix⟩ =
∑
i∈I

⟨ΛiTT
−1x,ΛiTT

−1x⟩

≤ B⟨T−1x, T−1x⟩
≤ B∥T−1∥2⟨x, x⟩. (2.4)

On the other hand, let x ∈ H, then there exists y ∈ H such that x = Ty. So,∑
i∈I

⟨Λix,Λix⟩ =
∑
i∈I

⟨ΛiTy,ΛiTy⟩

≥ A⟨K∗y,K∗y⟩
= A⟨K∗T−1x,K∗T−1x⟩
= A⟨(T−1K)∗x, (T−1K)∗x⟩. (2.5)

From inequality (2.4) and (2.5), we conclude that {Λi}i∈I is a T−1 K-g-frame for H.

Now, we prove that if {Λi}i∈I is a K-g-frame for H and {Γi}i∈I is a g-Bessel sequence for H, such that for
every i ∈ I, R(Λi) ⊥ R(Γi), then {ΛiT1 + ΓiT2}i∈I is a T ∗

1 K-g-frame, where T1, T2 ∈ End∗A(H).

Theorem 2.7. Let {Λi}i∈I be a K-g-frame for H and {Γi}i∈I be a g-Bessel sequence for H. If for every
i ∈ I, R(Λi) ⊥ R(Γi), then {ΛiT1 + ΓiT2}i∈I is a T ∗

1K-g-frame, where T1, T2 ∈ End∗A(H).

Proof. Let {Λi} be a K-g-frame for H and {Γi}i∈I be a g-Bessel sequence for H, then there exist constants
A1, B1, B2 > 0 such that

A1⟨K∗x,K∗x⟩ ≤
∑
i∈I

⟨Λix,Λix⟩ ≤ B1⟨x, x⟩, ∀x ∈ H,

and ∑
i∈I

⟨Γix,Γix⟩ ≤ B2⟨x, x⟩, ∀x ∈ H.

Since R(Λi) ⊥ R(Γi), then R(ΛiT1) ⊥ R(ΓiT2), ∀i ∈ I, so for each x ∈ H, we have∑
i∈I

⟨(ΛiT1 + ΓiT2)x, (ΛiT1 + ΓiT2)x⟩ =
∑
i∈I

⟨ΛiT1x,ΛiT1x⟩+
∑
i∈I

⟨ΓiT2x,ΓiT2x⟩

≤ B1⟨T1x, T1x⟩+B2⟨T2x, T2x⟩
≤ B1∥T∥2⟨x, x⟩+B2∥T2∥2⟨x, x⟩
= (B1∥T1∥2 +B2∥T2∥2)⟨x, x⟩. (2.6)

On the other hand,

A1⟨(T ∗
1K)∗x, (T ∗

1K)x⟩ = A1⟨K∗T ∗
1 x,K

∗T1x⟩ ≤
∑
i∈I

⟨ΛiT1x,ΛiT1x⟩

≤
∑
i∈I

⟨ΛiT1x,ΛiT1x⟩+
∑
i∈I

⟨ΓiT2x,ΓiT2x⟩

=
∑
i∈I

⟨(ΛiT1 + ΓiT2)x, (ΛiT1 + ΓiT2)x⟩. (2.7)

From inequlity (2.6) and (2.7), we conclude that {ΛiT1 + ΓiT2}∈I is a K-g-frame for H.
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The following corollary is consequence of Theorem 2.7.

Corollary 2.8. Let {Λi}i∈I be a K-g-frame for H and {Γi} be a g-Bessel sequence for H, such that
R(Λi) ⊥ R(Γi), ∀i ∈ I. Then, the following statements hold:

(1) The sequence {ΛiT + ΓiT}i∈I is a (T ∗K)-g-frame for H.

(2) The sequence {Λi + Γi}i∈I and {Λi − Γi}i∈I are K-g-frames for H.

(3) If {ai}i∈I and {bi}i∈I are two positively confined sequences then the sequence {aiΛi + biΓi}i∈I is a
K − g−frame for H.

Proof. (1) Take in the theorem 2.7, T1 = T2 = T .
(2) Take in the theorem 2.7, T1 = IH and T2 = −IH .
(3) Since R(Λi) ⊥ R(Γi), then R(aiΛi) ⊥ R(biΓi) and apply (2).

We conclude the section with characterizing the K-g-frame by quotient maps.

Definition 2.9. Let T1, T2 ∈ End∗A(H), the map [T1/T2] : R(T2) → R(T1) defined by [T1/T2](T2(x)) =
T1(x) is called the quotient map.

Remark 2.10. [T1/T2] is a linear operator if and only if N (T2) ⊆ N (T1).

Theorem 2.11. Let {Λi}i∈I be a K-g-Bessel sequence for H with the frame operator S and K ∈ End∗A(H).

Then, {Λi}i∈I is a K-g-frame for H if and only if the quotient operator [K∗/S
1
2 ] is a bounded linear

operator. In this case if R(S
1
2 ) is orthogonally complemented and R(K) ⊆ R(S

1
2 ), then K = S

1
2X for

some X ∈ End∗A(H).

Proof. Assume that {Λi}i∈I is a K-g-frame for H, then there exists constant A > 0, such that

A⟨K∗x,K∗x⟩ ≤
∑
i∈I

⟨Λix,Λix⟩,∀x ∈ H,

and we have ∑
i∈I

⟨Λix,Λix⟩ = ⟨Sx, x⟩.

So,
A⟨K∗x,K∗x⟩ ≤ ⟨Sx, x⟩ = ⟨S 1

2x, S
1
2x⟩.

Therefore, N (S
1
2 ) ⊆ N (K∗) which implies that the quotient map [K∗/S

1
2 ] is bounded linear operator.

Conversely, suppose that [K∗/S
1
2 ] is a bounded linear operator, then there exists C > 0, such that for each

x ∈ H, ∥K∗x∥ ≤ C∥S 1
2x∥, so

1

C
∥K∗x∥2 ≤ ∥

∑
i∈I

⟨Λix,Λix⟩∥.

Therefore, {Λi}i∈I is a K-g-frame for H.

To complete the proof, if R(S
1
2 ) is orthogonally complemented and R(K) ⊆ R(S

1
2 ), then by lemma 1.3,

there exist X ∈ End∗A(H) such that K = S
1
2X.

Corollary 2.12. Let {Λi}i∈I be a K-g-frame for H. Then {Λi}i∈I is a Kn-g-frame for H.

Proof. Suppose that {Λi}i∈I be a K-g-frame for H, then [K∗/S
1
2 ] is a bounded linear operator by theorem

2.11. Hence there exists A > 0, such that for every x ∈ H, ∥K∗x∥ ≤ A∥S 1
2x∥. Then,

∥(Kn)∗x∥ = ∥(Kn−1)∗K∗x∥
≤ ∥(Kn−1)∗∥∥K∗x∥

≤ A∥(Kn−1)∗∥∥S 1
2x∥.

So, [(Kn)∗/S
1
2 ] is a bounded linear operator, hence {Λi}i∈I is a Kn−g-frame for H.
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3 Dual of K-g-Frame

This section is devoted to the study of the dual K-g-Bessel sequence of K-g-frame in Hilbert C∗-modules.
We firstly define the notions of g-complete and g-orthonormal bases for Hilbert C∗-modules.

Definition 3.1. We say that {Λi ∈ End∗A(H,Hi), i ∈ I} is g-complete if {x : Λix = 0, i ∈ I} = {0}.

Lemma 3.2. {Λi ∈ End∗A(H,Hi), i ∈ I} is g-complete if and only if Span{Λ∗
i (Hi)}i∈I = H.

Proof. Let {Λi}i∈I be g-complete. Since Span{Λ∗
i (Hi)}i∈I ⊆ H it is enough to proof that if x ∈ H and

x ⊥ Span{Λ∗
i (Hi)}i∈I , then x = 0. Let x ∈ H and x ⊥ Span{Λ∗

i (Hi)}i∈I , since for any i ∈ I, x ⊥ Λ∗
iΛix,

then for all i ∈ I,
⟨Λix,Λix⟩ = ⟨x,Λ∗

iΛix⟩ = 0.

So, Λix = 0. Therefore, x = 0. Conversely, let Span{Λ∗
i (Hi)}i∈I = H, let x ∈ H and suppose that Λix = 0,

∀i ∈ I. Then, for each y ∈ Hi

⟨Λix, y⟩ = ⟨x,Λ∗
i y⟩ = 0.

Hence, x ⊥ Span{Λ∗
i (Hi)}i∈I . Therefore, x ⊥ Span{Λ∗

i (Hi)}i∈I = H. It shows that x = 0, thus {Λi}i∈I is
g-complete.

Definition 3.3. {Λi}i∈I is called a g-orthonormal bases for H with respect to {Hi}i∈I if

⟨Λ∗
i xi,Λ

∗
jxj⟩ = δi,j⟨xi, xj⟩, ∀i, j ∈ I, ∀xi ∈ Hi,∀xj ∈ Hj

and ∑
i∈I

⟨Λix,Λix⟩ = ⟨x, x⟩, ∀x ∈ H.

Lemma 3.4. Let {θi}i∈I ∈ {End∗A(H,Hi), i ∈ I} be a g-orthonormal bases for H with respect to {Hi}i∈I .
Then {Λi}i∈I is a g-Bessel sequence if and only if there exists a unique adjointable operator V : H → H
such that Λi = θiV

∗,∀i ∈ I.

Proof. Since {θi}i∈I is a g-orthonormal bases for H, {θix}∈I ∈ l2({Hi}i∈I), for all x ∈ H. If {Λi}i∈I is a
g-Bessel sequence for H with bound B, let x ∈ H, we have

∥
∑
i∈I

Λ∗
i θix∥ = sup

∥y∥=1

∥⟨
∑
i∈I

Λ∗
i θix, y⟩∥

= sup
∥y∥=1

∥
∑
i∈I

⟨θix,Λiy⟩∥

≤ sup
∥y∥=1

∥
∑
i∈I

⟨θix, θix⟩∥
1
2 ∥

∑
i∈I

⟨Λiy,Λiy⟩∥
1
2

≤
√
B∥x∥,

then we can defined the bounded operator V on H by

V x =
∑
i∈I

Λ∗
i θix,

V is adjointable because, for each x, y ∈ H

⟨V x, y⟩ = ⟨
∑
i∈I

Λ∗
i θix, y⟩

=
∑
i∈I

⟨x, θ∗iΛiy⟩

= ⟨x,
∑
i∈I

θ∗iΛiy⟩.
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So, V ∗x =
∑

i∈I θ
∗
iΛix, ∀x ∈ H.

Also by definition of g-orthonormal bases we have for each x ∈ H, θiθ
∗
jx = δi,jx. So,

V θ∗jx =
∑
i∈I

Λ∗
i θiθ

∗
jx = Λ∗

jx, ∀x ∈ H,∀j ∈ I.

Hence, V θ∗j = Λ∗
j which implies that θjV

∗ = Λj .
Suppose that V1, V2 ∈ End∗A(H), θiV

∗
1 = θiV

∗
2 = Λi, ∀i ∈ I, then for each x ∈ H, yi ∈ Hi, we have

⟨θiV ∗
1 x, yi⟩ = ⟨θiV ∗

2 x, yi⟩,

that is
⟨V ∗

1 x, θ
∗
i yi⟩ = ⟨V ∗

2 x, θ
∗
i yi⟩.

Since, Span{Λ∗
i (Hi)}i∈I = H, by lemma 3.2, V ∗

1 x = V ∗
2 x. So, V1 = V2, thus the operator V is unique.

Conversely, since Λi = θiV
∗, ∀i ∈ I, for any x ∈ H, we have∑

i∈I

⟨Λix,Λix⟩ =
∑
i∈I

⟨θiV ∗x, θiV
∗x⟩

= ⟨V ∗x, V ∗x⟩
≤ ∥V ∗∥2⟨x, x⟩.

So, {Λi}i∈I is a g-Bessel sequence for H.

Remark 3.5. Given the g-orthonormal bases {θi}i∈I , the operator V in lemma 3.4 is called the g-preframe
operator associated with {Λi}i∈I .

Lemma 3.6. Suppose {θi}i∈I is a g-orthonormal bases for H, {Λi}i∈I is a g-Bessel sequence for H, and
V and S are the g-preframe operator and g-frame operator associated with {Λi}i∈I , respectively. Then,
S = V V ∗.

Proof. We have Λi = θiV
∗, ∀i ∈ I, so for each x ∈ H, we have

Sx =
∑
i∈I

Λ∗
iΛix

=
∑
i∈I

(θiV
∗)∗(θiV

∗)x

= V
∑
i∈I

θ∗i θiV
∗x

= V V ∗x.

Therefore, S = V V ∗.

Now, we introduce the concept of dual K-g-Bessel sequence for Hilbert C∗-modules.

Definition 3.7. Suppose that K ∈ End∗A(H) and {Λi}i∈I is a K-g-frame for H. A g-Bessel sequence
{Γi}i∈I for H is said to be a dual K-g-Bessel sequence of {Λi}i∈I if

Kx =
∑
i∈I

Λ∗
iΓix, ∀x ∈ H.

In the following, we give some sufficient and necessary conditions of K-g-frame by utilizing the associated
g-preframe operators.

Theorem 3.8. Let K ∈ End∗A(H) and {Λi}i∈I be a g-Bessel sequence for H. The associated g-preframe
operator with {Λi}i∈I is V and {θi}i∈I is the g-orthonormal bases for H with respect to {Hi}i∈I . Then V
is a co-isometry if and only if {ΛiK

∗}i∈I is a Parseval K-g-frame.
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Proof. From the definition of g-orthonormal basis we obtain∑
i∈I

⟨ΛiK
∗x,ΛiK

∗x⟩ =
∑
i∈I

⟨θiV ∗K∗x, θiV
∗K∗x⟩ = ⟨V ∗K∗x, V ∗K∗x⟩,∀x ∈ H,

which implies that the conclusion is obvious.

In the sequel, we give some constructions of dual K-g-Bessel in conjunction with g-preframe operators.

Theorem 3.9. Let K ∈ End∗A(H) and {θi}i∈I be a g-orthonormal bases for H with respect to {Hi}i∈I .
{Λi}i∈I is a K-g-frame for H with the g-preframe operator V . U is the g-preframe operator of g-Bessel
sequence {Γi}i∈I . If U is invertible and U−1 is the right inverse of V , then {Γi}i∈I is a K-g-frame for H.

Proof. Since {Λi}i∈I is a K-g-frame for H, there exists a constant A > 0, such that for each x ∈ H,

A⟨K∗x,K∗x⟩ ≤
∑
i∈I

⟨Λix,Λix⟩

=
∑
i∈I

⟨θiV ∗x, θiV
∗x⟩

=
∑
i∈I

⟨θiU∗(U∗)−1V ∗x, θiU
∗(U∗)−1V ∗x⟩,

we have V U−1 = IH , then (U∗)−1V ∗ = IH . So,

A⟨K∗x,K∗x⟩ ≤
∑
i∈I

⟨θiU∗x, θiU
∗x⟩ =

∑
i∈I

⟨Γix,Γix⟩.

Theorem 3.10. Let K ∈ End∗A(H) and {θi}i∈I be a g-orthonormal basis for H with respect to {Hi}i∈I .
{Λi}i∈I is a K-g-frame for H with g-preframe operator V . U is the g-preframe operator of g-Bessel sequence
{Γi}i∈I . Then, {Γi}i∈I is the dual K-g-Bessel sequence of {Λi}i∈I if and only if K = V U∗.

Proof. Suppose {Γi}i∈I is the dual K-g-Bessel sequence of {Λi}i∈I , then for each x ∈ H, we have Kx =∑
i∈I Λ

∗
iΓix, hence by lemma 3.4, for all x ∈ H

Kx =
∑
i∈I

(θiV
∗)(θiU

∗)x = V
∑
i∈I

θ∗i θiU
∗x = V U∗x,

we obtain K = V U∗. Conversely, since {Λi}i∈I and {Γi}i∈I are both g-Bessel sequences, then by lemma
3.4, there exist a unique V,U ∈ End∗A(H), such that Λi = θiV

∗ and Γi = θiU
∗. Hence for each x ∈ H∑

i∈I

Λ∗
iΓix =

∑
i∈I

(θiV
∗)(θiU

∗)x = V
∑
i∈I

θ∗i θiU
∗x = V U∗x = Kx.

Therefore, {Γi}i∈I is the dual K-g-Bessel sequence of {Λi}i∈I .

Theorem 3.11. Let K ∈ End∗A(H). {Γi}i∈I is the dual K-g-Bessel sequence of {Λi}i∈I . Suppose that
T ∈ End∗A(H), if T is a co-isometry, then {T ∗Γi}i∈I is the dual K-g-Bessel sequence of {T ∗Λi}i∈I .

Proof. Suppose T is a co-isometry, then TT ∗ = IH , so, for each x ∈ H∑
i∈I

(T ∗Λi)
∗(T ∗Γi)x =

∑
i∈I

Λ∗
i TT

∗Γix

=
∑
i∈I

Λ∗
iΓix

= Kx.

Then, {T ∗Γi}i∈I is the dual K-g-Bessel sequence of {T ∗Λi}i∈I .
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Theorem 3.12. Let K ∈ End∗A(H) be with closed range, {Λi}i∈I is a K-g-frame for H and R(K), S(R(K))
are orthogonally complemented. Then, {ΛiPS(R(K))(S

−1
Λ )∗K}i∈I is the dual K-g-Bessel sequence of {ΛiPR(K)}i∈I ,

where SΛ is defined by (1.3).

Proof. Since SΛ is bounded, it is easy to check that {ΛiPS(R(K))(S
−1
Λ )∗K}i∈I is a g-Bessel sequence. Since

SΛ is self-adjoint and invertible we have for each x ∈ H,

Kx = (S−1
Λ SΛ)

∗Kx

= S∗
Λ(S

−1
Λ )∗Kx

= S∗
ΛPS(R(K))(S

−1
Λ )∗Kx

= PR(K)S
∗
ΛPS(R(K))(S

−1
Λ )∗Kx

= PR(K)

∑
i∈I

Λ∗
iΛiPS(R(K))(S

−1
Λ )∗Kx

=
∑
i∈I

(ΛiPR(K))
∗(ΛiPS(R(K))(S

−1
Λ )∗K)x.

Theorem 3.13. Let K ∈ End∗A(H) be with closed range, {Λi}i∈I is a K-g-frame for H and R(K), S(R(K))
are orthogonally complemented. Then {ϕi}i∈I is the dual K-g-Bessel sequence of {ΛiPR(K)}i∈I if and only

if ∀i ∈ I, ϕi = Γi + θiG, where Γi = ΛiPS(R(K))(S
−1
Λ )∗K and {θi}i∈I is the g-orthonormal bases of H with

respect to {Hi}i∈I , G ∈ End∗A(H) and V is the g-preframe operator of {Λi}i∈I such that PR(K)V G = 0.

Proof. Suppose that G ∈ End∗A(H) and PR(K)V G = 0. It is obvious that {ϕi}i∈I = {Γi + θiG}i∈I is a
g-Bessel sequence, then∑

i∈I

(ΛiPR(K))
∗ϕix =

∑
i∈I

(ΛiPR(K))
∗Γix+

∑
i∈I

(ΛiPR(K))
∗θiGx

= Kx+ PR(K)

∑
i∈I

V θ∗i θiGx

= Kx+ PR(K)V Gx = Kx.

Hence, {ϕi}i∈I is the dual K-g-Bessel sequence of {ΛiPR(K)}i∈I .

Conversely, define the operator G = U∗ − V ∗PS(R(K))(S
−1
Λ )∗K, where U ∈ End∗A(H) is the g-preframe

operator associated with {ϕi}i∈I , then G ∈ End∗A(H), by theorem 3.10 and lemma 3.6, we know V U∗ = K
and S = V V ∗, hence

PR(K)V Gx = PR(K)V U∗x− PR(K)V V ∗PS(R(K))(S
−1
Λ )∗Kx

= Kx− (SΛ)
∗(S−1

Λ )∗Kx = 0,

and we have,

θiG = θiU
∗ − θiV

∗PS(R(K))(S
−1
Λ )∗K = ϕi − ΛiPS(R(K))(S

−1
Λ )∗K,

hence,

Γi + θiG = ΛiPS(R(K))(S
−1
Λ )∗K + ϕi − ΛiPS(R(K))(S

−1
Λ )∗K = ϕi.

Theorem 3.14. Let K ∈ End∗A(H) and {Γi}i∈I be the dual K-g-Bessel sequence of {Λi}i∈I whose g-
preframe operator is V . Suppose the g-preframe operator of the g-Bessel sequence {ϕi}i∈I is U , then
V U∗ = 0 if and only if {Γi + ϕi}i∈I is the dual K-g-Bessel sequence of {Λi}i∈I .

58



Generalized frames with adjointable operators

Proof. Suppose that V U∗ = 0, then for each x ∈ H∑
i∈I

Λ∗
iϕix =

∑
i∈I

(θiV
∗)∗(θiU

∗)x

= V
∑
i∈I

θ∗i θiU
∗x

= V U∗x = 0,

so, ∑
i∈I

Λ∗
i (Γi + ϕi)x =

∑
i∈I

Λ∗
iΓix = Kx.

Conversely, for each x ∈ H, ∑
i∈I

Λ∗
i (Γi + ϕi)x = Kx,

⇒
∑
i∈I

Λ∗
iΓix+

∑
i∈I

Λ∗
iϕix = Kx,

⇒
∑
i∈I

Λ∗
iϕix = 0,

⇒
∑
i∈I

(θiV
∗)∗(θiU

∗)x = 0,

⇒ V U∗x = 0

Theorem 3.15. Let K ∈ End∗A(H). {Γi}i∈I and {ϕi}i∈I are both the dual K-g-Bessel sequence of {Λi}i∈I ,
respectively. Operators P1 and P2 are two linear operators on H, if P1 + P2 = IH then {ΓiP1 + ϕiP2}i∈I

is the dual K-g-Bessel sequence of {Λi}i∈I .

Proof. Since P1 + P2 = IH , we obtain for each x ∈ I,∑
i∈I

Λ∗
i (ΓiP1 + ϕiP2)x =

∑
i∈I

Λ∗
iΓiP1x+

∑
i∈I

Λ∗
iϕiP2x

= KP1x+KP2x = K(P1 + P2)x = Kx.

Corollary 3.16. Let K ∈ End∗A(H) and it is invertible. {Γi}i∈I and {ϕi}i∈I are both the dual K-g-Bessel
sequence of {Λi}i∈I , respectively. Operators P1 and P2 are two linear operators on H, then {ΓiP1+ϕiP2}i∈I

is the dual K-g-Bessel sequence of {Λi}i∈I if and only if P1 + P2 = IH

Proof. By theorem 3.15, we can know necessity holds.
Suppose {ΓiP1 + ϕiP2}i∈I is the dual K-g-Bessel sequence of {Λi}i∈I , then for each x ∈ H,

Kx =
∑
i∈I

Λ∗
i (ΓiP1 + ϕiP2)x

=
∑
i∈I

Λ∗
iΓiP1x+

∑
i∈I

Λ∗
iϕiP2x

= KP1x+KP2x = K(P1 + P2)x.

So, K = K(P1 + P2), since K is invertible, we obtain P1 + P2 = IH .
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Theorem 3.17. Let K ∈ End∗A(H) have closed range and {Γi}i∈I be the dual K-g-Bessel sequence of
{Λi}i∈I . Suppose that α is a complex number and R(K) ⊂ S(R(K)), then the sequence {∆i}i∈I defined by

∆i = αΓi + (1− α)ΛiS
−1
Λ K

is a dual K-g-Bessel sequence of {Λi}i∈I for H, where SΛ is defined by (1.3).

Proof. By the definition of dual K-g-Bessel sequences, {Λi}i∈I and {Γi}i∈I are both g-Bessel sequences,
and then it is easy to check the sequence {∆i}i∈I is also g-Bessel sequence. And we have for each x ∈ H,∑

i∈I

Λ∗
i∆ix =

∑
i∈I

Λ∗
iαΓix+

∑
i∈I

Λ∗
i (1− α)ΛiS

−1
Λ Kx

= αKx+ (1− α)
∑
i∈I

Λ∗
iΛiS

−1
Λ Kx

= αKx+ (1− α)Kx

= Kx.

4 Conclusions

In this work, we constructed some new K-g-frames and we characterized the concept of K-g-frames by
quotient maps in Hilbert C∗−module. Moreover, we investigated the notion of dual K-g-Bessel sequence
in Hilbert C∗-modules.

References

[1] Alijani, A., 2015, Generalized frames with C∗-valued bounds and their operator duals, Filomat, 29(7),
1469–1479. DOI 10.2298/FIL1507469A

[2] Alijani, A., Dehghan, M., 2011, ∗-Frames in Hilbert C∗-modules, Politehn. Univ. Bucharest Sci. Bull.
Ser. A Appl. Math. Phys., 73(4), 89–106.

[3] Bounader, N., Kabbaj, S., 2014, ∗-g-frames in Hilbert C∗-modules, J. Math. Comput. Sci., 4(2),
246-256.

[4] Duffin, R. J., Schaeffer, A. C., 1952, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc.,
72, 341-366. DOI:10.1090/S0002-9947-1952-0047179-6

[5] Fang X., Moslehian, M. S, and Xu Q., 2018, On majorization and range inclusion of operators on
Hilbert C∗-modules , Linear and Multilinear Algebra. DOI: 10.1080/03081087.2017.1402859

[6] Frank M., Larson, D. R, 1999, A-module frame concept for Hilbert C∗-modules, Contemp. Math.,
Amer. Math. Soc., Providence, 247, 207-233. DOI: 10.1090/conm/247/03803

[7] Gabor, D., 1946, Theory of communications, Journal of the Institution of Electrical Engineers, 93(26),
429–457. DOI:10.1049/JI-3-2.1946.0074

[8] Kaplansky, I.,1953, Modules over operator algebras, Amer. J. Math., 75, 839-858. DOI:
10.2307/2372552

[9] Khorsavi, A., Khorsavi, B., 2008, Fusion frames and g-frames in Hilbert C∗-modules, Int. J. Wavelet,
Multiresolution and Information Processing, 6, 433-446. DOI: 10.1142/S0219691308002458

[10] Lance, E. C., 1995, Hilbert C∗− Modules: A Toolkit for Operator Algebraist, London Math. Soc.
Lecture Note, Ser. Cambridge Univ. Press, Cambridge. DOI: 10.1017/CBO9780511526206

60



Generalized frames with adjointable operators

[11] Paley, R., Wiener, N., 1987, Fourier Transforms in Complex Domains, Am. Math. Soc. Colloq.
Publ.,19, Am. Math. Soc., Providence, RI.

[12] Xiang, Z., LI, Y., 2016, G-frames for operators in Hilbert C∗−modules, Turk. J. Math, 40, 453-469.
DOI: 10.3906/mat-1501-22

61


	Introduction
	Construction of Some New K-g-Frames in Hilbert C-Modules
	Dual of K-g-Frame
	Conclusions

