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Abstract
Residential building energy consumption is a significant contributor to greenhouse gas
emissions. Accurate prediction of total energy use in residential buildings holds vital
importance in the context of energy management. In this paper, we propose a data-driven
approach using machine learning (ML) models to predict the total energy consumption of a
low-energy house based on indoor and outdoor environmental conditions using data from
a house located in Belgium. Four ML(ML) models, including Extreme Gradient Boosting
(XGBoost), Random Forest (RF), Decision Tree (DT), and Support Vector Machine (SVM),
were trained and tested to evaluate their performance in predicting energy consumption. The
results of our study demonstrate that the XGBoost model outperforms all other models used,
with a coefficient of determination R2 of 61%, a Root Mean Square Error (RMSE) of 65.28, a
Mean Absolute Error (MAE) of 29.81, and a Mean Absolute Percentage Error (MAPE) of
28.55 on the testing set. The findings from this study demonstrate the accurate forecasting of
energy consumption by accounting for the non-linear dependencies between environmental
conditions and total energy consumption, which can aid in making informed decisions towards
the reduction of power usage, enhancement of energy efficiency, and achieving cost savings.
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1. Introduction
The issue of energy consumption has become a critical
concern in today’s world, with the growing global
population and increasing demand for energy[1] and a
significant contributor to greenhouse gas [2],[3]. The
need for sustainable and efficient ways to meet our
energy needs is more pressing than ever before. In re-
sponse to this challenge, low-energy houses are gaining
popularity due to their energy-efficient design, which
significantly reduces energy consumption [4]. These
houses are designed to be highly energy-efficient, with
features such as insulation, airtightness, and efficient
heating and cooling systems. However, even with these
measures in place, low-energy houses still require en-
ergy for lighting, appliances, and other household needs.
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Buildings account for a significant portion of global
energy consumption. They account for 32% of total
final energy consumption and 40% of primary energy
consumption [5][6][7]. In low-energy houses, this en-
ergy consumption is significantly lower, but still sig-
nificant enough to have an impact on the environment.
Therefore, reducing the energy consumption of low-
energy houses has become a topic of research interest
for many researchers and is considered one of the most
cost-effective areas to reduce energy consumption [8].
Predicting building energy consumption is difficult due
to the numerous factors that can influence it, which
range from the physical characteristics and installed
equipment of the building to outdoor weather conditions
and the energy-use patterns of its occupants [9], [10].
Among these factors, weather is the most important ex-
ternal factor affecting residential energy consumption
and generation, and it plays a decisive role in predicting
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energy consumption [7], [9], [11].
In general, two approaches: physical modeling, and
data-driven approaches, are being widely used in build-
ing energy consumption [9], [12]. The latter approach
is gaining significant attention because of its ability to
learn and remember patterns, and hidden information
from historical data for accurate energy consumption
prediction[12]. There is a plethora of literature that has
extensively reviewed data-driven models used for en-
ergy consumption prediction, including Artificial Neu-
ral Networks (ANN), SVM, decision trees, and other
statistical algorithms[12], [13][14][15]. According to
these reviews, SVM, ANN, decision trees, and other
statistical methods are the most frequently used super-
vised ML algorithm for model training. [9] mentioned
that in energy consumption prediction, ANN is used
47%, SVM is used 25%, and 4% of studies used de-
cision trees, with 24% of studies utilizing other algo-
rithms such as Multiple Linear Regression (MLR), Or-
dinary Least Square (OLS), and Autoregressive Inte-
grated Moving Average (ARIMA). Furthermore, several
studies have compared the efficacy of various machine-
learning algorithms in predicting energy consumption
[16][17][18][19]. Models based on linearity are not
well suited to these types of problems due to their non-
linear and complex nature. As a result, hybrid mod-
els have been proposed to address the shortcomings of
these types of models [20]. Ensemble methods, such as
XGBoost, have not been widely tested in energy con-
sumption prediction for low-energy houses.
This study aims to compare the efficacy of four ML
models, namely XGBoost, RF, DT, and SVM, to iden-
tify the best model that captures the non-linearity of
energy consumption. The objective is to compare the
results using different evaluation metrics to predict the
total energy consumption of the low-energy dwelling.
XGBoost, RF, and DT are non-linear tree-based models
that are best suited to capture the non-linear relation-
ships between variables. SVM can be both linear and
non-linear depending on the kernel function used. In
this study, we used a non-linear kernel function called
the radial basis function which makes it a non-linear
model. This study’s findings are expected to contribute
significantly to ongoing research aimed at developing
precise and reliable models for predicting building en-
ergy consumption. The development of such models
is critical in the pursuit of a sustainable built environ-
ment because it allows stakeholders to optimize energy
use and reduce waste, resulting in a greener and more
environmentally conscious society.

2. Data and study house
This study employed data from the UCI MLRepository
[21] as collected by [11]. The monitored house is in
Stambruges, Belgium, and is a two-story, low-energy
dwelling constructed in 2015. The building was de-
signed following the Passive House Planning Package
(PHPP) guidelines to have low annual heating and cool-
ing loads of no more than 15 kWh/m2 per year [22]. It
should be noted that a wood-burning chimney provides
most of the heating needs. The homeowners manually
log the monthly quantity and type of wood used. In
September 2016, the building’s air leakage was mea-
sured to be 0.6 air changes per hour at 50 Pa. The
exterior walls, roof, and ground were built with high
insulation (U < 0.1 W/m2 K). Triple-glazed windows
were installed with Ug = 0.5 W/m2 K and Uf < 0.9
W/m2 K. Ventilation is supplied by a heat recovery unit
with 90-95% efficiency. The total floor area is 280 m2,
of which 220 m2 is heated space. The facade faces
+10° (southwest) from true south. Usually there are
two adults and two teenagers of which one adult works
regularly in the home office.
The data was collected for approximately 4.5 months
at 10-minute intervals and included temperature and
relative humidity readings from various areas of the
house using a Zigbee wireless sensor network. Each
sensor transmitted temperature and humidity data for 3.3
minutes, which was then averaged to obtain 10-minute
interval data. The sensors have a temperature accuracy
of ±0.5◦ C and a relative humidity accuracy of ±3%.
To supplement the collected data, weather information
from the nearest airport weather station (Chievres Air-
port, Belgium) was obtained from the Reliable Prog-
nosis data set and merged with the experimental data
sets using the date and time column. Additionally, two
random variables were included in the data set to test re-
gression models and filter out non-predictive attributes.
The data collected by [11] and its variable description
are provided in Table 1 below.
Interested readers may refer to the article by [11] for

further information on house design and data collection
methods. In their study, they employed the aforemen-
tioned datasets, including their subsets, for multiple
linear regression, SVM with the radial kernel, RF, and
gradient boosting machines (GBM) models for predict-
ing appliance energy consumption, with GBM being
the best model.
In this study, we aimed to predict total energy consump-
tion instead of just appliance energy consumption be-
cause the total energy consumption of a building pro-
vides a holistic view, which is important in efficiency
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Table 1: Dataset variables and their description as collected by [11]
Variables Description
Appliances Energy use of appliances in the house in Wh
Lights Energy use of light fixtures in the house in Wh
T1 Temperature in kitchen area in Celsius
RH1 Humidity in kitchen area in %
T2 Temperature in living room area in Celsius
RH2 Humidity in living room area in %
T3 Temperature in laundry room area in Celsius
RH3 Humidity in laundry room area in %
T4 Temperature in office room in Celsius
RH4 Humidity in office room in %
T5 Temperature in bathroom in Celsius
RH5 Humidity in bathroom in%
T6 Temperature outside the building on the north side in Celsius
RH6 Humidity outside the building on the north side in %
T7 Temperature in ironing room in Celsius
RH7 Humidity in ironing room in %
T8 Temperature in teenager room 2 in Celsius
RH8 Humidity in teenager room 2 in %
T9 Temperature in parents’ room in Celsius
RH9 Humidity in parents’ room in %
To Temperature outside from Chievres weather station in Celsius
Pressure Pressure from Chievres weather station in mm Hg
RHo Humidity outside from Chievres weather station in %
Wind speed Wind speed from Chievres weather station in m/s
Visibility Visibility from Chievres weather station in km
Tdewpoint Dew point temperature from Chievres weather station in Celsius
Rv1 Random variable 1, non-dimensional
Rv2 Random variable 2, non-dimensional

improvements and load management. Also, considera-
tion of total energy consumption helps assess the envi-
ronmental impact and energy costs associated with the
building, guiding decisions towards greener practices.
Specifically, we defined total energy consumption as the
sum of energy consumed by appliances and house lights
which are the main source of energy for low-energy res-
idential buildings. In order to capture the distinctions in
model structure, decision process, interpretability, and
handling non-linearity, it is important to test and com-
pare both tree-based and non-tree-based models. This
allows us to assess their respective strengths and weak-
nesses, make informed decisions based on the problem
at hand, and leverage the benefits of each model type for
optimal results. For this, we applied Extreme Gradient
Boosting, Random Forest, Decision Tree, and Support
Vector Machine. For our analysis, we preprocessed the
data by removing two non-dimensional random vari-
ables that were considered irrelevant to the study. We
retained the full remaining datasets as shown in Table 1,
rather than creating subsets, and analyzed them across

different models. Furthermore, we assessed the datasets
for any missing or NaN (not-a-number) values and de-
termined that the data were complete and contained no
such values.

3. Methods
3.1. Extreme gradient boosting (XGBoost)
XGBoost developed by [23] is a powerful ML algorithm
that is used for supervised learning tasks, in both, regres-
sion and classification. It is an optimized distributed
gradient boosting library designed for efficient and scal-
able training of ML models as it pools the predictions
of multiple weak models to create a strong robust model
[23]. It is a powerful algorithm that can be used to create
accurate and robust models that generalize well to un-
seen data. The key feature of this algorithm is that it can
handle missing data efficiently, which means fewer data
preprocessing when working with real-world data. One
of the salient characteristics of XGBoost is its ability
to deliver swift processing, effortless usability, and out-
standing efficacy when handling voluminous datasets.
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[24]
The goal of XGBoost regression is to predict a con-
tinuous output variable from a set of input features.
XGBoost uses a loss function to measure the differ-
ence between the predicted and actual values, such as
the mean squared error. The algorithm then iteratively
adds decision trees to the model to minimize the loss
function (Figure 1). Each tree is trained to predict the
residual (i.e., the difference between the predicted and
actual value) of the previous tree. Some of the stud-
ies which have used XGBoost in energy prediction are
[24][25][26].

Figure 1: Illustration of XGBoost

3.2. Random Forest (RF)
A well-liked ML algorithm called RF, developed by
[27], is used for classification and regression tasks. It
is a supervised learning technique that utilizes various
decision trees to generate predictions. Each decision
tree created by RF makes an independent prediction of
the target variable. The predictions of all the trees are
averaged to produce the final prediction. The ability
to handle a large number of input features and handle
missing values in the dataset is one of the benefits of
RF. Additionally, it can estimate the significance of
each input feature, which can aid in feature selection.
In addition, because RF combines the predictions of
various decision trees (Figure 2), it is less susceptible
to overfitting than other ML algorithms. Overfitting is
observed when a model becomes too tightly fitted to the
training data, resulting in a limited ability to effectively
generalize and perform on new datasets [28]. Some of
the studies which have used RF in energy and electricity
forecasting are [29][30][31][32]

Figure 2: Illustration of RF

3.3. Decision Tree (DT)
DT is broadly used in ML for both classification and re-
gression tasks because it can recursively partition data
into subsets based on input function values [33][34].
Each distribution is chosen to increase information or
reduce impurities, resulting in a tree structure that can
be used to predict new data [35]. The ease of interpre-
tation and visualization of DT makes them a popular
choice for exploratory data analysis and data mining
tasks. DT can handle both categorical and numerical
data and are relatively sensitive to outliers and irrelevant
features. However, overfitting can be a big problem for
DT, especially if the tree is too deep or if the data is
noisy. This can weaken the generalization of new in-
formation. Several extensions to the basic decision tree
algorithm have been developed to address these issues,
including RF, gradient boosting, and adaptive boosting.
These algorithms combine multiple decision trees to
improve model accuracy and reliability. For example,
RF creates multiple decision trees using random subsets
of input features and training data to reduce overfitting.
Gradient boosting, on the other hand, teaches the de-
cision tree to predict the residuals of the previous tree,
resulting in a very accurate and reliable model. Some of
the studies which have used DT in energy and electricity
forecasting are [35][36][37][38][39].
3.4. Support Vector Machine (SVM)
SVM developed by [40] is a supervised machine-
learning algorithm used for both classification and re-
gression. The operational principle of SVM entails the
creation of a hyperplane that segregates the data into
distinct categories. This hyperplane is selected to opti-
mize the margin between the two classes, which repre-
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sents the space separating the hyperplane and the nearest
points of each class, commonly referred to as support
vectors. The SVM algorithm finds the hyperplane that
has the largest margin, which results in a better classi-
fication or regression performance. This allows SVM
to handle non-linearly separable data, which makes it a
powerful tool for dealing with complex datasets such as
those found in energy prediction. For further informa-
tion about SVM readers are diverted to go through [41]
where they have discussed in detail how SVM works.
Some of the studies which have used SVM are [15],
[17], [42][43][44][45][46]
3.5. Hyperparameter tuning
Hyperparameter tuning is the process of selecting the
best hyperparameters for a given model and dataset. ML
models such as XGBoost, RF, DT, and SVM involve
several hyperparameters that have to be tuned before
training the model to get better performance. Tuning
hyperparameters can be done manually or automatically
using techniques such as grid search or random search.
[47],[48]. In both cases, it is important to carefully con-
sider the impact of each hyperparameter on the model’s
accuracy and to test the model with a variety of hyper-
parameters to ensure that the best possible settings are
selected.
Grid search is a general technique to generate alterna-
tive model configurations. After a target range of values
to be analyzed is discretized into each hyperparameter
of interest, models are trained and tested across all hy-
perparameters for all possible value combinations [49].
Due to the large number of hyperparameters and the
variety of each one’s levels, a grid search is straightfor-
ward to use but computationally expensive [48],[50]. In
our study, we utilize grid search automated techniques
to tune the hyperparameters of the models. For the re-
producibility of the results, we set the constant seed
for all the models. The important hyperparameters of
XGBoost are the learning rate, maximum depth of the
trees, and the number of gradients boosted trees. From
the grid search, for the XGBOOST it was found that
the learning rate =0.015, maximum depth =10, and the
number of gradients boosted trees =5000 was found to
be optimal producing the best performance of the model.
The number of trees in the forest, which is determined
by the n_estimators parameter, is one of the most crucial
hyperparameters in Random Forest (RF). The model’s
accuracy can be improved by increasing the number of
trees, but this increases computational complexity and
training time.
Another important hyperparameter is the maximum
depth of the trees, which regulates the model’s complex-
ity. While a shallower tree may produce underfitting, a

deeper tree may be able to capture more intricate inter-
actions in the data.From the grid search, we found that
the best hyperparameters for this data are n_estimators
= 1000, max_depth = None, min_samples_leaf = 4,
and min_samples_split = 10.The maximum tree depth,
which regulates the model’s complexity, is one of the
most crucial hyperparameters in Decision Trees (DT).
While a shallower tree may produce underfitting, a
deeper tree may be able to capture more intricate in-
teractions in the data. The standard used to rate a
split’s quality is a crucial hyperparameter. The cri-
terion parameter, which can be set to either "mse,"
"friedman_mse," "mae," or "poisson," measures the
quality of the split.The minimum number of samples
needed to split a node min_samples_split and the min-
imum number of samples needed to split a branch
min_samples_leaf are the critical hyperparameters for
DT. For this model, we get criterion = ’mse’, max_depth
= None, splitter = ’best’,min_samples_leaf = 10, and
max_features = ’auto’ from the grid search CV.For the
Support Vector Machine (SVM) model, the regulariza-
tion parameter (C), kernel coefficient (gamma), and
kernel type are tuned using grid search CV with values
for C = 100, gamma = 0.001, and kernel = ’rbf’.

4. Evaluation metrics
For the evaluation of the models selected four perfor-
mance measures were utilized namely the coefficient of
determination (R2), mean absolute error (MAE), mean
square error (MSE), root mean squared error (RMSE),
and mean absolute percentage error (MAPE). These
five evaluation metrics have been frequently used in
evaluating the regression models [51][52][53]
4.1. Coefficient of determination(R2)
The coefficient of determination, commonly referred
to as R-squared, is a statistical measure that quantifies
the proportion of the variance in a dependent variable
explained by one or more independent variables in a
regression model. A higher R-squared value indicates a
more accurate fit of the regression line to the data points,
with possible values ranging from 0 to 1. In a regres-
sion analysis, R-squared is a critical metric to evaluate
the model’s goodness of fit. A high R-squared value
indicates a strong correlation between the independent
and dependent variables and a good fit of the model to
the data.

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − �̂�𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − �̄�𝑖)2
(1)

where 𝑦𝑖 is observed value, �̂�𝑖is the predicted value,�̄�𝑖is the mean of 𝑦𝑖, and n is the sample size.
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4.2. Mean Absolute Error (MAE)
The average magnitude of the errors between the ob-
served and predicted values in a regression model is
measured by the statistical metric known as mean ab-
solute error (MAE). It is the mean of the absolute dif-
ferences between the values that were predicted and
observed values. The lesser the MAE, the better the
model. MAE is calculated by:

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − �̂�𝑖| (2)

where 𝑦𝑖 is observed value, �̂�𝑖is the predicted value,and
n is the sample size.
4.3. Mean Square Error (MSE)
The average of the squared discrepancies between the
predicted and observed values in a regression model
is measured by the statistical metric known as mean
square error (MSE). It is a well-liked tool for assess-
ing a model’s accuracy, particularly when working with
continuous variables. MSE is calculated by dividing the
total number of predictions by the sum of the squared
errors. It offers a way to gauge the average magnitude
of the errors, accounting for both positive and negative
errors, making it a useful tool for assessing the effec-
tiveness of regression models.

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2 (3)

where 𝑦𝑖 is observed value, �̂�𝑖is the predicted value,and
n is the sample size.
4.4. Root Mean Square Error (RMSE)
The Root Mean Square Error (RMSE) is a statistical
metric obtained by taking the square root of the Mean
Square Error (MSE) and is reported in the same units
as the dependent variable. This makes it a useful tool
for assessing the effectiveness of regression models be-
cause it offers a way to gauge the average magnitude of
the errors while also taking the scale of the dependent
variable into account.

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2 (4)

where 𝑦𝑖 is observed value, �̂�𝑖is the predicted value,and
n is the sample size.
4.5. Mean Absolute Percentage Error

(MAPE)
Mean Absolute Percentage Error (MAPE) is a statistical
metric that measures the average percentage difference

between the predicted and observed values in a regres-
sion model. Unlike other metrics such as MAE and
RMSE, MAPE is expressed as a percentage, making it
easier to interpret. MAPE is calculated by taking the
absolute difference between the predicted and observed
values and dividing it by the actual value. This value
is then multiplied by 100 to get the percentage differ-
ence. The average of these percentage differences is
then calculated to get the overall MAPE value.

𝑀𝐴𝑃𝐸 = 1
𝑛

𝑛
∑

𝑖=1

|𝑦𝑖 − �̂�𝑖|
𝑦𝑖

(5)

where 𝑦𝑖 is observed value, �̂�𝑖is the predicted value,and
n is the sample size.

5. Results and discussion
This study provides the results of total energy predic-
tions of a low-energy house using XGBoost, RF, DT,
and SVM. As described, in the previous section of eval-
uation metrics all the models were evaluated and com-
pared with each other using those metrics. The follow-
ing table shows the evaluation metrics for all the models
obtained with 70 % training and 30% testing with the
best model highlighted. Table 2 shows that the XG-
Boost model has the highest R-Square value of 0.61,
indicating that it can explain 61% of the variance in the
target variable. The model also has the lowest values
for MSE, RMSE, MAE, and MAPE, indicating that its
predictions are relatively close to the actual values. The
RF model has an R-Square value of 0.47, indicating
that it can explain 47% of the variance in the target vari-
able. The model has higher values for MSE, RMSE,
MAE, and MAPE than the XGBoost model, indicat-
ing that its predictions are less accurate. The DT and
SVM models have R-Square values of 0.34 and also
have high values for MSE, RMSE, MAE, and MAPE,
indicating that their predictions are less accurate than
the XGBoost and RF models. Also, it was observed that
tree-based models (XGBoost, RF, DT) performed better
than non-tree models (SVM). In Figure 3, the x-axis
represents the actual values of total energy consump-
tion, while the y-axis represents the predicted values
of total energy consumption. The 1:1 line represents
perfect predictions, where the predicted values match
the actual values exactly. By comparing the distribution
of predicted values against the actual values and the
1:1 line, we can assess the accuracy and precision of
the models. If the predicted values are closely aligned
with the 1:1 line, it indicates that the model is making
accurate predictions. On the other hand, if the predicted
values are scattered away from the 1:1 line, it indicates
that the model is not making accurate predictions.
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Table 2: Comparison of four ML models for energy prediction
Model R-Square MSE RMSE MAE MAPE
XGBoost 0.61 4261.97 65.28 29.81 28.55
RF 0.47 6259.55 79.11 37.28 34.25
DT 0.34 6770.01 82.28 41.18 40.51
SVM 0.34 7157.67 84.60 34.32 27.43

Figure 3: Scatter plot comparision of 4 ML models

Based on the prediction and target scatter plot, we can
conclude that XGBoost performs the best among the
four models in predicting the total energy consump-
tion of the low-energy house, with the highest R-Square
score and the lowest values for all other evaluation met-
rics.
The prediction and target plot with a 1:1 line can provide
additional evidence to support this conclusion by show-
ing that the predicted values are closely aligned with
the 1:1 line and tightly clustered around it. The superior
performance of an XGBoost model can be attributed to
several factors, including its capacity to model intricate
relationships between the features and the target vari-
able, its ability to handle missing data and outliers, and
the optimization algorithm utilized, which can effec-
tively manage large datasets. Nevertheless, it is worth
noting that the efficacy of the models will inevitably
vary depending on the characteristics of the dataset un-
der consideration.
In conclusion, the results of this study demonstrate the
effectiveness of XGBoost in predicting the total energy
consumption of a low-energy dwelling. The study pro-
vides important insights for researchers and practitioners
in the field of energy forecasting, highlighting the bene-

fits of XGBoost as a powerful and accurate regression
model.

6. Conclusion
Energy consumption prediction is a challenging task,
and accurate prediction is essential in today’s world,
where population growth and sustainability are major
concerns. Linear models are often insufficient to pro-
vide accurate estimates due to the highly complex and
nonlinear nature of energy consumption. In this study,
we investigated and compared the performance of XG-
Boost, RF, DT, and SVM in predicting the total energy
consumption of a low-energy residential building lo-
cated in Belgium.
The performance of each model was thoroughly as-
sessed using different evaluation metrics to compare and
measure their predictive abilities. Our results showed
that the ensemble ML model, XGBoost regression, pro-
vided the best energy consumption predictions with an
R-square value of 0.61, outperforming the other models
(RF, DT, and SVM). Furthermore, XGBoost regression
demonstrated higher accuracy and computational speed
compared to the other models. The RF regression model
was the second-best in predicting total energy consump-
tion.
This study adds up a stepping stone in energy consump-
tion prediction as accurate energy consumption predic-
tion can have several positive impacts across various
sectors. For instance, it can be helpful to the stakehold-
ers to have accurate estimates of energy consumption
to incorporate energy-saving measures, such as better
insulation, higher energy efficiency systems, and energy-
efficient lighting. Similarly, energy managers can use
energy consumption prediction to identify and mitigate
excessive energy usage, resulting in significant cost sav-
ings for homeowners and businesses. Moreover, policy-
makers can leverage energy consumption prediction to
develop and implement regulations and incentives that
encourage the adoption of low-energy houses and other
energy-efficient technologies. In addition, accurately
predicting energy consumption in low-energy houses
can reduce greenhouse gas emissions and other pollu-
tants associated with energy production.
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This study also highlights the importance of using non-
linear models to predict energy consumption accurately.
However, the limitation of this study includes the exclu-
sion of other weather datasets, such as solar radiation
and precipitation, which could have a significant impact
on model performance. While this study evaluated a few
ensemble non-linear ML models, it is important to note
that other ensemble non-linear ML models can be tested
for their predictive ability in energy consumption predic-
tion. Additionally, further research should be conducted
to explore the factors influencing model performance
in predicting energy consumption, which can lead to
improved model performance and robustness. These
findings have important implications for energy con-
sumption prediction and decision-making, and future
research in this area could contribute to a more sustain-
able and efficient use of energy resources.
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