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1 Introduction

Differential equations arise in many areas of applications such as in science and engineering. Most of the
problems in almost all the scientific and engineering areas are modeled using partial differential equations
(PDEs). Partial differential equation arise when a dependent variable depends on two or more independent
variables. One of the widely known method for solving PDEs is finite element method (FEM). The Finite
element method is a numerical analysis technique for obtaining approximate solutions to a wide variety
of engineering problems. A finite element model of a problem gives a piecewise approximation to the
governing equations. The basic premise of the FEM is that a solution region can be analytically modeled
or approximated by replacing it with an assemblage of discrete elements[5].

1.1 Poisson partial differential equation

Poisson equation is a partial differential equation, named after Simeon Denis Poisson. The Poisson equation
is derived from the following general elliptic partial differential equation[8]:

− ∂

∂x

(
a11

∂u

∂x
+ a12

∂u

∂y

)
− ∂

∂y

(
a21

∂u

∂x
+ a22

∂u

∂y

)
+ a00u− f = 0 (1)

For particular case, setting a11 = a22 = k(x, y) = k (constant) and a21 = a21 = a00 = 0, the equation
reduces to:

−k
(
∂2u

∂x2
+
∂2u

∂y2

)
= f(x, y)

−k∇2u = f

∴ −k∆u = f (2)

where, ∆ = ∇2 = ∂2

∂x2 + ∂2

∂y2 is called Laplacian operator. The equation (2) is the simplest form of elliptic
PDE called Poisson PDE consisting dependent variable u and independent variables x and y. The function
f(x, y) is called source function.
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1.2 Adaptive finite element method (AFEM)

An adaptive finite element method (AFEM) was developed in the early 1980s. The basic concept of
adaptivity developed in the FEM is that, when a physical problem is analyzed using finite elements, there
exists some discretization errors caused owing to the use of the finite element model. These errors are
calculated in order to assess the accuracy of the solution obtained. If the errors are large, the finite element
model is refined through reducing the size of elements or increasing the order of interpolation functions. The
new model is re-analyzed and the errors in the new model are re-calculated. This procedure is continued
until the calculated errors fall below the specified permissible values. The key features in AFEM are the
estimation of discretization errors and the refinement of finite element models[7]. It minimizes the errors
by the concept of posteriori error analysis and using adaptive algorithm. It can be shown in the following
diagram[7]:

Figure 1: Adaptive finite element process

2 Methodology

2.1 Weak form of poisson equation

In the development of the weak form, we consider a typical triangular element Ωe of the finite element
mesh and develop the finite element model for the Poisson PDE (2). Multiplying (2) by an arbitrary test
function w = w(x, y) ∈ H1

0 (Ωe), which is assumed to be differentiable with respect to x and y, we get weak
form of (2) as[4]: ∫

Ωe

[
∂w

∂x

(
k
∂u

∂x

)
+
∂w

∂y

(
k
∂u

∂y

)]
dxdy =

∫
Ωe

wfdxdy +

∮
Γe

wqnds (3)

The equation (3) can be written as:

Be(w, u) = Le(w) (4)

where, ∫
Ωe

[
∂w

∂x

(
k
∂u

∂x

)
+
∂w

∂y

(
k
∂u

∂y

)]
dxdy = Be(w, u)∫

Ωe

wfdxdy +

∮
Γe

wqnds = Le(w)

2.2 Finite element solution process

2.2.1 Interpolation functions

The governing equation (2) is equivalent to the weak form of equation (4) over the domain Ωe and also
contains natural boundary conditions. The weak form requires the approximation chosen for u should be
at least linear in both x and y. There are no terms that are identically zero. Since the primary variable is
a function itself, the Lagrange family of interpolation functions is admissible.
Let u is the approximated solution over a typical element Ωe defined by the expression[8]:

u = u(x, y) ≈ ueh(x, y) =

n∑
j=1

uejψ
e
j (x, y). (5)
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Where, uej is the value of ueh at the jth node (xj , yj) of the element and ψej is the Lagrange interpolation
function with the property that:

ψei (xj , yj) = δij ; i = 1, 2, ..., n (6)

Putting the approximated value of (5) in (4), we get:

n∑
j=1

{∫
Ωe

[
∂w

∂x

(
k
∂ψej
∂x

)
+
∂w

∂y

(
k
∂ψej
∂y

)]
dxdy

}
uej =

∫
Ωe

wfdxdy +

∮
Γe

wqnds (7)

This equation must hold for every admissible choice of weight function w. Since we need n independent
algebraic equations to solve for n unknowns (ue1, u

e
2, u

e
3, ..., u

e
n), we choose n linearly independent functions

for w. The functions of w are w = (ψe1, ψ
e
2, ψ

e
3, ..., ψ

e
n). Hence we write:

ue =
[
ue1 ue2 ue3 . . . uen

]
w =

[
ψe1 ψe2 ψe3 . . . ψen

]
= ψT

This particular choice of weight function is a natural one when the weight function is viewed as a virtual
variation of the dependent unknowns (w = ∂u =

∑n
i=1 ∂uiψi) and the resulting finite element model is

called weak form finite element model[8].
For each choice of w, we obtain an algebraic relation among (ue1, u

e
2, u

e
3, ..., u

e
n). We label the algebraic

equation resulting from substituting successively the following in (7):

w = ψe1, w = ψe2, w = ψe3, ..., w = ψen.

to get n algebraic equations. Hence the general ith form of the system can be written as:

n∑
j=1

{∫
Ωe

[
∂ψei
∂x

(
k
∂ψej
∂x

)
+
∂ψei
∂y

(
k
∂ψej
∂y

)]
dxdy

}
uej =

∫
Ωe

fψei dxdy +

∮
Γe

qnψ
e
i ds where

Ke
ij =

∫
Ωe

[
∂ψei
∂x

(
k
∂ψej
∂x

)
+
∂ψei
∂y

(
k
∂ψej
∂y

)]
dxdy, fei =

∫
Ωe

fψei dxdy, Qei =

∮
Γe

qnψ
e
i ds

Which reduces to:
n∑
j=1

Ke
iju

e
j = fei +Qei ; i = 1, 2, 3, ..., n (8)

The term Ke
ij is a bilinear form and is denoted as Ke

ij = Be(ψei , ψ
e
j ). Equation 8 abbreviated in vector

form as:

Keue = fe + Qe (9)

The matrix Ke is called the coefficient matrix and the vector fe is called the source vector. The weak form
and the finite element matrices in (9) shows that ψei must be at least linear functions of x and y. The
complete linear polynomial in x and y in Ωe is of the form:

ueh(x, y) = ce1 + ce2x+ ce3y (10)

where, cei ’s are constants for i = 1, 2, 3. The set {1, x, y} is linearly independent and complete. The
equation (10) defines a unique plane for fixed cei . In particular, ueh(x, y) is uniquely defined on a triangle.
Let (x1, y1), (x2, y2) and (x3, y3) be the vertices of the triangle such that:

ueh(x1, y1) = ue1, ueh(x2, y2) = ue2, ueh(x3, y3) = ue3. (11)

The constants cei , (i = 1, 2, 3) in (10) can be expressed in terms of three nodal values uei (i = 1, 2, 3). The
particular nodes of the triangle can be expressed as:

ueh(x1, y1) ≡ ue1 = ce1 + ce2x1 + ce3y1

ueh(x2, y2) ≡ ue2 = ce1 + ce2x2 + ce3y2 (12)

ueh(x3, y3) ≡ ue3 = ce1 + ce2x3 + ce3y3.
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The matrix form of this system of equations is:1 x1 y1

1 x2 y2

1 x3 y3

ce1ce2
ce3

 =

ue1ue2
ue3

 (13)

where, A is coefficient matrix, C is constant matrix and ue is solution matrix such that:

A =

1 x1 y1

1 x2 y2

1 x3 y3

 ,C =

ce1ce2
ce3

 ,ue =

ue1ue2
ue3

 .
The inverse matrix of A is given by:

A−1 =
1

|A|
.

α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

 (14)

where αi, βi, γi are constants depend only on the global coordinates of element nodes (xi, yi) s.t.:

αi = xjyk − xkyj , βi = yj − yk, γi = xk − xj (15)

for i 6= j 6= k and i, j, k permute in a natural order. From inverse matrix formula. we can set:

ce1 =
1

|A|
(α1u

e
1 + α2u

e
2 + α3u

e
3), ce2 =

1

|A|
(β1u

e
1 + β2u

e
2 + β3u

e
3), ce3 =

1

|A|
(γ1u

e
1 + γ2u

e
2 + γ3u

e
3) (16)

Substituting the values of (16) in (10), we get:

ψei =
1

|Ae|
(αei + βei x+ γei y) .

The interpolation function ψei satisfies the following conditions:

ψei (x
e
j , y

e
j ) = ∂ij ; (i, j = 1, 2, 3)

3∑
i=1

ψei = 1,

3∑
i=1

∂ψei
∂x

= 0,

3∑
i=1

∂ψei
∂y

= 0,

2.2.2 Element matrices and source vector

When the value k and f of the problem are element-wise constant, i.e. not a function of x and y, we can use
the interpolation functions expressed in the local coordinates (x̄, ȳ). It is possible to calculate the integrals
exactly over the linear rectangular element. The boundary integral in (Qe) can be evaluated whenever qn
is known. The coefficient matrix (Taking Ωe = 4) is:

Ke
ij =

∫
4

[
∂ψei
∂x

(
k
∂ψej
∂x

)
+
∂ψei
∂y

(
k
∂ψej
∂y

)]
dxdy. (17)

Also, the interpolation functions for triangular element can be modified as:

ψei (x̄, ȳ) =
1

|A|
(αei + βei x+ γei y) [i = 1, 2, 3].

Now, we have:

Ke
11 = k

[∫
4

(
∂ψe1
∂x̄

.
∂ψe1
∂x̄

+
∂ψe1
∂ȳ

.
∂ψe1
∂ȳ

)
dx̄dȳ

]
=

k

4Ae
(βe1β

e
1 + γe1γ

e
1)
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Similarly, we find all the values of Ke
ij . The coefficient matrix for the linear triangular element is:

[Ke] =
k

4Ae


(βe1)2 + (γe1)2 βe1β

e
2 + γe1γ

e
2 βe1β

e
3 + γe1γ

e
3

βe2β
e
1 + γe2γ

e
1 (βe2)2 + (γe2)2 βe2β

e
3 + γe2γ

e
3

βe3β
e
1 + γe3γ

e
1 βe3β

e
2 + γe3γ

e
2 (βe3)2 + (γe3)2

 (18)

In the governing equation (2), the source or force term f is considered as element wise constant.

fei =

∫
Ω

fψei dxdy =

∫
4
feψ

e
i (x, y)dxdy =

∫
4
fe.

1

2Ae
(αei + βei x+ γei y)dxdy =

feAe
3

2.2.3 Assembling of finite element equations

The assembling process is carried out in the following discrete problem as shown in figure 2.

Figure 2: Discretization of rectangular domain into five triangular elements

In figure 2, the symbol ’GNod’ stands for global node. A whole domain Ω is partitioned into five triangular
elements with each element ep for p = 1, 2, 3, 4, 5. The numbers inside the triangular vertices represent the
element nodes rotated in counterclockwise direction. There are seven global nodes represented as ’GNod:N’
for N = 1, 2, 3, 4, 5, 6, 7. The element equations of the five element mesh are written first by assuming the
nodal degrees of freedom (NDF) is 1 per node. We have,

[Ke][ue] = [fe] + [Qe]⇒ [Ke
ij ][u

e
j ] = [fei ] + [Qei ] (i, j = 1, 2, 3)

For triangular elements, the matrix form can be expanded as:

Ke
11 Ke

12 Ke
13

Ke
21 Ke

22 Ke
23

Ke
31 Ke

32 Ke
33

ue1ue2
ue3

 =

fe1fe2
fe3

+

Qe1Qe2
Qe3

 (19)
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After assembling the element matrices for each elements, the following assembled matrix is obtained:

K1
11 K1

12 k1
13 0 0 0 0

K1
21 K1

22 + K2
11 + K3

11 K1
23 + K2

13 K3
12 K2

12 + K3
13 0 0

K1
31 K1

32 + K2
31 K1

33 + K2
33 0 K2

32 0 0

0 K3
21 0 K3

22 + K4
11 + K5

11 K3
23 + K4

13 K5
12 K4

12 + K5
13

0 K2
21 + K3

31 K2
23 K3

32 + K4
31 K2

22 + K3
33 + K4

33 0 K4
32

0 0 0 K5
21 0 K5

22 K5
23

0 0 0 K4
21 + K5

31 K4
23 K5

32 K4
22 + K5

33


.



U1

U2

U3

U4

U5

U6

U7


=



F1
1

F1
2 + F2

1 + F3
1

F1
3 + F2

3

F3
2 + F4

1 + F5
1

F2
2 + F3

3 + F4
3

F5
2

F4
2 + F5

3


+



Q1
1

Q1
2 + Q2

1 + Q3
1

Q1
3 + Q2

3

Q3
2 + Q4

1 + Q5
1

Q2
2 + Q3

3 + Q4
3

Q5
2

Q4
2 + Q5

3


(20)

After the calculation of assembled matrix (18) using the coordinates as in figure 2, the coefficient matrix
is obtained as[1]:

k

36



39 −27 −12 0 0 0 0
−27 75 −6 −24 −18 0 0
−12 −6 32 0 −14 0 0

0 −24 0 75 −18 −27 −6
0 −18 −14 −18 64 0 −14
0 0 0 −27 0 39 −12
0 0 0 −6 −14 −12 32


Similarly, the load vector (fe = f0) is:

[fe] =



f1
1

f1
2 + f2

1 + f3
1

f1
3 + f2

3

f3
2 + f4

1 + f5
1

f2
2 + f3

3 + f4
3

f5
2

f4
2 + f5

3


= f0



1
1 + 3

2 + 1
1 + 3

2
1 + 3

2 + 1
3
2 + 1 + 3

2
1

3
2 + 1


= f0



1
7
2
5
2
7
2
4
1
5
2



To incorporate the Dirichlet’s boundary condition, we consider,

u(0, y) = u(0, 3) = 0⇒ U1 = U3 = 300

u(x, y) = u(6, 3) = 0⇒ U6 = U7 = 0

Also, the constant k and constant source f0 are considered as:

k = 400 f0 = 3000

After imposing these boundary conditions, the assembled matrix for the system reduces to: 75 −24 −18
−24 75 −18
−18 −18 64

U2

U4

U5

 =

947.25 + 9900
949.50

1080 + 4200

 =

10847.25
949.50
5280


6
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Solving the matrix, we obtain,

U2 = 230.6217, U4 = 130.6444, U5 = 184.1061.

Hence the required solution is:

U1 = 300, U2 = 230.6217, U3 = 300, U4 = 130.6444, U5 = 184.1061, U6 = 0, U7 = 0.

2.3 Posteriori error estimation

The finite element approximation means to find the function uh ∈ Vh such that[2][10]:

B(uh, wh) = l(wh) for all wh ∈ Vh ⊂ V (21)

for all test functions wh ∈ Vh ⊂ V . The error of the finite element approximation is denoted by

eh = u− uh (22)

which satisfies the error representation

B(eh, w) = B(u− uh, w) = B(u,w)−B(uh, w) = l(w)−B(uh, w) = R(w)

where R(.) is called the residual functional or weak residual. Moreover, the standard orthogonality condition
for the error in the Galerkin projection holds. That is, the choice of test functions is restricted to the finite
element space, the fundamental Galerkin orthogonality condition follows,

R(wh) = B(e, wh) = 0, ∀wh ∈ Vh.

Assuming that the bilinear form is positive definite, it follows that the norm of the residual functional R is
equal to the energy norm of the error,

||Rh||V ′ = supv∈V (Ω)
|Rh(w)|
||w||w

= ||e||E

where, ||Rh||V ′ denotes the norm of the residual in the dual space V
′
(Ω).

2.3.1 Element residual method

Let the error on an element K be denoted by e = u− Uh. One finds that the error satisfies:

−∇e = f +∇uh in K. (23)

There are various cases to consider. Suppose that the element K intersects a portion of the boundary of
the domain Ω where an essential boundary condition is imposed. The appropriate boundary condition for
the local error residual problem is clearly

e = 0 on ∂K ∩ ΓD. (24)

It has been assumed that the finite element approximation is constructed so that the essential boundary
conditions are satisfied exactly. Suppose that the element intersects a portion of the boundary ∂Ω where a
natural boundary condition is imposed. The local error residual problem is subjected to a natural boundary
condition:

∂e

∂ηK
= qn −

∂uh
∂ηK

on ∂K ∩ ΓN

Consider the case when the element boundary lies on the interior of the domain. The first decision is
whether to impose an essential or a natural boundary condition. The element residual method is based on
using a natural boundary condition. Ideally, one would like to impose the condition[2]:

∂e

∂ηK
=

∂u

∂ηK
− ∂uh
∂ηK

on K

on the edge separating elements K and J , where uh|K denotes the restriction of the finite element approx-
imation to an element K.

7
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2.3.2 Elemental error calculation

The element-wise error calculation has been carried out for the mesh as in figure 2. The calculation of
elemental gradient, estimated error of common edge, error calculation of Neumann boundary condition and
error calculation of source term has been carried out.
The gradient of the triangle is given by the following relation:

∇u = grad (T ) =

[∂u
∂x
∂u
∂y

]
=

1

2AT

[
yj − yk yk − yi yi − yj
xk − xj xi − xk xj − xi

]
.

UiUj
Uk

 (25)

The gradients of each triangular element have been calculated as:[
−34.68915

0

]
,

[
−38.6313
−2.6281

]
,

[
−49.9886

1.1577

]
,

[
−61.3687
−2.6357

]
,

[
−65.3222

0

]

M =


E1

E1 + E2

E2 + E3

E3 + E4

E4

 =


291.8324

291.8324 + 1433.1920
1433.1920 + 1438.9650
1438.9650 + 293.4730

293.4730

 =


291.8324
1725.0244
2872.1570
1732.4380
293.4730

 (26)

Dividing the matrix M by 2, we get a new matrix N such that:

N =


145.9162
862.5122
1436.0785
866.2190
146.7365

 .
The error calculation of the Neumann boundary condition has been performed by calculating the jump,

unit normal, jump along unit normal and estimated error of the edge where the Neumann boundary
condition occurs. After calculation, the following error vectors has been obtained:


2500

62.1622
2373.8221
62.5222

2500


Adding the boundary error to the vector N, we get the following new vector P such that:

P =


145.9162
862.5122
1436.0785
865.7524
146.7365

+


2500

62.1622
2373.8221
62.5222

2500

 =


2645.9162
924.6744
3809.9006
928.2746
2646.7365

 .

Taking the square root of each entries of P , then the resulting vector Q (say) such that:

Q =


51.4385
30.4676
61.7244
30.4676
51.4464

 (27)

8
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Now, the oscillation of f over each triangular element has been calculated. It deals with the calculation
of residuals over the triangular element. In general, suppose that T ∈ τ be a triangular element on the
mesh. Consider three random points p1, p2, p3 and set the relation[9]:

||f − fh||20,T ≈
||T ||

3

3∑
i=1

|(f − fh)(pi)|2

by the concept of this relation, in this problem, the mid points of sides of the triangle p1, p2, p3 have been
taken. The error of f over T is given by:

Error of f over T =

√(
Ar(T )

3

)
[(f(p1))2 + (f(p2))2 + (f(p3))2].

Since the value of f = 3000, which is a constant, in our case, we have:

f(p1) = f(p2) = f(p3) = 3000.

Hence the error produced by sources can be presented as in the following matrix form:

f =


fe1
fe2
fe3
fe4
fe5

 =


5196.1524
6363.9610
5196.1524
6363.9610
5196.1524

 .
Therefore, the estimated global error is obtained by adding the vector Q and f such that:

ητ = Q+ f =


51.4385
30.4676
61.7244
30.4676
51.4464

+


5196.1524
6363.9610
5196.1524
6363.9610
5196.1524

 =


5247.5909
6394.4286
5257.8768
6394.4286
5247.5988

 =


Te1
Te2
Te3
Te4
Te5

 .
The total error contribution of each element has been displayed. It helps us to refine the mesh by selecting

Figure 3: Illustration of errors for triangular element

the largest error element corresponding to the side of largest error. The mesh refinement process has been
discussed as in the figure below[3].

9
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Figure 4: Illustration of adaptive process by bisection approach

3 Results

3.1 AFEM for poisson equation

Some graphical illustrations of adaptive finite element method regarding to Poisson equation have been
presented for the analysis of adaptive mesh refinement process. To refine mesh, adaptive algorithm have
been applied to get better approximation. The results obtained by mesh refinement process up to tenth
iteration have been displayed in Figures (5-17).

3.2 AFEM: Heat equation

A steady state heat equation in two different boundary conditions 1. Neumann and Dirichlet on two
adjacent sides and 2. different Dirichlet conditions on two adjacent sides, has been taken for application of
AFEM.

3.2.1 Problem-1

Consider steady state heat conduction in an isotropic rectangular region of dimension 3a× 2a. The origin
of x and y coordinates is taken at the lower left corner such that x is parallel to side 3a and y is parallel
to side 2a. The boundaries x = 0 and y = 0 are insulated, the boundary x = 3a is maintained at zero
temperature, and the boundary y = 2a is maintained at a temperature[8]:

T = T0cos
(πx

6a

)
Consider a governing equation for steady state heat transfer in plain system:

− ∂

∂x

(
kx
∂T

∂x

)
− ∂

∂y

(
ky
∂T

∂y

)
= f(x, y) (28)

where, T = Temperature in ◦C, kx and ky are thermal conductivities in W/(m.◦C) along x and y directions
respectively, and f is the internal heat generation per unit volume in W/m3. Setting, kx = ky = k, a
constant thermal conductivity and f = 0,

−k∇2T = −k∆T = 0 (29)

For a = 1, the domain will be a 3× 2 rectangle. The exact solution is:

T (x, y) = T0

cosh(πy6a )cos(πx6a )

cosh(π3 )
(30)

10
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Figure 5: Initial discretization Figure 6: Mesh refinement: Iteration-I

Figure 7: Mesh refinement: Iteration-II Figure 8: Mesh refinement: Iteration-III

Figure 9: Mesh refinement: Iteration-IV Figure 10: Mesh refinement: Iteration-V

Figure 11: Mesh refinement: Iteration-VI Figure 12: Mesh refinement: Iteration-VII
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Figure 13: Mesh refinement:Iteration-VIII Figure 14: Mesh refinement:Iteration-IX

Figure 15: Mesh refinement: Iteration-X Figure 16: Solution of (2) in space

Figure 17: Solution of (2) in xy-plane
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Table 1: Comparison between adaptive finite element solution and exact solution
Vertices Initial Solution 1 2 3 4 5 6

(0,0) 127.3276 127.8006 126.0245 127.4020 126.4231 128.8914 126.1265
(1,0) 110.2354 111.2647 109.3742 110.9760 110.9581 110.2601 110.1882
(2,0) 63.6371 64.2721 63.4234 63.6998 64.3218 64.0525 63.1856
(0,1) 144.3573 144.2740 142.6124 144.1633 141.3133 143.0034 143.2004
(1,1) 124.9886 126.4932 124.0244 123.9808 124.0298 123.9862 123.9058
(2,1) 72.1564 72.9118 72.1598 72.2687 72.5807 71.5961 71.5303

7 8 9 10 Exact Solution

125.6032 125.4859 124.4630 125.4995 124.9776
108.9958 108.9203 108.8791 108.7331 108.2338
63.4587 62.8560 62.8118 62.7012 62.4888
143.0605 142.9089 142.5663 142.7349 142.5042
123.9974 123.9338 123.7362 123.5681 123.4123
71.6943 71.4603 71.5834 71.3307 71.2521

The above table shows that there is big differences between FEM solution and exact solution at nodal
points. But when the adaptive process is applied successively up to tenth iteration, we can see that the
AFEM solution approaches to the exact solution. The results up to 10th iteration of an adaptive mesh
refinement are displayed below: [See fig (18)-(30)]

3.2.2 Problem-2

Consider a heat transfer in a rectangular region of dimensions a by b, subjected to the boundary conditions.
We wish to write the finite element algebraic equations for the unknown nodal temperatures and heats.
For illustrative purposes, a 4 × 2 mesh of rectangular elements is chosen. We assume that the medium is
orthotropic, with conductivities kx and ky in the x and y directions, respectively. The boundaries x = 0
and y = 0 are insulated such that[8]:

−∂T
∂x

= −∂T
∂y

= 0

Also, the boundary x = a is maintained at zero temperature and the boundary y = b is maintained at the
temperature T = T0 = 200◦. No internal heat generation is assumed.
The results up to 10th iteration of an adaptive mesh refinement are displayed below: [Fig (31)-(43)]

4 Conclusion

The study has been conducted to get the particular solution of Poisson equation using FEM and AFEM in
an arbitrary domain. The results obtained by AFEM are very close to the real solution. The FEM solution
of Poissan equation may not represent the exact solution, however, AFEM helps to reduce the error size
to get better solution that is approximately approaches to exact solution. Since AFEM helps to decrease
the error, we can extend and apply the AFEM technique to find the better numerical solution in various
applied problems.
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Figure 18: Initial discretization Figure 19: Mesh refinement: Iteration-I

Figure 20: Mesh refinement: Iteration-II Figure 21: Mesh refinement: Iteration-III

Figure 22: Mesh refinement: Iteration-IV Figure 23: Mesh refinement: Iteration-V

Figure 24: Mesh refinement: Iteration-VI Figure 25: Mesh refinement: Iteration-VII
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Figure 26: Mesh refinement: Iteration-VIII Figure 27: Mesh refinement:Iteration-IX

Figure 28: Mesh refinement: Iteration-X Figure 29: Solution of space

Figure 30: Solution of in xy-plane
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Figure 31: Initial discretization Figure 32: Mesh refinement: Iteration-I

Figure 33: Mesh refinement: Iteration-II Figure 34: Mesh refinement: Iteration-III

Figure 35: Mesh refinement: Iteration-IV Figure 36: Mesh refinement: Iteration-V

Figure 37: Mesh refinement: Iteration-VI Figure 38: Mesh refinement: Iteration-VII
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Figure 39: Mesh refinement:Iteration-VIII Figure 40: Mesh refinement:Iteration-IX

Figure 41: Mesh refinement:Iteration-X Figure 42: Solution of in space

Figure 43: Solution of in xy-plane
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