An Existence Result for Henstock-Kurzweil-Stieltjes- \diamond-Double Integral of Interval-Valued Functions on Time Scales

Afariogun David Adebisi ${ }^{1}$, Mogbademu Adesanmi Alao ${ }^{2}$
${ }^{1}$ Department of Mathematical Sciences, Ajayi Crowther University, Oyo, Oyo State, Nigeria.
2 Department of Mathematics, University of Lagos, Akoka, Yaba, Lagos State, Nigeria.
Correspondence to: AFARIOGUN, D. A., Email: afrodavy720@gmail.com, da.afariogun@acu.edu.ng

Abstract

We employ the concept of interval-valued functions to state and prove an existence result for the Henstock-Kurzweil-Stieltjes- $>$-double integral on time scales.

Keywords: Existence, Double integral, Henstock-Kurzweil integral, Interval-valued functions, Time scales DOI: https://doi.org/10.3126/jnms.v4i2.41458

1 Introduction

The Henstock-Kurzweil integral is a generalization of Riemann integral that was studied independently by Henstock [5] and Kurzweil [6. The Henstock-Kurzweil-Stieltjes integral is a generalized RiemannStieltjes integral which shares the same properties. The theory of interval analysis can be traced back to the celebrated book of Moore et al. [7. In 2016, Yoon [11] presented some properties of interval-valued Henstock-Stieltjes integral on time scales. The Henstock-Kurzweil delta integral on time scales was introduced by Peterson and Thompson 99 and Henstock-Kurzweil integrals on time scales was studied by Thompson 10. We relate the time scales version of integration to the usual form, most of the properties of a time scale integral can be realized by using the methods tailored to the time scale setting (see [2] 3], [4, [8], [9], [10]).

Some basic properties such as uniqueness and Bolzano Cauchy criterion of fuzzy Henstock-Kurzweil-Stieltjes- \diamond-double integral on time scales are stated and proved by the authors in 11.
In this paper, the authors are concerned with an existence result for Henstock-Kurzweil-Stieltjes- \diamond-double integral of interval-valued functions on time scales because of its various applications in the theory of integration.

A time scale \mathbb{T} is any closed non-empty subset of \mathbb{R}, with the topology inherited from the standard topology on the real numbers \mathbb{R}. Let $a, b \in \mathbb{T}_{1}, c, d \in \mathbb{T}_{2}$, where $a<d, c<d$, and a rectangle $\mathcal{R}=$ $[a, b)_{\mathbb{T}_{1}} \times[c, d)_{\mathbb{T}_{2}}=\left\{(t, s): t \in[a, b), s \in[c, d), t \in \mathbb{T}_{1}, s \in \mathbb{T}_{2}\right\}$. Let $g_{1}, g_{2}: \mathbb{T}_{1} \times \mathbb{T}_{2} \rightarrow \mathbb{R}$ be two non-decreasing functions on $[a, b]_{\mathbb{T}_{1}}$ and $[c, d]_{\mathbb{T}_{2}}$, respectively. Let $F: \mathbb{T}_{1} \times \mathbb{T}_{2} \rightarrow \mathbb{R}$ be bounded on \mathcal{R}. Let P_{1} and P_{2} be two partitions of $[a, b]_{\mathbb{T}_{1}}$ and $[c, d]_{\mathbb{T}_{2}}$ such that $P_{1}=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\} \subset[a, b]_{\mathbb{T}_{1}}$ and $P_{2}=\left\{s_{0}, s_{1}, \ldots, s_{n}\right\} \subset[c, d]_{\mathbb{T}_{2}}$. Let $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right\}$ denote an arbitrary selection of points from $[a, b]_{\mathbb{T}_{1}}$ with $\xi_{i} \in\left[t_{i-1}, t_{i}\right)_{\mathbb{T}_{1}}, i=1,2, \ldots, n$. Similarly, let $\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right\}$ denote an arbitrary selection of points from $[c, d]_{\mathbb{T}_{2}}$ with $\zeta_{j} \in\left[s_{j-1}, s_{j}\right)_{\mathbb{T}_{2}}, j=1,2, \ldots, k$.

Definition 1.1. Let $\mathbb{T}_{1}, \mathbb{T}_{2}$ be two given time scales and let $\mathbb{T}_{1} \times \mathbb{T}_{2}=\left\{(x, y): x \in \mathbb{T}_{1}, y \in \mathbb{T}_{2}\right\}$ which is an Hausdorff metric space with the metric (distance) d_{H}, define $d_{H}(A, B)=d_{H}((a, c),(b, d))=$ $\left((b-a)^{2}+(d-c)^{2}\right)$ as the distance between A and B. Then

$$
\begin{aligned}
d_{H}(A, B) & =\max \left(\left|A^{-}-B^{-}\right|,\left|A^{+}-B^{+}\right|\right) \\
& =\max \left(\left|\left(a^{-}, c^{-}\right)-\left(b^{-}, d^{-}\right)\right|,\left|\left(a^{+}, c^{+}\right)-\left(b^{+}, d^{+}\right)\right|\right) \\
& =\max \left(\left(b^{-}-a^{-}\right)^{2}+\left(d^{-}-c^{-}\right)^{2}\right)^{\frac{1}{2}},\left(\left(b^{+}-a^{+}\right)^{2}+\left(d^{+}-c^{+}\right)^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

We now introduce Henstock-Kurzweil-Stieltjes- \diamond-double integral over versions in $\mathbb{T}_{1} \times \mathbb{T}_{2}$.
Definition 1.2. Let $F:[a, b)_{\mathbb{T}_{1}} \times[c, d)_{\mathbb{T}_{2}} \rightarrow \mathbb{R}$ be a bounded function on \mathcal{R} and let g be a nondecreasing function defined on $[a, b)_{\mathbb{T}_{1}} \times[c, d)_{\mathbb{T}_{2}}$ with partitions $P_{1}=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\} \subset[a, b]_{\mathbb{T}_{1}}$ with tag points $\xi_{i} \in\left[t_{i-1}, t_{i}\right]_{\mathbb{T}_{1}}$ for $i=1,2, \ldots, n$ and $P_{2}=\left\{s_{0}, s_{1}, \ldots, s_{k}\right\} \subset[c, d]_{\mathbb{T}_{2}}$ with tag points $\zeta_{j} \in\left[s_{j-1}, s_{j}\right]_{\mathbb{T}_{2}}$ for $j=$ $1,2, \ldots, k$. Then

$$
S\left(P_{1}, P_{2}, F, g_{1}, g_{2}\right)=\sum_{i=1}^{n} \sum_{j=1}^{k} F\left(\xi_{i}, \zeta_{j}\right)\left(g_{1}\left(t_{i}\right)-g_{1}\left(t_{i-1}\right)\right)\left(g_{2}\left(s_{j}\right)-g_{2}\left(s_{j-1}\right)\right)
$$

is defined as Henstock-Kurweil-Stieltjes- \diamond-double sum of F with respect to functions g_{1} and g_{2}.
Let $P=P_{1} \times P_{2}$, then the Henstock-Kurweil-Stieltjes- \diamond-double sum of F with respect to functions g_{1} and g_{2} is denoted by $S\left(P, F, g_{1}, g_{2}\right)$.

Definition 1.3. Let $F:[a, b)_{\mathbb{T}_{1}} \times[c, d)_{\mathbb{T}_{2}} \rightarrow I_{\mathbb{R}}$ be an interval-valued function on $\mathcal{R}=[a, b)_{\mathbb{T}_{1}} \times[c, d)_{\mathbb{T}_{2}}$: $t \in[a, b)_{\mathbb{T}_{1}}, s \in[c, d)_{\mathbb{T}_{1}}$. We say that F is Henstock-Kurzweil-Stieltjes- \diamond-double integrable with respect to non-decreasing functions g_{1}, g_{2} defined on $[a, b)_{\mathbb{T}_{1}} \times[c, d)_{\mathbb{T}_{2}}$ if there is a number α, a member of \mathbb{R} such that for every $\varepsilon>0$, there is a \diamond-gauge δ (or γ) such that

$$
d_{H}\left(S\left(P, F, g_{1}, g_{2}\right), I_{0}\right)<\varepsilon
$$

provided that $P_{1}=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\} \subset[a, b]_{\mathbb{T}_{1}}$ with tag points $\xi_{i} \in\left[t_{i-1}, t_{i}\right]_{\mathbb{T}_{1}}$ for $i=1, \ldots, n$ and $P_{2}=$ $\left\{s_{0}, s_{1}, \ldots, s_{k}\right\} \subset[c, d]_{\mathbb{T}_{2}}$ with tag points $\zeta_{j} \in\left[s_{j-1}, s_{j}\right]_{\mathbb{T}_{2}}, j=1,2, \ldots, k$ are δ-fine (or γ) partitions of $[a, b)_{\mathbb{T}_{1}} \times[c, d)_{\mathbb{T}_{2}}$.

We say that I_{0} is the Henstock-Kurzweil-Stieltjes- \diamond-double integral of F with respect to g_{1} and g_{2} defined on $[a, b)_{\mathbb{T}_{1}} \times[c, d)_{\mathbb{T}_{2}}$, and write

$$
\iint_{\mathcal{R}} F(t, s) \diamond g_{1}(t) \diamond g_{2}(s)=I_{0} .
$$

2 The Main Results

We need the following definitions to prove an existence theorem of interval Henstock-Kurzweil-Stieltjes- \diamond double integral on time scales.

Definition 2.1. A function $F:[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}} \rightarrow I_{\mathbb{R}}$ is bounded on $[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}$ with respect to g_{1} and g_{2} if there exists $M \geq 0$ in $I_{\mathbb{R}}$ such that

$$
|F(t, s)| \leq M, \text { for all } t, s \in[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}
$$

Definition 2.2. A function $F:[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}} \rightarrow I_{\mathbb{R}}$ is continuous at $t_{0}, s_{0} \in[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}$, if for any $\varepsilon>0$ there exists a positive $\delta=\delta\left(t_{0}, s_{0}\right)$ such that whenever $t, s \in[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}$,

$$
d_{H}\left(F(t, s), F\left(t_{0}, s_{0}\right)\right)<\varepsilon
$$

implies

$$
d_{H}\left((t, s),\left(t_{0}, s_{0}\right)\right)<\delta
$$

If $F:[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}} \rightarrow I_{\mathbb{R}}$ is uniformly continuous on $[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}$, then it is continuous on $[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}$.

If P_{1} and P_{2} are tagged partitions of $[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}$, then there exists \mathcal{P} a collection of all divisions of $[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}$. The variation of F over \mathcal{P} is given by

$$
\operatorname{var}(F, \mathcal{P})=\sum_{P_{1}} \sum_{P_{2}} d_{H}\left(F(t, s), F\left(t_{0}, s_{0}\right)\right)
$$

Note that for any division \mathcal{P} of $[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}, \operatorname{var}(F, \mathcal{P})$ is a continuous function on $[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}$.
Definition 2.3. A function $F:[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}} \rightarrow I_{\mathbb{R}}$ is said to be of bounded variation on $[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}$ if

$$
\mathbf{B V}_{F}=\mathbf{B V}\left(F,[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}\right)=\sup _{P \in \mathcal{P}\left([a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}\right)} \operatorname{var}(F, \mathcal{P})
$$

is continuous on $[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}$.

Theorem 2.1. Let $F:[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}} \rightarrow I_{\mathbb{R}}$ be of bounded variation on $[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}$. Then the variation of F is additive; that is, if $a \leq \alpha \leq b$ and $c \leq \beta \leq d$, then

$$
\operatorname{Var}\left(F ;[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}\right)=\operatorname{Var}\left(F ;[a, \alpha]_{\mathbb{T}_{1}} \times[c, \beta]_{\mathbb{T}_{2}}+\operatorname{Var}\left(F ;[\alpha, b]_{\mathbb{T}_{1}} \times[\beta, d]_{\mathbb{T}_{2}}\right.\right.
$$

Proof. Suppose that $F:[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}} \rightarrow I_{\mathbb{R}}$ is of bounded variation. Let $\alpha, \beta \in[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}$ and let P_{1} and P_{2} be two partitions of $[a, b]_{\mathbb{T}_{1}}$ and $[c, d]_{\mathbb{T}_{2}}$ such that $P_{1}=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\} \subset[a, b]_{\mathbb{T}_{1}}$ and $P_{2}=\left\{s_{0}, s_{1}, \ldots, s_{n}\right\} \subset[c, d]_{\mathbb{T}_{2}}$. Let $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right\}$ denote an arbitrary selection of points from $[a, b]_{\mathbb{T}_{1}}$ with $\xi_{i} \in\left[t_{i-1}, t_{i}\right)_{\mathbb{T}_{1}}, i=1,2, \ldots, n$. Similarly, let $\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right\}$ denote an arbitrary selection of points from $[c, d]_{\mathbb{T}_{2}}$ with $\zeta_{j} \in\left[s_{j-1}, s_{j}\right)_{\mathbb{T}_{2}}, j=1,2, \ldots, k$. Then $P_{1}^{\prime}=\left\{t_{0}, t_{1}, \alpha \ldots, t_{n}\right\} \subset[a, b]_{\mathbb{T}_{1}}$ and $P_{2}^{\prime}=\left\{s_{0}, s_{1}, \beta \ldots, s_{n}\right\} \subset$ $[c, d]_{\mathbb{T}_{2}}$ are refinements of P_{1} and P_{2} obtained by adjoining α and β to P_{1} and P_{2} respectively. Thus

$$
\begin{aligned}
\sum_{P} \sum_{P} d_{H}\left(F(t, s), F\left(t_{0}, s_{0}\right)\right) \leq & \sum_{P_{1}} \sum_{P_{2}} d_{H}\left(F(t, s), F\left(t_{0}, s_{0}\right)\right) \\
& +\sum_{P_{1}^{\prime}} \sum_{P_{2}^{\prime}} d_{H}\left(F(t, s), F\left(t_{0}, s_{0}\right)\right)
\end{aligned}
$$

where P_{1} and P_{2} are partitions of $[a, b]_{\mathbb{T}_{1}}$ and $[c, d]_{\mathbb{T}_{2}}$ respectively and P_{1}^{\prime} and P_{2}^{\prime} are also partitions of $[a, b]_{\mathbb{T}_{1}}$ and $[c, d]_{\mathbb{T}_{2}}$ respectively. Then $P^{\prime}=P_{1}^{\prime} \cup P_{2}^{\prime}$ and that

$$
\begin{aligned}
\sum_{P_{1}} \sum_{P_{2}} d_{H}\left(F(t, s), F\left(t_{0}, s_{0}\right)\right) & \leq \sup _{P \in \mathcal{P}\left(F ;[a, \alpha]_{\mathbb{T}_{1}} \times[c, \beta]_{\mathbb{T}_{2}}\right.}\left(\sum_{P} \sum_{P} d_{H}\left(F(t, s), F\left(t_{0}, s_{0}\right)\right)\right) \\
& =\operatorname{var}\left(F ;[\alpha, b]_{\mathbb{T}_{1}} \times[\beta, d]_{\mathbb{T}_{2}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{P_{1}^{\prime}} \sum_{P_{2}^{\prime}} d_{H}\left(F(t, s), F\left(t_{0}, s_{0}\right)\right) & \leq \sup _{P \in \mathcal{P}\left(F ;[a, \alpha]_{\mathbb{T}_{1}} \times[c, \beta]_{\mathbb{T}_{2}}\right.}\left(\sum_{P} \sum_{P} d_{H}\left(F(t, s), F\left(t_{0}, s_{0}\right)\right)\right) \\
& =\operatorname{var}\left(F ;[a, \alpha]_{\mathbb{T}_{1}} \times[c, \beta]_{\mathbb{T}_{2}}\right)
\end{aligned}
$$

Hence,

An Existence Result for Henstock-Kurzweil-Stieltjes- \diamond-Double Integral of Interval-Valued Functions on

$$
\begin{aligned}
\operatorname{var}\left(F ;[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}\right) & =\sup _{P \in \mathcal{P}\left(F ;[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}\right.}\left(\sum_{P} \sum_{P} d_{H}\left(F(t, s), F\left(t_{0}, s_{0}\right)\right)\right) \\
& \leq \operatorname{var}\left(F ;[\alpha, b]_{\mathbb{T}_{1}} \times[\beta, d]_{\mathbb{T}_{2}}\right)+\operatorname{var}\left(F ;[a, \alpha]_{\mathbb{T}_{1}} \times[c, \beta]_{\mathbb{T}_{2}}\right) .
\end{aligned}
$$

On the other hand, for any $P_{1}^{\prime}=\left\{t_{0}, t_{1}, \alpha \ldots, t_{n}\right\} \subset[a, b]_{\mathbb{T}_{1}}$ and $P_{2}^{\prime}=\left\{s_{0}, s_{1}, \beta \ldots, s_{n}\right\} \subset[c, d]_{\mathbb{T}_{2}}$ are refinements of P_{1} and P_{2} obtained by adjoining α and β to P_{1} and P_{2} respectively. Then $P^{\prime}=P_{1}^{\prime} \cup P_{2}^{\prime} \in$ $\mathcal{P}_{\alpha, \beta}\left([a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}\right)$ is the set of all divisions of $[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}$ with α and β as the division points. Hence,

$$
\begin{aligned}
& \sup _{P^{\prime} \in \mathcal{P}_{\alpha, \beta}\left(F ;[a, b]_{\mathbb{T}_{1}} \times[c, d]\right]_{\mathbb{T}_{2}}}\left(\sum_{P^{\prime}} \sum_{P^{\prime}} d_{H}\left(F(t, s), F\left(t_{0}, s_{0}\right)\right)\right) \\
\leq & \sup _{P \in \mathcal{P}\left(F ;[a, b]_{\left.\mathbb{T}_{1} \times[c, d]\right]_{\mathbb{T}_{2}}}\left(\sum_{P} \sum_{P} d_{H}\left(F(t, s), F\left(t_{0}, s_{0}\right)\right)\right)\right.}=\operatorname{var}\left(F ;[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \operatorname{var}\left(F ;[\alpha, b]_{\mathbb{T}_{1}} \times[\beta, d]_{\mathbb{T}_{2}}\right)+\operatorname{var}\left(F ;[a, \alpha]_{\mathbb{T}_{1}} \times[c, \beta]_{\mathbb{T}_{2}}\right) \\
\leq & \sup _{P_{P^{\prime} \in \mathcal{P}_{\alpha, \beta}\left(F ;[a, b]_{\mathbb{T}_{1}} \times[c, d] \mathbb{T}_{2}\right.}\left(\sum_{P^{\prime}} \sum_{P^{\prime}} d_{H}\left(F(t, s), F\left(t_{0}, s_{0}\right)\right)\right)}^{\leq} \operatorname{var}\left(F ;[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}\right) .
\end{aligned}
$$

Therefore, combining the two inequalities, we have

$$
\operatorname{var}\left(F ;[\alpha, b]_{\mathbb{T}_{1}} \times[\beta, d]_{\mathbb{T}_{2}}\right)+\operatorname{var}\left(F ;[a, \alpha]_{\mathbb{T}_{1}} \times[c, \beta]_{\mathbb{T}_{2}}\right)=\operatorname{var}\left(F ;[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}\right)
$$

This completes the proof.
Theorem 2.2. [Existence Theorem] Let $F:[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}} \rightarrow I_{\mathbb{R}}$ be a continuous function and g : $[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}} \rightarrow I_{\mathbb{R}}$ be of bounded variation on $[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}$, then F is Henstock-Kurzweil-Stieltjes-\diamond-double integrable on $[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}$.

Proof. Let $\varepsilon>0$. Since g is of bounded variation, $\operatorname{Var}_{g} \in I_{\mathbb{R}}$ and $g=g_{1} \times g_{2}$. This means that there exists $M>0$ such that $\operatorname{Var}_{g}(t, s) \leq M$ for all $t, s \in[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}$. Since F is continuous on $[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}$, for all $t_{0}, s_{0} \in[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}$ there exists a positive $\delta_{0}\left(t_{0}, s_{0}\right)$ such that whenever $t, s \in[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}$ with

$$
\left.d_{H}(t, s),\left(t_{0}, s_{0}\right)\right)<\delta_{0}
$$

we have

$$
d_{H}\left(F(t, s), F\left(t_{0}, s_{0}\right)\right)<\varepsilon .
$$

Let a positive gauge δ be defined on $[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}$ by $\delta=\frac{\delta_{0}}{2}$, for all $t, s \in[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}$. Let

$$
P_{1}=\left\{\left(\left[a, t_{1}\right], \xi_{1}\right),\left(\left[t_{1}, t_{2}\right], \xi_{2}\right), \ldots,\left(\left[t_{n-1}, b\right], \xi_{n}\right)\right\} \subset[a, b]_{\mathbb{T}_{1}}
$$

and

$$
P_{2}=\left\{\left(\left[c, s_{1}\right], \zeta_{1}\right),\left(\left[s_{1}, s_{2}\right], \zeta_{2}\right), \ldots,\left(\left[s_{k-1}, d\right], \zeta_{k}\right)\right\} \subset[c, d]_{\mathbb{T}_{2}}
$$

be δ-fine tagged divisions of $[a, b]_{\mathbb{T}_{1}} \times[c, d]_{\mathbb{T}_{2}}$. Then, there exists a tagged division P_{0} such that $P_{1}<P_{0}$ and $P_{2}<P_{0}$. Now, for every $\left(\left[t_{i-1}, t_{i}\right], \xi_{i}\right) \in d_{H}$ and $\left(\left[s_{j-1}, s_{j}\right], \zeta_{j}\right) \in d_{H} ; i=1,2, \ldots, n ; j=1,2, \ldots, k$. Now we have the difference

$$
d_{H}\left(\left(t_{i-1}, s_{j-1}\right),\left(t_{i}, s_{j}\right)=F\left(\xi_{i}, \zeta_{j}\right)\left[\left(g_{1}\left(t_{i}\right)-g_{1}\left(t_{i-1}\right)\right)\left(g_{2}\left(s_{j}\right)-g_{2}\left(s_{j-1}\right)\right)\right]-S\left(F, g_{i}, P_{i, j}\right)\right.
$$

where

$$
P_{i, j}=\left\{\left(\left[X_{q-1}^{(i, j)}, X_{q}^{(i, j)}\right], s_{q}^{(i, j)}\right) \quad, \quad X_{0}^{(i, j)}=\left(t_{i-1}, s_{j-1}\right), X_{m_{i}}^{(i, j)}=\left(t_{i}, s_{j}\right), q-1<m_{i, j}\right.
$$

is a refinement of $\left(\left[\left(t_{i-1}, s_{j-1}\right),\left(t_{i}, s_{j}\right)\right],\left(\xi_{i}, \zeta_{j}\right)\right)$ in P_{0}. Then

$$
d_{H}\left(\left(t_{i-1}, s_{j-1}\right),\left(t_{i}, s_{j}\right)\right)=\sum_{i=1}^{n} \sum_{j=1}^{k}\left(\sum_{q=1}^{m_{i, j}} F\left(\xi_{i}, \zeta_{j}\right)-F\left(s_{q}^{(i, j)}\right)\right)\left(g\left(X_{q}^{(i, j)}-g\left(X_{q-1}^{(i, j)}\right)\right) .\right.
$$

Now, $s_{q}^{i, j},\left(\xi_{i}, \zeta_{j}\right) \in\left(\left(t_{i-1}, s_{j-1}\right),\left(t_{i}, s_{j}\right)\right) \subseteq\left(\xi_{i}, \zeta_{j}\right)-\delta\left(\xi_{i}, \zeta_{j}\right),\left(\xi_{i}, \zeta_{j}\right)+\delta\left(\xi_{i}, \zeta_{j}\right)$ which implies that

$$
\left|\left(\xi_{i}, \zeta_{j}\right)-s_{q}^{i, j}\right| \leq d_{H}\left(\left(t_{i-1}, s_{j-1}\right),\left(t_{i}, s_{j}\right)\right)<\delta\left(\xi_{i}, \zeta_{j}\right)
$$

By continuity of F at $\left(\xi_{i}, \zeta_{j}\right)$,

$$
\left|s_{q}^{i, j}-\left(\xi_{i}, \zeta_{j}\right)\right|<\delta\left(\xi_{i}, \zeta_{j}\right)=\frac{\delta_{0}\left(\xi_{i}, \zeta_{j}\right)}{2}<\delta_{0}\left(\xi_{i}, \zeta_{j}\right)
$$

it implies that

$$
d_{H}\left(F\left(s_{q}^{i, j}\right)-F\left(\xi_{i}, \zeta_{j}\right)\right)<\varepsilon .
$$

So,

$$
d_{H}\left(\left(t_{i-1}, s_{j-1}\right),\left(t_{i}, s_{j}\right)\right)=\sum_{i=1}^{n} \sum_{j=1}^{k}\left(\sum_{q=1}^{m_{i, j}} F\left(\xi_{i}, \zeta_{j}\right)-F\left(s_{q}^{(i, j)}\right)\right)\left(g\left(X_{q}^{(i, j)}-g\left(X_{q-1}^{(i, j)}\right)\right) .\right.
$$

Hence, by Theorem 2.1, we have

$$
\begin{aligned}
& d_{H}\left(S(P, F, g)-S\left(P_{0}, F, g\right)\right) \\
= & d_{H}\left(\sum_{i=1}^{n} \sum_{j=1}^{k} F\left(\xi_{i}, \zeta_{j}\right)\left[\left(g_{1}\left(t_{i}\right)-g_{1}\left(t_{i-1}\right)\right)\left(g_{2}\left(s_{j}\right)-g_{2}\left(s_{j-1}\right)\right)\right], \sum_{i=1}^{n} \sum_{j=1}^{k} S\left(P_{i, j}, F, g\right)\right) \\
= & d_{H}\left(\sum_{i=1}^{n} \sum_{j=1}^{k}\left\{F\left(\xi_{i}, \zeta_{j}\right)\left[\left(g_{1}\left(t_{i}\right)-g_{1}\left(t_{i-1}\right)\right)\left(g_{2}\left(s_{j}\right)-g_{2}\left(s_{j-1}\right)\right)\right], S\left(P_{i, j}, F, g\right)\right\}\right) \\
= & \left|\sum_{i=1}^{n} \sum_{j=1}^{k} d_{H}\left(\left(t_{i-1}, s_{j-1}\right),\left(t_{i}, s_{j}\right)\right)\right| \\
\leq & \sum_{i=1}^{n} \sum_{j=1}^{k}\left|d_{H}\left(\left(t_{i-1}, s_{j-1}\right),\left(t_{i}, s_{j}\right)\right)\right| \\
= & \sum_{i=1}^{n} \sum_{j=1}^{k} \mid \sum_{q=1}^{m_{i, j}} F\left(\xi_{i}, \zeta_{j}\right)-F\left(s_{q}^{(i, j)}\right)\left(g\left(X_{q}^{(i, j)}-g\left(X_{q-1}^{(i, j)}\right)\right) \mid\right. \\
\leq & \sum_{i=1}^{n} \sum_{j=1}^{k}\left(\sum_{q=1}^{m_{i, j}} \mid F\left(\xi_{i}, \zeta_{j}\right)-F\left(s_{q}^{(i, j)}\right)\left(g\left(X_{q}^{(i, j)}-g\left(X_{q-1}^{(i, j)}\right)\right) \mid\right)\right. \\
\leq & \sum_{i=1}^{n} \sum_{j=1}^{k}\left(\left.\sum_{q=1}^{m_{i, j}} \frac{\varepsilon}{K} \right\rvert\,\left(g\left(X_{q}^{(i, j)}-g\left(X_{q-1}^{(i, j)}\right)\right) \mid\right)\right. \\
\leq & \frac{\varepsilon}{K} \cdot \sum_{i=1}^{n} \sum_{j=1}^{k}\left(\sum_{q=1}^{m_{i, j}} \mid\left(g\left(X_{q}^{(i, j)}-g\left(X_{q-1}^{(i, j)}\right)\right) \mid\right)\right. \\
\leq & \frac{\varepsilon}{K} \cdot \sum_{i=1}^{n} \sum_{j=1}^{k} \operatorname{Var}\left[g,\left(t_{i-1}, s_{j-1}\right),\left(t_{i}, s_{j}\right)\right] \\
= & \frac{\varepsilon}{K} \operatorname{Var} r_{g}<\frac{\varepsilon}{K} K=\varepsilon .
\end{aligned}
$$

Similarly,

$$
d_{H}\left(S(Q, F, g), S\left(P_{0}, F, g\right)\right)<\varepsilon
$$

Thus,

$$
\begin{aligned}
d_{H}(S(P, F, g), S(Q, F, g)) & \leq d_{H}\left(S(P, F, g), S\left(P_{0}, F, g\right)\right)+D\left(S\left(P_{0}, F, g\right), S(Q, F, g)\right) \\
& <\varepsilon+\varepsilon \\
& =2 \varepsilon
\end{aligned}
$$

By Cauchy criterion theorem in [1], F is Henstock-Kurzweil-Stieltjes- \diamond-double integrable on $[a, b]_{\mathbb{T}_{1}} \times$ $[c, d]_{\mathbb{T}_{2}}$.

References

[1] Afariogun, D. A., Mogbademu, A. A. and Olaoluwa, H. O., 2021, On fuzzy Henstock-Kurzweil-Stieltjes-\diamond-double integral on time scales, J Math Anal and Model, 2(2), 38-49.
[2] Avsec, S., Bannish, B., Johnson, B. and Meckler, S., 2006, The Henstock-Kurzweil delta integral on unbounded time scales, Panamer Math J, 16(3), 77-98.
[3] Bartosiewicz, Z. and Pawluzewicz, E., 2006, Realizations of linear control systems on time scales, Control and Cybernetics, 35 (4), 769-786.
[4] Bohner, M. and Peterson, A., 2001, Dynamic equations on time scales, Birkhauser Boston, MA.
[5] Henstock, R., 1961, Definitions of Riemann type of the variational integrals, Proc. London Math. Soc., 11(3), 402-418.
[6] Kurzweil, J., 1957, Generalized ordinary differential equation and continuous dependence on a parameter, CMJ, 7(82), 418-449.
[7] Moore, R. E., Kearfott, R. B. and Cloud, M. J., 2009, Introduction to interval analysis, Society for Industrial and Applied Mathematics, 3600 University City Science Center Philadelphia, PA, United State.
[8] Mozyrska, D., Pawluszewicz, E. and Torres, D. F. M., 2009, The Riemann-Stieltjes integral on time scales, Austr. J. Math. Anal. Appl., 7(1), 1-14.
[9] Peterson, A. and Thompson, B., 2006, Henstock-Kurzweil delta and nabla integrals, J. Math. Anal. Appl., 323(1), 162-178.
[10] Thompson, B., 2008, Henstock-Kurzweil integrals on time scales, Panamer. Math. J., 18(1), 1-19.
[11] Yoon, J. H., 2016, On Henstock-Stieltjes Integrals of Interval-Valued Functions on Time Scales, Journal of the Chungcheong Mathematical Society, 29, 109-115.

