

Insight on patient profile undergoing caesarean delivery: a hospital based study in Karnali Academy of Health Sciences

Subi Basnyat ¹, Rajiv Shah², Gehanath Baral³, Robin Khapung⁴, Shailaja Khadka⁵, Shirish Silwal⁶, Rubi Thapa¹

¹Department of Obstetrics and Gynecology, Karnali Academy of Health Sciences, Jumla, Nepal

²Department of Obstetrics and Gynecology, Crimson Hospital, Kathmandu, Nepal

³Department of Obstetrics and Gynecology, Noble Medical College, Biratnagar, Nepal

⁴Department of Anesthesiology, Critical Care and Pain Medicine, Karnali Academy of Health Sciences, Jumla, Nepal

⁵Department of Obstetrics and Gynecology, Nepalese Army Institute of Health Sciences (NAIHS), Kathmandu, Nepal

⁶Department of Anesthesiology and Critical care, Bharatpur Hospital, Chitwan, Nepal

ABSTRACT

Introduction: Cesarean section (CS) rates are rising globally, often exceeding World Health Organization recommendations. While well-documented in urban centers, data from remote, resource-limited regions such as Nepal's Karnali Province are scarce. This study aims to determine the key maternal characteristics and clinical indications for CS at a tertiary hospital in a remote setting.

Methods: This was a retrospective, cross-sectional study of all deliveries at Karnali Academy of Health Sciences between June 2023 and June 2024. Data on maternal demographics, obstetric history, and CS indications were collected from hospital maternity records. Descriptive statistics were used to analyze the data.

Results: Among 801 deliveries, 180 were cesarean sections, yielding a CS rate of 22.5%. The mean maternal age was 24.75 ± 4.92 years, and nulliparous women constituted the largest group (42.8%). Most CSs were emergency procedures (84%). The leading indications were previous CS (16.1%), breech presentation (13.9%), meconium-stained liquor (10.6%), and fetal distress (10.6%). Robson classification analysis identified women with a previous CS (Group 5) as the largest contributor to the overall rate (23.3%).

Conclusion: The CS rate in this remote Nepalese hospital is elevated. The high proportion of emergency procedures and the prominence of previous CS as a primary indication highlight critical areas for intervention. To optimize CS use, targeted strategies such as promoting vaginal birth after cesarean and strengthening standardized intrapartum monitoring are urgently needed.

Keywords: Cesarean Section, Delivery Indications, Emergency Obstetrics, Maternal Profile, Robson Classification

INTRODUCTION

Cesarean section (CS) is a critical surgical procedure that has significantly contributed to reducing maternal and neonatal mortality worldwide. The World Health Organization (WHO) recommends a cesarean delivery rate of 10–15% as optimal, ensuring that necessary procedures are performed without excessive medical interventions.¹ However, cesarean rates have been rising globally, particularly in low- and middle-income countries, where both medical necessity and non-medical factors influence decision-making.^{2,3}

In Nepal, the increasing institutional delivery rate due to government-led safe motherhood programs has been associated with a rise in CS rates.⁴ While cesarean deliveries are life-saving in cases of obstetric

complications such as fetal distress, cephalopelvic disproportion, placenta previa, and hypertensive disorders,^{5,6} the growing trend of non-medically indicated CS raises concerns regarding maternal and neonatal risks, economic burden, and health system sustainability.^{7,8}

The determinants of CS are multifactorial and include maternal, fetal, institutional, and provider-related factors. Maternal factors, such as age, parity, and prior obstetric history, play a crucial role in CS decisions.⁹ Institutional factors, including hospital policies, access to emergency obstetric care, and health provider preferences, also contribute to the increasing trend.¹⁰ Additionally, socio-economic and cultural influences, such as patient preference, perceived convenience, and fear of labor pain, have been reported as emerging contributors to CS decisions in various settings.^{11,12}

Karnali Academy of Health Sciences (KAHS) serves as a tertiary referral center in a geographically remote region of Nepal, providing essential maternal health services to a large population. Despite the increasing CS rate in Nepal, limited research has been conducted in remote areas' facility centers to evaluate the underlying determinants influencing the mode of delivery.¹³

Despite rising global and national CS rates, there is limited data on the factors influencing this trend in remote tertiary hospitals like KAHS. Understanding the clinical (e.g., obstetric indications, maternal comorbidities) and non-clinical (socio-demographic factors) factors influencing CS decisions is essential to ensure cesarean sections are performed when medically indicated. This study aims to bridge the knowledge gap by providing evidence to inform policies and

Copyright © 2025 by the author(s), wherein the author(s) are the only owners of the copyright of the published content
 Licensing: This published content is distributed under the terms of the Creative Commons Attribution International License (CC BY 4.0) license, and is free to access on the Journal's website. The author(s) retain ownership of the copyrights and publishing rights without limitations for their content, and they grant others permission to copy, use, print, share, modify, and distribute the article's content even for commercial purposes.
 Disclaimer: This publication's claims, opinions, and information are the sole creations of the specific author(s) and contributor(s). Errors in the contents and any repercussions resulting from the use of the information included within are not the responsibility of the publisher, editor, or reviewers. Regarding any jurisdictional assertions in any published articles, their contents, and the author's institutional affiliations, the journal and its publisher maintain their objectivity.

Corresponding Author:
 Dr Subi Basnyat
 Email: Basnyat_Subi@hotmail.com

Date of Submission: November 2, 2025
 Date of Acceptance: December 9, 2025
 Date of Publication: January 10, 2026

DOI: <https://doi.org/10.61814/jkahs.v8i3.11114>

optimize obstetric care in resource-limited settings, and by offering valuable insights into factors influencing CS trends in a rural tertiary setting. Findings from this study will help formulate evidence-based recommendations to enhance obstetric care practices, improve maternal and neonatal health outcomes, and guide policymakers in optimizing the appropriate use of cesarean delivery in similar healthcare settings.¹⁴

METHODS

This was a retrospective descriptive study conducted at the Department of Obstetrics and Gynecology, Karnali Academy of Health Sciences (KAHS), Jumla, Nepal. After approval from the Institutional Review Committee (IRC) with reference number 2025/026.

All pregnant women who underwent elective and emergency cesarean deliveries in term, preterm, and post-term women between Asar 2080 to Asar 2081 BS (June 2023 – June 2024 AD) were included in this study. Data were extracted from maternity ward delivery registers, operating theatre records, and patient files.

Information on Maternal age, parity, gestational age, fetal presentation, urgency of cs (elective/emergency), clinical indications, and geographical distribution were collected. Incomplete or missing records were excluded from the study. Data were entered in Microsoft Excel, and statistical analyses were performed using SPSS version 16. Results were analyzed by calculating the mean and frequencies for maternal age, gestational age, parity, and common indications.

RESULTS

Out of 801 cases that were delivered in KAHS, 180 (22.5%) were cesarean sections, while 621 (77.5%) were vaginal births. The mean maternal age of the parturient was 24.75 ± 4.92 years. Most parturients were in the 20-24-year age group (43.9%), followed by the 25-29-year group (24.4%) (Table 1). The median gestational age is 39.50 weeks (38-40 weeks). Nulliparous women comprise the largest group, i.e., 77 (42.8%), followed by para one, i.e., 58 (32.2%), and para two, i.e., 32 (17.8%) (Table 2). Among the patients who underwent CS, 151 (84%) underwent emergency LSCS, whereas 29 (16%) underwent LSCS on an elective basis.

Table 1: Cesarean section according to maternal age group (n=180)

Age group	Frequency (percentage)
< 20 years	21 (11.7%)
20- 24 years	79 (43.9%)
25- 29 years	44 (24.4%)
30- 34 years	28 (15.6%)
35-39 years	8 (4.4%)

Table 2: Parity of patients who underwent CS (n=180)

Parity	Frequency (percentage)
0	77 (42.8%)
1	58 (32.2%)
2	32 (17.8%)
3	5 (2.8%)
4	3 (1.7%)
5	3 (1.7%)
6	2 (1.1%)

The most frequent indication was previous CS, followed by breech presentation, meconium-stained liquor, and fetal distress (Table 4). Most CS were categorized under Group 5 (previous cs, single cephalic, ≥ 37 weeks, in labor), representing 23.3% of cases, followed by Groups 1 and 2, which accounted for the majority of primary CS.

Table 3: Cesarean distribution by age group in relation to parity (n=180)

Age Group (years)	Parity						
	0	1	2	3	4	5	6
<20	17	4	0	0	0	0	0
20- 24	44	25	10	0	0	0	0
25- 29	13	14	15	1	0	1	0
30-34	3	12	5	4	1	1	2
35- 39	0	3	2	0	2	1	0

Table 4: Clinical indication of cesarean section (n=180)

Clinical indications	Number (percentage)
Previous cs (in labor, not in labor)	29(16.1)
Breech presentation	25 (13.9)
Meconium-stained liquor	19 (10.6)
Fetal Distress	19 (10.6)
Cephalopelvic disproportion (CPD)	18 (10)
Non-progression of labor and prolonged labor	10 (5.6)
Hypertensive disorders of pregnancy (preeclampsia, severe preeclampsia, eclampsia)	9 (5)
Scar tenderness in previous cs	9 (5)
Failed induction of labor	7 (3.9)
Ante-partum Hemorrhage (APH)	7 (3.9)
Fetal bradycardia	6 (3.3)
Others	22 (12.22)
<ul style="list-style-type: none"> Severe IUGR and severe oligohydramnios Cord prolapse Twins Decreased fetal movement PROM with anhydramnios Unstable lie History of subfertility and salpingectomy for ectopic 	

DISCUSSION

Our retrospective study at KAHS found a CS rate of 22.5%, which is higher than the WHO's suggested range of 10- 15%.¹ Recent regional and national trends show a rise in CS utilization throughout South Asia and Nepal. A systematic review reported that CS rates have been increasing globally from 12% in 2000 to 21% in 2015 across many regions.² In Nepal, tertiary-level hospitals report a higher CS rate of 31.1%¹⁵ and 34.4%.¹⁶ Thus, the CS rate at KAHS is lower than urban tertiary centers but remains elevated to WHO and rural estimates.¹⁷

The mean maternal age among women undergoing cs is 24.75 ± 4.92 years, consistent with regional data. Our study showed that the largest number of women is in the 20-24-year age group (73.9%), similar to the study conducted at a tertiary care center by Shrestha et al.¹⁸ This shows a regional trend of younger women being more common in CS deliveries. In a survey by Subedi et al.¹⁸ using Robson classification, Group 1 (nulliparous, term, cephalic) contributed 26% of CS, and Group 2 (nulliparous induced/CS before labor) contributed 16% of CS. Similarly, our data showed that nulliparous women comprised 42.8% of CS, indicating that primary cs among young women is prevalent.

Our study showed that 84% of CS were emergency CS, similar to the emergency CS rate of 88% and 76.9% in a survey done by Shrestha et al.¹⁵ and Tamrakar et al.¹⁹ This may reflect late presentation, limited antenatal checkups, and decision-making delays common in rural/high-altitude areas.

Table 5: Robson's group and clinical indication of cs (n=180)

Robson's group	Clinical indications (number(%))											
	NPOL	MSL	HTN	Breech	APH	FD	Scar Ten.	CPD	Prev. cs	Failed IOL	FB	Others
1	4(12.5)	11(34.4)	2(6.3)	0	0	6(18.8)	0	7(21.9)	0	1(3.1)	0	1
2	1(5)	1(5)	1(5)	0	2(10)	4(20)	0	4(20)	0	3(15)	2(10)	2
3	1(5)	3(15)	2(10)	0	1(5)	4(20)	0	3(15)	0	0	3(15)	3
4	2(10.5)	3(15.8)	1(5.3)	0	1(5.3)	3(15.8)	0	3(15.8)	0	3(15.8)	0	2
5	0	1(2.6)	0	0	0	0	9(23)	1(2.6)	28(73.7)	0	0	0
6	0	0	0	9(81.8)	0	1(9.1)	0	0	0	0	0	1
7	0	0	0	15(93.8)	0	0	0	0	0	0	0	1
8	0	0	0	1(50)	0	0	0	0	0	0	0	1
9	1(12.5)	0	0	0	0	0	0	0	1(12.5)	0	0	6
10	1(7.1)	0	3(21.4)	0	3(21.4)	1(7.1)	0	0	0	0	1(7.1)	5

Abbreviations: NPOL: Non progression of labor and prolonged labor; MSL: Meconium-stained liquor; HTN: Hypertensive disorders of pregnancy; Breech: Breech presentation; APH: Antepartum Hemorrhage; FD: Fetal distress; Scar Ten.: Scar tenderness; CPD: Cephalopelvic disproportion; Prev. cs: Previous cesarean section ; Failed IOL: Failed induction of labour; FB: Fetal bradycardia

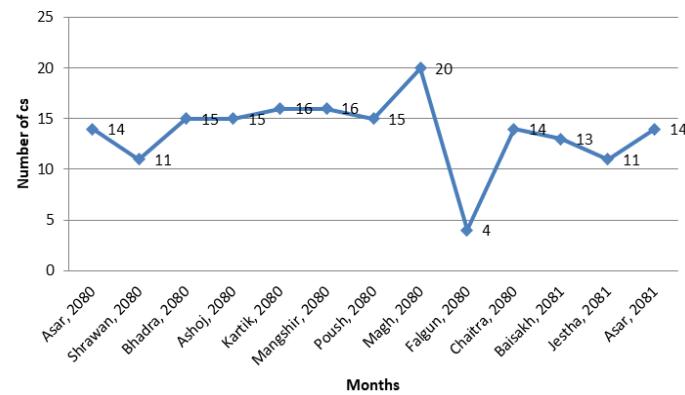


Figure 1: Month-wise distribution of undergone cs (n=180)

In the present study, the most frequent indication was previous CS (16.1%), followed by breech presentation (13.9%), meconium-stained liquor (10.6%), fetal distress (10.6%), and cephalopelvic disproportion (10.0%). This aligns with findings from the study done by Pageni et al,¹⁷ who reported previous cs (21%) and CPD (18%) among the top indications in a hospital in Pokhara, whereas Shrestha et al.¹⁶ observed fetal distress as the top cause (31%) and previous CS 18% in a tertiary care centre at Kathmandu. Thus, while fetal distress is more dominant in some urban studies, previous CS remains centrally important across contexts.

Malpresentation (breech) and non-reassuring fetal status (fetal distress, meconium) were other frequent indications. The accuracy and standardization of intrapartum fetal surveillance (intermittent auscultation vs. continuous cardiotocography), the use of partographs, and clinician thresholds for operative delivery vary across centers and influence CS decisions. Several South Asian audits emphasize that suboptimal use of partographs, inconsistent fetal monitoring, and variable interpretation of fetal heart patterns can lead to both under- and overdiagnosis of fetal distress and therefore to potentially avoidable emergency CSs. Strengthening standardized intrapartum monitoring and enhancing staff training are thus practical targets.²⁰

The prominence of previous CS reflects a broader regional pattern: Nepal's Robson-classification audit found that Group 5 (women with prior CS) contributed ~22.6% of CSs,²¹ similar to Group 5 being the main contributor in many South Asian hospitals,¹⁸ similar to the result shown by our study. The increasing contribution of Robson Group 5 is widely reported in South Asia. It is often the most significant single Robson contributor in many centers, as confirmed by scoping reviews of Robson use in the region. Addressing repeat CS through appropriate vaginal birth after cesarean (VBAC) or trial of labor after cesarean (TOLAC)

protocols could therefore yield substantial returns in reducing CS burden.²²

KAHS is located in a remote, mountainous region. Literature from the high-altitude areas indicates that CS rates may be elevated due to referral of complicated pregnancies, altered fetal growth dynamics (lower birth weight, hypoxia), and limited labor monitoring resources.²³ Such contextual factors may have influenced the high proportion of emergency CS and the indication profile at KAHs. Moreover, geographical challenges (delayed access, referral lag) heighten urgency and may increase the rate of operative deliveries. Interventions in such settings thus need to consider the broader health system, transport, and referral infrastructure, not solely clinical indications. In our study, the median gestational age at CS was 39.5 weeks (IQR 38–40 weeks). In a study of women with previous CS, increased gestational age was identified as an indicator for repeat CS delivery.²⁴

This is a single-centre, retrospective study lacking detailed maternal comorbidity data, neonatal outcomes, socioeconomic and provider-related variables. Prospective multicentre studies across high-altitude and rural South Asian settings are needed to capture context-specific drivers, including maternal request, provider decision-making, and resource constraints. Qualitative exploration into women's and families' perceptions of CS in remote regions would also add value.

CONCLUSION

In this cross-sectional study at a remote tertiary hospital in Nepal, we found a CS rate of 22.5%, which exceeds WHO recommendations. Our analysis identified two principal findings: first, a high burden of emergency CS; and second, a prior CS as the most frequent indication. These results suggest that the CS rate is being driven by intrapartum decision-making and repeat procedures.

DECLARATION

Acknowledgement

The author would like to acknowledge the medical officers, nursing staffs and record keeping personell of maternatiy ward of KAHs, Jumla for assistance in maintaining clinical records and facilitating data retrieval for hte study.

Ethical Clearance

This research was approved by the Institutional Review Committee (IRC) of KAHs with the reference number 2025/026 on 11th April 2025.

Consent/Accent

Not applicable

Conflicts of Interest

Authors SB and RK are members of JKAHS. They had no role in the journal's editorial process.

Source of Funding

The author(s) received no external fund for this research

Author Contribution

SB and GB developed the research concept. The research design was prepared collaboratively by SB, RS, GB, and SS. SB, RK, SK, and RT conducted the literature search. SB, RK, and RT conducted data collection, while SB, GB, and SS performed the data analysis. SB, GB, and SS interpreted the data. SB, GB, and SS completed the drafting and critical review of the manuscript for important intellectual content. The final version of the manuscript, ready for submission, was approved by SB, RS, GB, RK, SK, RT, and SS. All authors, namely SB, RS, GB, RK, SK, RT, and SS, agreed to be accountable for all aspects of the work and to ensure the accuracy and integrity of the research.

Data Availability Statement

Upon the journal's editorial team's request, the data will be available.

REFERENCES

1. Betrán AP, Torloni MR, Zhang JJ, Gürmezoglu AM, Aleem HA, Althabe F, Bergholt T, De Bernis L, Carroli G, Deneux-Tharaux C, Devlieger R. WHO statement on caesarean section rates. *Bjog*. 2015 Jul 22;123(5):667. | [DOI](#) |
2. Betrán AP, Ye J, Moller AB, Zhang J, Gürmezoglu AM, Torloni MR. The increasing trend in caesarean section rates: global, regional and national estimates: 1990-2014. *PLoS one*. 2016 Feb 5;11(2):e0148343. | [DOI](#) |
3. Molina G, Weiser TG, Lipsitz SR, Esquivel MM, Uribe-Leitz T, Azad T, et al. Relationship between cesarean delivery rate and maternal and neonatal mortality. *Jama*. 2015 Dec 1;314(21):2263-70. | [DOI](#) |
4. Ministry of Health and Population (Nepal), New ERA, ICF. Nepal Demographic and Health Survey 2022. Kathmandu, Nepal: Ministry of Health; 2022. | [Weblink](#) |
5. Dolea C, AbouZahr C. Global burden of obstructed labour in the year 2000. *World Health Organization*. 2003 Jul:1-7. | [Weblink](#) |
6. Vogel JP, Betrán AP, Vindevoghel N, Souza JP, Torloni MR, Zhang J, et al. Use of the Robson classification to assess caesarean section trends in 21 countries: a secondary analysis of two WHO multicountry surveys. *The Lancet Global Health*. 2015 May 1;3(5):e260-70. | [DOI](#) |
7. Bonet M, Souza JP, Abalos E, Fawole B, Knight M, Kouanda S, et al. The global maternal sepsis study and awareness campaign (GLOSS): study protocol. *Reproductive health*. 2018 Jan 30;15(1):16. | [DOI](#) |
8. Keag OE, Norman JE, Stock SJ. Long-term risks and benefits associated with cesarean delivery for mother, baby, and future pregnancies: Systematic review and meta-analysis. *PLoS Med*. 2018;15(1):e1002494. | [DOI](#) |
9. Stavrou EP, Ford JB, Shand AW, Morris JM, Roberts CL. Epidemiology and trends for Caesarean section births in New South Wales, Australia: a population-based study. *BMC pregnancy and childbirth*. 2011 Jan 20;11(1):8. | [DOI](#) |
10. Pandit S, Thasineku OC, Karki S, Sharma S. Prevalence and associated factors of caesarean section delivery: analysis from the Nepal Demographic and Health Survey 2022. *BMJ Open*. 2025 Mar 22;15(3):e090209. | [DOI](#) |
11. Ronmans C, Holtz S, Stanton C. Socioeconomic differentials in caesarean rates in developing countries: A retrospective analysis. *Lancet*. 2006;368(9546):1516-23. | [DOI](#) |
12. Panda S, Begley C, Daly D. Influence of women's request and preference on the rising rate of caesarean section—a comparison of reviews. *Midwifery*. 2018;62:178-88. | [DOI](#) |
13. Nepal A, Dangol SK, van Der Kwaak A. Improving maternal health services through social accountability interventions in Nepal: an analytical review of existing literature. *Public Health Reviews*. 2020 Dec 21;41(1):31. | [DOI](#) |
14. Boatman AA, Schlotheuber A, Betrán AP, et al. Within country inequalities in caesarean section rates: Observational study of 72 low- and middle-income countries. *BMJ*. 2018;360:k55. | [DOI](#) |
15. Shrestha M, Shrestha S. Caesarean Section profile at a tertiary centre. *Nepal Journal of Obstetrics and Gynaecology*. 2019;14(1):31-34. | [DOI](#) |
16. Shrestha DB, Khatri R, Oli PR, Malla R, Shrestha C, Khatiwada R, Silwal P, Shah PB. Cesarean Section in a Maternity Unit of a Tertiary Care Center of Nepal: A Descriptive Cross-sectional Study. *JNMA J Nepal Med Assoc*. 2021 Apr 30;59(236):322-326. | [DOI](#) |
17. Pageni PR, Adhikari R, Dhungana PR, Kafle DR. Prevalence of caesarean section in Matri Shishu Miteri Hospital of Gandaki province. *Medical Journal of Pokhara Academy of Health Sciences*. 2020 Oct 9;3(1):244-8. | [DOI](#) |
18. Subedi A, Shrestha J, Adhikari KM, Thapa S. Evaluation of Cesarean Deliveries by using Ten Group Classification System in a Tertiary Care Centre: A Cross-Sectional Study. *Nepal Journal of Medical Sciences*. 2023 Jan 31;8(1):43-9. | [DOI](#) |
19. Tamrakar R, Sapkota S, Sitaula D, Thapa R, Pokharel B, Acharya S, et al. Cesarean Section Among all Deliveries in a Tertiary Care Centre of Nepal: A Descriptive Cross-sectional Study. *JNMA J Nepal Med Assoc*. 2021 Sep 11;59(241):839-843. | [PubMed](#) |
20. Dhakal-Rai S, van Teijlingen E, Regmi P, Wood J, Dangal G, Dhakal KB. Factors contributing to rising cesarean section rates in South Asian countries: A systematic review. *Asian Journal of Medical Sciences*. 2022 Feb 1;13(2):143-74. | [DOI](#) |
21. Poudel R, Dangal G, Karki A, Pradhan HK, Shrestha R, Bhattachan K, et al. Assessment of caesarean section rates at Kathmandu model hospital using the Robson's ten group classification system. *Journal of Nepal Health Research Council*. 2019;17(04):491-4. | [DOI](#) |
22. Rai SD, Teijlingen EV, Regmi P, Wood J, Dangal, G, Dhakal KB. Classification of Caesarean Section: A Scoping Review of the Robson classification. *Nep J Obstet Gynecol*. 2021;16 (32):2-9. | [Fulltext](#) |
23. Zheng YY, Pubu ZM, Ge Y, Bianba ZM, Xu XH. Prevalence and causes of cesarean births among women residing at high altitude in Lhasa, Tibet: A retrospective observational study of 7365 women. *Taiwan J Obstet Gynecol*. 2019 May;58(3):380-384. | [DOI](#) |
24. Hua Z, El Oualja F. Indicators for mode of delivery in pregnant women with uteruses scarred by prior caesarean section: a retrospective study of 679 pregnant women. *BMC Pregnancy and Childbirth*. 2019 Nov 27;19(1):445. | [DOI](#) |