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Abstract
This research work was carried out to model the excitation force imparted by water jet in the
form of Fourier series and determine the forced response of Pelton turbine unit of Khulelhani-I
hydropower analytically by developing mathematical mode. Amplitude of forced vibration
form analytical was compared with simulation result. The mathematical model was developed
by calculating the kinetic energy of disk and potential energy of both disk and shaft. Hamilton’s
principle was used to determine equation of motion and then Galerkin method was used to
determine response of the system. Fourier analysis was done to obtain the function in its exact
form. The developed methodologies were followed to find the analytical solution of Kulekhani-
I unit of 3100kW rated at 600rpm. A rigid disk (runner and bucket assembly) was situated
along end of flexible shaft with fixed support at the shaft. First five Fourier components are to
be considered in analysis for meaningful representation of forcing function. The amplitude of
vibration of Pelton turbine unit with single nozzle in Y-direction (the direction of water jet)
obtained by analytical method was closed with that obtained from the ANSYS simulation.

©JIEE Thapathali Campus, IOE, TU. All rights reserved

1. Introduction
Pelton turbine is an impulse which transform potential
energy of water into kinetic energy in form of a water
jet by which impacts and drive Pelton runner. Vibra-
tions are oscillations in mechanical dynamic systems.
Although any system can oscillate when it is forced to
do so externally, the term “vibration” in mechanical en-
gineering is often reserved for systems that can oscillate
freely without applied forces. Sometimes these vibra-
tions cause minor or critical effects on the performance
and safety of many in engineered systems. whenever an
aircraft wing vibrates, passengers in the aircraft become
uncomfortable especially when the frequencies of vi-
bration matches with natural frequencies of the human
body.
Rotors are the rotating parts having a various engi-
neering application like turbines, compressors, pumps,
fans, etc. Dynamic behavior of rotor and its compo-
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nents should be study to understand its mechanism
and failures. Rotor dynamics study the lateral/ trans-
verse(bending), longitudinal(axial) and torsional vibra-
tion of rotating shafts with the objectives of limiting the
vibration under acceptable range. Transverse is mode of
rotor dynamics associated with bending of rotor and sim-
ilarly longitudinal in the motion in axial direction and
torsional is twisting around its own axis of rotor.
In turbine system rotor and blades are subjected to ex-
treme loading conditions. Mechanical and electrical
forces are the major concerns to increase the vibrations
in hydro turbine. Dynamic response is the response of
structure under dynamic loading condition and it will
give an idea about how the system will behave under
such conditions. Thus, the behavior of rotor system can
be analyzed to some extent by studying their dynamic re-
sponse by using approximated mathematical modeling
and simulation techniques.
1.1. Literature review
Vibration that occurs under excitation of external force is
called forced vibration. When the oscillatory excitation
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is given, the system is forced to vibrate at excitation
frequency. If the frequency of excitation corresponds
with the one of the natural frequencies of the system
then resonance will occur. Hence the calculations of
natural frequencies are very important in the study of
vibration [1]
Rotor dynamics is an engineering that studies the vi-
brations of rotating shaft, with the objective to predict
the behavior of system under the vibrational condition
and the maintaining the level of vibration under an ac-
ceptable range. The vibration theory for rotor-dynamics
was first proposed by August Föppl in 1895 and sim-
ilarly Henry Homan Jeffcot in 1919. By using a sim-
plified rotor/bearing system they proposed the basic
theory on prediction of rotor vibration. This simplified
rotor/bearing system is known to be the Föppl/Jeffcot
rotor which is often used to evaluate more complex
rotor-dynamic systems [2]
Bai et al. used ANSYS finite element in their research
paper to model the main shaft system in the hydro-
turbine unit. They carried out modal analysis to cal-
culate the critical speed of rotation [3]. Egusquiza et al.
proposed a theoretical model using finite element meth-
ods (FEM) in order to simulate the dynamic behavior of
the Pelton turbine. Experimental verification was done
under that were carried out in an existing hydro-turbine
unit [4].
Rajak et al. researched on dynamic analysis of the Pel-
ton turbine to obtain the natural frequency of the sys-
tem, mathematical model was developed to calculate
the kinetic energy and the strain energy, the equations
of motion were derived using Lagrange equations and
the Rayleigh-Ritz method to study the basic phenomena
of cylindrical mode of rotor and the validation carried
out in Mechanical APDL 14.5 to obtain the critical fre-
quency [5].
Research by Panthee et al. presented the computa-
tional fluid dynamics (CFD) analysis of Pelton turbine
of Khimti Hydropower in Nepal. The runner was scaled
down by meeting IEC 60193 standard. Whole simu-
lation was performed in ANSYS-CFX. The results ob-
tained from simulation showed high pressure in splitter
and deep face of the bucket. The torque calculation was
further used to calculate the efficiency and analytical
validation of the runner [6].
Motra and Luintel carried out the research work which
was basically focused on the modeling of the Pelton
turbine unit and had covered dynamic behavior of the
centrally located rigid runner on the circular flexible
shaft, which was supported by the rigid bearings on both
ends and enabled to determine the natural frequency of
the system by using different models and compared

with the continuous system model. The unit was mod-
eled as a discrete and continuous system. Considering
the Foppl/Jeffcot rotor models and Rayleigh’s energy
method. The model for the continuous system was de-
veloped by calculating the kinetic and potential energy
of the runner buckets assembly and shaft. The gov-
erning equations were formulated by using Lagrange’s
equation and solved analytically for natural frequency
by using Rayleigh-Ritz method [7].
Karki et al. carried out the research by modeling of exci-
tation force imparted by water jet in the form of Fourier
series and determined the forced response of Pelton tur-
bine unit analytically. The mathematical model was
developed by calculating the kinetic energy and poten-
tial energy of the disk and shaft. Lagrange’s equation,
Rayleigh-Ritz method and virtual work method were
used to derive the equation of motion of forced vibration
condition. The developed methodologies were followed
to find the analytical solution of dynamic response of
selected Pelton turbine unit of 2 kW with single nozzle
rated at 1500RPM [8].
Research by Luintel and Bajrachayra present the method
to study the dynamic response of the shaft of a Pelton
turbine. Mathematical models for bending vibration
of Pelton turbine, was developed by using Lagrange
equation of motion followed by assumed modes method.
Where Pelton wheel is assumed as a rigid disk attached
on a Euler-Bernoulli shaft. The force by the water jet is
represented in the form of Fourier series [9].

2. Mathematical model
development

The mathematical model was developed by using vari-
ous equations. Equations of motion was developed by
using energy method. Hence at very first mathematical
model for finding total energy of system was derived.
Then by using Hamilton principle and Galerkin method
the equation of motion was derived for dynamic forced
response. The force imparted by water jet to bucket was
estimated and the force function was modelled in the
Fourier series. Final equation of motion for system was
solved to find the amplitude of vibration.
2.1. Total energy of system
Since bearings are considered as rigid and undamped.
The system consists of only shaft and disk. For disk
only kinetic energy (K.E) is calculated while for shaft
both kinetic and potential energy (P.E) is calculated
because it is considered as flexible element. Thus, three
reference frames will be taken into account i.e., fixed
inertial frame, frame fixed in center of disk and frame
fixed with shaft.
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2.2. Euler angles and rotational matrix
The orientation of a rigid body with respect to fixed
coordinate system is describe by using Euler angles. It
is used to relate the rotation of one frame inside another
frame of reference. There is different order of Euler
angles which transform the inertial frame XYZ to final
position of the shaft and disk. The consecutive rotation
of the same axis is not considered for the Euler angles.
The order in which the rotations is done is important.
There are several conventions for Euler angles, depend-
ing on the axes about which the rotations are carried
out. Hence twelve unique meaningful ordered sequence
of rotation exists. The twelve Euler angles conventions
are: XYX, XYZ, XZX, XZY, YXY, YXZ, YZX, YZY,
ZXY, ZXZ, ZYX, ZYZ. 3-1-2 Euler angle are used to
obtain Rotational matrix. The xyz rotated in relation
to the XYZ system according to set of angles shown in
Fig. 1. Where general orientation of cross section of
the beam element can be obtained by rotation around X
axis with angle ', then by an angle �y around new axis
y1 and subsequently by an angle �z around z2.

Figure 1: Rotational angles

Where, ! is an instantaneous angular speed which is re-
lated to coordinate system XYZ can be seen in Equation
(1).

! = '̇i + �̇yj + �̇k (1)

Where: i, j and k are the unit vector along the axis x,
y1 and z2. Equation (1) is transformed for the XYZ
coordinate system and assuming the small angles to �z,
�y will get: [10]
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2.3. The Shaft and Disk
Kinetic energy of shaft is given by sum of translator and
rotary in axial and transverse direction [10]

Ts = 1
2
�sAs ∫

L

0

(

V 2x + V
2
y + V

2
z

)

dx

+ 1
2
Jp ∫

L

0
!2x dx

+ 1
2 ∫

L

0

(

!2y + !
2
x

)

dx

(3)

For strain energy of shaft combine axial deformation
and bending can be written as below [10].

Us = 1
2 ∫

L

0

[

EA
( du
dx

)2
+ EI

(

)2v
)x2

)2

+ EI
(

)2w
)x2

)2 ]

dx

(4)

Now, kinetic energy of disk is given by:

Td =
[

1
2
MD

(

V̇ 2x + V̇
2
y + V̇

2
z

)

+ 1
2
Jpd

(

'̇ − 2'̇�̇z�y
)

+ 1
2
Jdd

(

�̇y
2 + �̇z

2
)

]

x=L

(5)

Where,
V̇ 2x + V̇

2
y + V̇

2
z = u̇2 − 2u̇v�̇zcos' − 2u̇v�̇ysin'

+ 2u̇w�̇ycos' − 2u̇w�̇zsin'

+ v̇2 + w2'̇2 − 2v̇u�̇zcos'

− 2v̇u�̇ysin' + 2v̇w'̇ + ẇ2

+ v2'̇2 − 2ẇu�̇ycos'
− 2ẇu�̇zsin' + 2ẇv'̇

2.4. Hamilton’s principle
The Hamilton’s principle expresses that the motion of
the system between a given initial configuration t0 and
a given final configuration t1 is such that it extremizes
the action integral[11].

I = ∫

t1

t0
Ldt
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Where ‘L’ is the Lagrange function which is expressed
as L = T − U where ‘T’ is kinetic energy and ‘U’ is
potential energy of system. Hence after using Hamilton
principle each term associated with �u, �v, �w, ��y, and
��z from the above equations are collected.
For u,
0 = �sAsü − �sAsv̇�̇zcos� − �sAsv�̇z�̇sin� +

�sAsv̇�̇y(cos� − sin�) − �sAsv�̈ysin� −
�sAs ̇pℎiv�̇ycos� + 2�sAsẇ�̇ycos� +
�sAsw�̈ycos�−�sAsw�̇y�̇sin�−�sAsw�̈zsin�−
�sAsw�̇z�̇cos�−EAu

′′+
[

MDü−MDv̇�̇zcos�−
MDv�̇z�̇sin� + MDv̇�̇y(cos� − sin�) −
MDv�̈ysin� −MD�̇v�̇ycos� + 2MDẇ�̇ycos� +
MDw�̈ycos� −MDw�̇y�̇sin� −MDw�̈zsin� −
MDw�̇z�̇cos�

]

�y(x − L)

For v,
0 = �sAsv̈ − �sAsu�̈zcos� + �sAsu�̇�̇zsin� −

�sAu�̈ysin� − �sAsu�̇�̇ycos� − �sAsv�̇2 +
EIV ′′′′ +

[

MDv̈−MDu�̈zcos�+MDu�̇�̇zsin�−
MDu�̈ysin� − MDu�̇�̇ycos� − MDv�̇2

]

�f (x −
L) − F (t)�f (x − L)

For w,
0 = �sAsẅ − �sAsw�̇2 − 2�sAsu̇�̇ycos� −

�sAsu�̈ycos� + �sAsu�̇�̇ysin� − �sAsu�̈zsin� −
�sAsu�̇�̇zcos� + EIw

′′′′ +
[

MDẅ −MDw�̇2 −
2MDu̇�̇ycos� − MDu�̈ycos� + MDu�̇�̇ysin� −
MDu�̈zsin� −MDu�̇�̇zcos�

]

�f (x − L)

For �y
0 = �̈y + Jp�̇�̇z − 2�sAsu̇v̇sin� − �sAsüvsin� −

�sAsu̇�̇vcos� + �sAsüwcos� − �sAsu̇w�̇sin� −
�sAsuv̈sin� − �sAsuv̇�̇cos� − �sAsuẅcos� +
�sAsuẇ�̇sin�+[Jdd �̈y+Jpd�̇�̇z−2MDu̇v̇sin�−
MDüvsin� − MDu̇�̇vcos� + MDüwcos� −
MDu̇w�̇sin� − MDuv̈sin� − MDuv̇�̇cos� −
MDuẅcos� +MDuẇ�̇sin�]�f (x − L)

For �z
0 = Jd �̈z − Jp�̇�̇y − �sAsüvcos� + �sAsu̇�̇vsin� −

�sAsüw − �sAsu̇w�̇cos� − �sAsv̈ucos� +
�sAsuv̇�̇sin� − �sAsuẅsin� − �sAsuẇ�̇cos� −
2�sAsu̇v̇cos� − 2�sAsu̇ẇsin� +

[

Jdd �̈z −
Jpd�̇�̇y −MDüvcos�+MDu̇�̇vsin�−MDüw−
MDu̇w�̇cos� − MDv̈ucos� + MDuv̇�̇sin� −
MDuẅsin� − MDuẇ�̇cos� − 2MDu̇v̇cos� −
2MDu̇ẇsin�

]

�f (x − L)

Since the above equation of motions are in non-linear
form so that we use Perturbation method for above sys-

tem equation of motion such that
ua = u0 + �u1 + �2u2 + �3x3 + ... (6)
Where � is the parameter. After solving for above equa-
tions. We get the equations of motion for 1st mode are
obtained as below.

�sAsü1 + MDü1�f (x − L) − EAsu
′′

1 = 0 (7)

�sAsv̈1 − �sAsv1'̇
2 + MDv̈1�f (x − L) −

MDv1'̇
2�f (x − L) + EIv

′′′′

1 − F (t)�f
× (x − L) = 0

(8)

�sAsẅ1 − �sAsw1'̇
2 + MDẅ1�f (x − L)

− MDw1'̇
2�f (x − L) + EIw

′′′′

1 = 0
(9)

Jd �̈z1 − Jp'̇�̇y1 + Jdd �̈z1�f (x − L) −

Jpd'̇�̇y1�f (x − L) = 0
(10)

Jd �̈y1 + Jp'̇�̇z1 + Jdd �̈y1�f (x − L) +

Jpd'̇�̇z1�f (x − L) = 0
(11)

Where, �f (x − L) is the Dirac delta function.

3. Analytical solution of system
For analytical solutions, we used Galerkin method. By
determining shape function ∅ and further calculating
residual function (R), analytical solution is obtained.
Galerkin method is expressed as:

∫

L

0
∅1Rdx = 0 (12)

For shape function Assuming the polynomial function
as,
∅1 = C0 + C1x̄ + C2x̄

2 + C3x̄
3 + C4x̄

4 (13)
Where, Calculating ∅′

1, ∅
′′

1 & ∅′′′

1 and applying the
boundary conditions;
∅(0) = ∅

′
(0) = ∅

′′
(L) = ∅

′′′
(L) = 0

We ge, the value of constants as:
C0 = 0, C1 = 0, C2 = 6, C3 = −4, C4 = 1

Substituting the values for constants in Eq.13, the mode
shave for v & w is obtained as,
∅1 = x4 − 4Lx3 + 6L2x2 (14)
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For calculating the mode shape for u, the boundary
conditions is:
u(0) = 0, at x = 0

u
′
(0) = 0, at x = L

The shape function for first mode of vibration for u is
obtained as,
∅2 = x2 − 2xL (15)
Residual function for u
R = �sAsü1(t)∅2 + MDü1(t)�f (x − L)∅2 −

EAsu1(t)∅
′′

2 (16)
Similarly, for v,
R = �sAsv̈1(t)∅1 − �sAsv1(t)Ω2∅1 +

MDv̈1(t)�f (x − L)∅1 −

MDv1(t)Ω2�1�f (x − L) +

EIv1(t)∅
′′′′

1 − F (t) �f (x − L) ∅1

(17)

Similarly, for w,
R = �sAsẅ1(t)∅1 − �sAsw1(t)Ω2∅1 +

MDẅ1(t)�f (x − L)∅1 −

MDw1(t)Ω2�f (x − L) +

EIw1(t)∅
′′′′

1

(18)

After solving we get
For U1
�sAsL

2ü1(t) + MDLü1(t) +
4
3
EAsu1(t) = 0

(19)

For V1
104
45

�sAsv̈1(t)L4 −
104
45

�sAsv1(t)Ω2L4 +

9MDv̈1(t)L3 − 9MDv1(t)Ω2L3 +
144
5
EIv1(t) − 9L3F (t) = 0

(20)

ForW1

104
45

�sAsẅ1(t)L4 −
104
45

�sAsw1(t)Ω2L4 +

9MDddotw1(t)L3 − 9MDw1(t)Ω2L3 +
144
5
EIw1(t) = 0

(21)

Solving above Eq. 14, 15 and 16 by putting all
values
�s = 7850 kg∕m3

L = 3.241m

Ω = 2�N
60

= 62.832

MD = 3.5 ton = 3500 kg

E = 200Gpa = 200 × 109 Pa

As = �d2

4
= � × 0.425

2

4
= 0.14186m2

I = �d4

64
= � × 0.425

4

64
= 1.6015 × 10−3m4

We get,
ü1(t) + 1.52 × 107u1(t) = 0 (22)

v̈1(t) + 2.8531 × 103v1(t) − 2.2589×

1 × 10−4F (T ) = 0
(23)

ẅ1(t) + 2.8531 × 103w1(t) = 0 (24)

3.1. External forced applied by jet and fourier
series representation

In Pelton turbine force exerted by water jet can be de-
termine easily. In mechanical system often excitation
forces are not harmonic function but periodic in nature.
Hence excitation force is converted to periodic function
by Fourier expansion. For calculation of forces the data
was obtained from Kulekhani-I hydropower is shown in
Table 1. Force imparted by water jet in bucket can be
given as:

Fj = �wAjV1(Vw1 + Vw2)

Where,
�w : density of water
Aj : area of water jet
V1 : velocity of water jet
Ww1 : component velocity in the direction of jet
Ww2 : component velocity in the direction of vane
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And,
Vw1 = V1

Ww1 = k(V1 − U )cos' − U

Where,
’k’ : blade friction coefficient = 0.95
’'’ : vane angle at outlet is 15deg
’U’ : circumferential velocity of runner

U =
�DwN
60

Dw : diameter of Pelton wheel equals to 1562 mm
N : rated rpm of turbine which is 600 rpm
V1 : cv

√

2gH

Cv : velocity coefficient of turbine i.e,
H : net head of turbine
Plugging in all value the force is calculated as Fj =
3311.825 KN
For Fourier series representation of the function can be
written as 25.

Figure 2: Excitation force on rotating turbine bucket

F (t) =
a0
2
+

∞
∑

n=0
(ancos!t + bnsin!t) (25)

The coefficients of the Fourier series can be found
as

a0 = 2
�
+ ∫

t2

t1
F (t)d(t)

an = 2
�
+ ∫

t2

t1
F (t)cosn!td(t)

an = 2
�
+ ∫

t2

t1
F (t)cosn!t d(t)

bn = 2
�
+ ∫

t2

t1
F (t)sinn!t d(t)

We have
t1 = 0
t2 = 39.18/1000 Ω
� = 1/19 Ω
where t1 and t2 time of hitting and leaving the bucket.
We get,
a0 = 1.488 Fj
an = 0.3183

2 Fj sin4.667n
bn = 0.3183

2 Fj [1- cos4.667n]
Hence Fourier series can be expressed as:

F (t) =
1.488Fj
2

+
∞
∑

n=1

[

0.3183
n

Fj .

sin(4.667n) cos(n!t) + 0.3183
n

Fj .

[1 − cos(4.667n)] sin(n!t)
]

(26)

Figure 3: First five Fourier resultant for all nineteen
buckets
Assuming the general solution for
v(t) = A0 + A1sin!t + A2cos!t + A3sin2!t +

A4cos2!t + A5sin3!t + A6cos3!t +
A7sin4!t + A8cos4!t + A9sin5!t +
A10cos5!t
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After solving Eq. 23 and 26 we get

v1(t) =19.546 × 10−3 + 1.753 × 10−5

sin!t − 1.6755 × 10−5cos!t+

4.1784 × 10−6sin2!t + 1.8972

× 10−7cos2!t + 5.358 × 10−7

sin3!t + 6.143 × 10−7

cos3!t + 4.2978 × 10−9

sin4!t + 1.8886 × 10−7

cos4!t + 1.640 × 10−7

sin5!t − 1.3603 × 10−7cos5!t

(27)

4. Simulation
For verification of mathematical solution simulation
work was done in ANSYS 2019R3 workbench. For sim-
ulation data for the geometry was taken from Kulekhani-
I HEP. The specifications used for geometry construc-
tion were taken from the table of parameter value of the
vertical shaft Pelton turbine unit of Kulekhani-I HEP.
After that automatic meshing was applied in ANSYS
workbench. Static structure analysis was done for time
response where one end was fixed and periodic force
was applied at the other end along Y-axis.

Figure 4: ANSYS Model

5. Result and discussion
For verification of mathematical model and comparison
with simulation work carried out in ANSYS by using the
data of Pelton turbine of Kulekhani-I HEP. The various

technical specifications for Kulekhani –I HPS used for
the research purpose are as listed in Table 1:

Table 1: parameter value from Kulekhani-I HP
Parameters Value
Output power 31000 kw
Rated rpm 600 rpm
Runner diameter tip to tip 2045 mm
Pitch circle diameter 1562 mm
Density of runner material 8050 kg/m3
Youngs modulus of runner material 195 GPa
No of buckets 19
Width of bucket 490 mm
Density of bucket material 8050 kg/m3
Weight of runner-bucket assembly 3.5 ton
Diameter of shaft 425 mm
Length of shaft 3241 mm
Density of shaft 7850 kg/m3
Youngs modulus of shaft 200 GPa

(mild steel)
Weight of shaft 4.43 ton
Diameter of nozzle 190 mm
No. of nozzle 4

For Analytical result Eq.27 was solved. Where ‘v1 (t)’is an amplitude of vibration depending upon time. As
time increases corresponding values of amplitude was
obtained. After plotting graph for those values of time
and amplitude sinusoidal curve was formed as shown in
Figure 5, thus maximum amplitude of vibration along
Y-Axis was found to be 19.567mm. From simulation

Figure 5: Amplitude vs time (along Y-axis)- analytically

corresponding values of time amplitude was obtained
in tabular data. Hence after plotting a graph sinusoidal
curve was obtained as shown in Figure 6, from which
maximum vibrational amplitude along Y-axis was found
to be 18.068mm. As we compare the graph between
analytical and simulation for each response is sinusoidal
whereas period of each graph was found to be �

5 . Maxi-
mum amplitude for Analytical solution and Simulation
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Figure 6: Amplitude vs time (along Y-axis)-ANSYS
simulation

solution was found to be 19.74mm and 18.068mm re-
spectively.

6. Conclusion
This research paper presented the methodologies to
study the dynamic response of Pelton turbine unit of
shaft disk system. The mathematical model for dynamic
response of the Pelton turbine unit was formulated and
the analytical solution of amplitude of forced vibration
was found. The Fourier analysis for the excitation force
showed the minimum number of Fourier components
to be considered to obtain the solution in its exact form.
Thus, the analysis showed the summation of first five
Fourier components began to represent the actual shape
of pressure pulse. The first five Fourier components
have been considered in analysis for meaningful repre-
sentation of a forcing function. The amplitudes of forced
vibration of the selected Pelton turbine unit nozzle rated
at 600 RPM in Y (the direction of water jet) direction
was found to be 19.567mm analytically. Similarly, the
amplitude of vibration of in Y (the direction of water
jet) direction was found to be 18.068mm by ANSYS
simulation. This methodology can be applied to find the
dynamic force response and other hydropower plants to
calculate the acceptance level of vibration analytically
and can compare the vibration level during the operation
period in long run by measuring the amplitudes using
vibration measuring devices.
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