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Abstract: A coupled system of advection-dispersion equations based water pollution model is presented that
incorporates different parameters. The major concerns of the research are to observe the concentrations of
pollutant and dissolved oxygen in the river. One dimensional model is used to observe the concentrations by
taking the dimension along the length of the river. Since the processes of pollution and aeration are ongoing,
the investigation of steady states is made possible by taking into account the elimination of pollutants by
aeration. In this model coupled advection-dispersion equations are solved by taking dispersion coefficient as
zero and non-zero, respectively.
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Nomenclature

A River’s cross-sectional area (m2).

X Dissolved oxygen concentration (kg.m−3).

D Dispersion coefficient of pollutant in the x-direction (m2.day−1).

Dx Dispersion coefficient of dissolved oxygen in the x-direction (m2.day−1).

S Saturated oxygen concentration (kg.m−3).

C Pollutant concentration (kg.m−3).

k Concentration of half-saturated oxygen demand for pollutant degradation (kg.m−3).

k1 Pollutant degradation rate coefficient (day−1).

k2 Degradation rate coefficient for dissolved oxygen (day−1).
L Polluted river length (m).

q Added pollutant rate along the river (kg.m−1.day−1).

α Mass transfer of oxygen from air to water (m2.day−1).
t Time (day).

u Water velocity in the direction of x (m.day−1).
x Position (m).

1 Introduction

Water pollution is one of the main environmental issues that we are facing, as more than 70% of the earth’s
surface is covered by water. Water pollution takes place due to unfavourable substances come into water
that replaces quality of water and which is dangerous to human health [1]. Drinking water is required to
be safe for public health. Being a common solvent, water is a main source of many communicable diseases.
The data of the World Health Organization (WHO) shows that 80% of the diseases and 3.1% of the deaths
happen because of low water quality [2]. This study was inspired by the poor water quality of the Bagmati
River in Kathmandu 1, Nepal. The main causes of pollution in the Bagmati River in Kathmandu, Nepal,
include rapid urban growth, low levels of awareness, industrial waste, continual dumping of solid wastes,
insufficient waste-water treatment facilities, and domestic sewage.

A mathematical model for river pollutiom was proposed by Pimpunchat et al. [13]. To study the impact
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Figure 1: Map of Bagmati River and its tributaries (Left), and Polluted Bagmati River [22] (Right).

of aeration, they had employed a coupled advection-dispersion equation.

The analytical solution to the advection-dispersion equation of pollutant concentration was presented by
Paudel et al. [11]. To solve this equation, they used the Laplace transformation method. Water pollu-
tion models in one and two dimensional formats were presented by Pochai et al. [14] and Tabuenca et
al. [19], respectively. Van Genuchten and Alves [20] provided analytical solutions for a physical system
in a semi-infinite domain with zero initial concentration. The advection-diffusion equation in semi-infinite
media has a numerical solution that Savovic and Djordjevich [18] developed. Analytical solutions to the
one-dimensional advection-dispersion equation have been provided by Kumar et al. [6].

Solutions to unsteady advection-dispersion equations were stated analytically by Wadi et al. [21]. These
equations give a one-dimensional description of pollutant concentration. The Laplace transformation tech-
nique was used to arrive at the solutions. A model was put up by Marusic [9] to describe the dispersion
of pollutants in river type systems. He was successful in describing how pollutant concentrations change
over time. According to the study of Johari et al. [3], advection-dispersion equation was used to forecast
concentration of pollutant transport. Salkuyeh [17] presented convection-diffusion equation with exact so-
lution.

Manitcharoen and Pimpunchat [8] suggested unsteady state solutions for the advection-dispersion equa-
tions governing pollutant concentration. Both analytical and numerical solutions have been achieved using
the Laplace transformation technique. Many methods have been developed in recent years to solve partial
differential equations [4, 5, 15, 16].

A coupled system of advection-dispersion equations based water pollution model is presented that incor-
porates different parameters. One dimensional model is used to observe the concentrations by taking
dimension along the length of river. Then, analytical solutions are constructed. Preliminary versions of
these results were included in Paudel [10].

2 Mathematical Model

We consider coupled equations for pollutant C(x, t) and dissolved oxygen X(x, t) concentrations. When
oxygen reacts with pollutant, coupling situation appears. To observe concentrations, one dimensional
model is used. We take dimension along the lengh of river. So the concentrations C(x, t) and X(x, t)
satisfy advection-dispersion equations. The coupled equations [8, 12] are expressed in one dimension as

∂(AC)

∂t
= D

∂2(AC)

∂x2
− ∂(uAC)

∂x
− k1

X

X + k
AC + qH(x); 0 ≤ x < L, t > 0 (1)
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∂(AX)

∂t
= Dx

∂2(AX)

∂x2
− ∂(uAX)

∂x
− k2

X

X + k
AC + α(S −X); 0 ≤ x < L, t > 0. (2)

The Heaviside function H(x) is represented in equation (1) by

H(x) =

{
1, if 0 < x < L,

0, otherwise.
(3)

In equation (1) and (2), u denotes water velocity in the direction of x, D denotes pollutant’s dispersion
coefficient in the same direction, Dx is the dissolved oxygen’s dispersion coefficient in the same direction,
S is the saturation oxygen concentration, k1 is the pollutant’s degradation rate coefficient, k2 is the dis-
solved oxygen’s degradation rate coefficient, the mass transfer of oxygen from air to water is represented
by α, the additional pollutant rate along the river is represented by q, the half-saturated oxygen demand
concentration for pollutant decay is represented by k, and the cross-section of the river is represented by
A.

The parameters A, u, q, α and S are taken as constants [7, 21]. We take into account a river where
pollutants are dumped along with contaminants. For dissolved oxygen, it is considered that the saturation
concentration S less the concentration X, i.e., α(S − X), determines the rate of growth of concentration
by movement from air into the river. Both the pollutant concentration C and the dissolved oxygen con-
centration X interact. We consider cases with and without dispersion, k negligible (k ≈ 0) and k non-zero.

3 Steady State Analysis

Here, we consider various special cases given in figure 2. The model we used is steady-state model.

Steady State Model

Without dispersion With dispersion

Model 1: k ≈ 0 Model 2: k ̸= 0 Model 3: k ≈ 0 Model 4: k ̸= 0

Figure 2: Special cases of model [12].

Model 1. We have no dispersion (D = 0, Dx = 0) in this model and k is negligible (i.e., k ≈ 0)[11].

d(uAC(x))

dx
= −k1AC(x) + q; (x > 0, t > 0) (4)

d(uAX(x))

dx
= −k2AC(x) + α(S −X(x)); (x > 0, t > 0) (5)
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We consider k negligible (k ≈ 0). The boundary conditions are C(0) = 0 and X(0) = S.

From equation (4)

uA
dC(x)

dx
+ k1AC(x) = q

⇒ dC

dx
+

(
k1
u

)
C =

q

uA

As the last differential equation is linear in C, we take the integrating factor

I.F. = exp

(∫
k1
u
dx

)
= exp

(
k1x

u

)
.

The solution is

C exp

(
k1x

u

)
=

q

uA

∫
exp

(
k1x

u

)
dx+ c1

⇒ C exp

(
k1x

u

)
=

qu

uk1A
exp

(
k1x

u

)
+ c1

⇒ C exp

(
k1x

u

)
=

q

k1A
exp

(
k1x

u

)
+ c1.

Using C(0) = 0,

c1 =
−q

k1A
.

So, the pollutant concentration becomes

C(x) =
q

k1A

{
1− exp

(
−k1x

u

)}
, (6)

and the limit is given by

lim
x→∞

C(x) =
q

k1A
. (7)

Figure 3 illustrates how C varies in the range 0 ≤ x ≤ 4 described by equation (6). We consider parameters
A, u, q, k1 to be 1 [21] to test the model. Figure 3 shows that C increases as x increases. It reaches to
maximum as x → ∞. Generally concentration of pollutant increases as x increases.

From equation (5),

uA
dX

dx
= −k2AC + α(S −X)

⇒ dX

dx
+
( α

uA

)
X =

(
αS

uA
− k2C

u

)
Integrating factor

I.F. = exp

(∫
α

uA
dx

)
= exp

(αx
uA

)
.
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Figure 3: Solution for C without dispersion and k ≈ 0.

The solution is

X exp
(αx
uA

)
=

∫ (
αS

uA
− k2C

u

)
exp

(αx
uA

)
dx+ c2

⇒ X exp
(αx
uA

)
=

∫ [
αS

uA
− k2

u

q

k1A

{
1− exp

(
−k1x

u

)}]
exp

(αx
uA

)
dx+ c2

⇒ X exp
(αx
uA

)
=

∫ (
αS

uA
− k2q

uk1A

)
exp

(αx
uA

)
dx+

∫
k2q

uk1A
exp

(
α− k1A

uA
x

)
dx+ c2

⇒ X exp
(αx
uA

)
=

(
αS

uA
− k2q

uk1A

)
uA

α
exp

(αx
uA

)
+

k2q

uk1A

(
uA

α− k1A

)
exp

(
α− k1A

uA
x

)
+ c2

⇒ X = S − k2q

k1α
+

k2q

k1(α− k1A)
exp

(
−k1x

u

)
+ c2 exp

(
−αx

uA

)
.

Using X(0) = S,

c2 =
k2q

k1α
− k2q

k1(α− k1A)
= − k2qA

α(α− k1A)

⇒ X(x) = S − k2q

αk1
+

k2q

k1(α− k1A)
exp

(
−k1x

u

)
− k2qA

α(α− k1A)
exp

(
−αx

uA

)
. (8)

Equation (8) gives the dissolved oxygen concentration. And at far downstream

lim
x→∞

X(x) = S − k2q

αk1
. (9)

This is shown in figure 4 which shows that oxygen level decreases due to reaction with pollutants.
Now the solutions for concentrations of pollutant and dissolved oxygen are

lim
x→∞

(C(x), X(x)) =

(
q

k1A
,S − k2q

αk1

)
. (10)
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Figure 4: Solution for X without dispersion and k ≈ 0

Model 2. For no dispersion (D = 0, Dx = 0) and k is non-zero (i.e., k ̸= 0), the model [12] is

d(uAC(x))

dx
= −k1

X(x)

X(x) + k
AC(x) + q; (x > 0, t > 0) (11)

d(uAX(x))

dx
= −k2

X(x)

X(x) + k
AC(x) + α(S −X(x)); (x > 0, t > 0). (12)

Boundary conditions are C(0) = 0 and X(0) = S, which are same. The solutions are

lim
x→∞

(C(x), X(x)) =

(
q

k1A
+

αkq

k2(
αk1S
k2

− q)
, S − k2q

αk1

)
. (13)

The solutions depend upon k and q whereas in the model 1, these solutions depend on q only. If q ≥
αk1S/k2, the solution does not exist. Figure 5 shows the variation of C and X in the range 0 ≤ x ≤ 20 as
k varies. To test the model we suppose A,S, u, k1, k2, α to be 1 and q to be 1/4.

Model 3. We have dispersion terms D ̸= 0, Dx ̸= 0 and k ≈ 0. Then, the model [12] is

D
d2(AC)

dx2
− d(uAC)

dx
− k1

X

X + k
AC + qH(x) = 0; (x > L, t > 0) (14)

Dx
d2(AX)

dx2
− d(uAX)

dx
− k2

X

X + k
AC + α(S −X) = 0; (x > L, t > 0). (15)

In this model (k ≈ 0), the equations (14) and (15) become

D
d2(AC)

dx2
− d(uAC)

dx
− k1AC + q = 0 (16)

and

Dx
d2(AX)

dx2
− d(uAX)

dx
− k2AC + α(S −X) = 0. (17)

From equation (16)

DA
d2C

dx2
− uA

dC

dx
− k1AC + q = 0
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Figure 5: Solution for C and X with dispersion and k ̸= 0.

⇒ d2C

dx2
− u

D

dC

dx
− k1

D
C = − q

DA

⇒
(
D̃2 − u

D
D̃ − k1

D

)
C = − q

DA
,

where D̃ = d
dx , which is the second order differential equation.

Its auxiliary equation is

m2 − u

D
m− k1

D
= 0

⇒ m =

u
D ±

√
u2

D2 − 4
(
−k1

D

)
2

⇒ m =
u

2D
±

√
u2 + 4Dk1

2D

⇒ m = δ ± β,

where

δ =
u

2D

and

β =

√
u2 + 4Dk1

2D
.
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Therefore, the complementary function (C.F.) is

C.F. = c1e
(δ−β)x + c2e

(δ+β)x

and the particular integral (P.I.) is

P.I. =
1

D̃2 − u
D D̃ − k1

D

(
− q

DA

)
⇒ P.I. =

q

k1A
.

The general solution is
C(x) = C.F.+ P.I.

⇒ C(x) = c1e
(δ−β)x + c2e

(δ+β)x +
q

k1A
.

So, the pollutant concentration is

C(x) =


q

k1A

[
1− ( δ+β

2β )e(δ−β)x
]
, if x ≥ 0,

q
k1A

(
β−δ
2β

)
e(δ+β)x, if x < 0.

(18)

We use the conditions C(∞) < ∞ and C(−∞) < ∞ [13]. Additionally, we demand C ′(x) and C(x) to be
continuous at x = 0. Since there are only scattered sources of pollution rather than point sources, C(x) is
continuous. It follows that C ′(x) is continuous because the dispersive flux DC ′(x) − uC(x) is continuous
as well. From equation (17),

ADx
d2(X)

dx2
− uA

d(X)

dx
− k2AC + (αS − αX) = 0

⇒ d2X

dx2
− u

Dx

dX

dx
− k2

Dx
C − α

ADx
X +

αS

ADx
= 0

⇒ d2X

dx2
− u

Dx

dX

dx
− α

ADx
X =

k2C

Dx
− αS

ADx

⇒
(
D̃2 − u

Dx
D̃ − α

ADx

)
X =

(
k2AC − αS

ADx

)
,

which is the second order differential equation.
Its auxiliary equation is

m2 − u

Dx
m− α

ADx
= 0

⇒ m =

u
Dx

±
√

u2

D2
x
− 4

(
− α

ADx

)
2

⇒ m =
u

2Dx
±

√
u2 + 4αDx

A

2Dx

⇒ m = γ ± η,
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where

γ =
u

2Dx

and

η =

√
u2 + 4αDx

A

2Dx
.

Therefore, the complementary function (C.F.) is

C.F. = c3e
(γ−η)x + c4e

(γ+η)x

and the particular integral (P.I.) is

P.I. =
1

D̃2 − u
Dx

D̃ − α
ADx

(
k2AC − αS

ADx

)
,

where

C(x) =


q

k1A

[
1− ( δ+β

2β )e(δ−β)x
]
, if x ≥ 0,

q
k1A

(
β−δ
2β

)
e(δ+β)x, if x < 0.

The general solution is

X(x) = C.F.+ P.I.

X(x) =


S − k2q

k1α
+ k2q

k1

[(
δ+η
2ηα − δ+β

4βηA∗ + δ−β
4βηB∗

)
e(γ−η)x − δ+β

2βA∗xe
(δ−β)x

]
, if x ≥ 0,

S + k2q
k1

[(
δ−η
2ηα − δ+β

4βηA∗ + δ−β
4βηB∗

)
e(γ+η)x − δ−β

2βB∗xe
(δ+β)x

]
, if x < 0,

(19)

where

A∗ = 2ADx(δ − β)− uA,

B∗ = 2ADx(δ + β)− uA.

Equation (19) gives the dissolved oxygen concentration. Here, we used initial conditions X(∞) < ∞ and
X(−∞) = S [12].

Model 4. We have dispersion terms D ̸= 0, Dx ̸= 0 and k ̸= 0 [13].

D
d2(AC)

dx2
− d(uAC)

∂x
− k1

X

X + k
AC + qH(x) = 0; 0 ≤ x < L, t > 0 (20)

Dx
d2(AX)

dx2
− d(uAX)

dx
− k2

X

X + k
AX + α(S −X) = 0; 0 ≤ x < L, t > 0. (21)

Boundary conditions are C(−∞) = 0 and X(−∞) = S.

Far downstream solution for this model is

lim
x→∞

(C(x), X(x)) =

[
q

k1A

(
1 +

k

X(∞)

)
, S − k2q

k1α

]
. (22)
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4 Conclusions

A coupled system of advection-dispersion equations based water pollution model is presented that incor-
porates different parameters. We have constructed analytical solutions for mathematical models. One
dimensional model is used to observe the concentrations by taking dimension along the length of river.
By considering the removal of pollutant by aeration, event of steady states is investigated. In this model,
coupled advection-dispersion equations are solved by taking dispersion coefficient as zero and non-zero,
respectively.
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