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Abstract 
The prediction of concrete compressive strength is a crucial aspect of ensuring the structural integrity and durability of con-
struction projects. In recent years, machine learning approaches have improved upon the limitations of empirical formulas 
and laboratory testing methods for predicting concrete compressive strength. This study utilizes ensemble machine-learning 
techniques, such as Bagging, XGBoost, and Stacking models, to enhance the accuracy of concrete compressive strength 
prediction models. A five-fold cross-validation technique was applied to mitigate the problems of underfitting or overfitting 
in the regression model. Furthermore, various statistical indices were employed to compare the forecasting performance of 
these ensemble techniques. The prediction performance of this research revealed that XGBoost achieved the highest R-
squared value of 93%, followed by Stacking and Bagging regression models at 92%. Consequently, this research underscores 
the potential of ensemble techniques as valuable tools in the domain of civil engineering, paving the way for more reliable 
and efficient construction practices. 
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1. Introduction 

Concrete is one of the most used and important ma-
terials in civil engineering construction industries. 
Concrete is made with a combination of different in-
gredients namely cement, sand, and coarse aggregate. 
Additionally, water is used to create a bond between 
these ingredients. Moreover, the properties and 
workability of concrete are enhanced by using ad-
mixture. Thus, the properties and proportion of these 
parameters significantly influence concrete strength.  
The compressive strength of concrete fundamentally 
shows its inherent properties. Furthermore, the com-
pressive strength of concrete stands as a key factor 
determining the structural integrity and durability of 
various infrastructural projects [1-11]. Thus, the 
compressive strength of concrete is a critical param-
eter that influences the design, construction, and 
maintenance of various infrastructural projects, 
ranging from buildings to bridges. As a result, the 
prediction of concrete compressive strength is essen-
tial in the civil engineering construction field. 
The concrete compressive strength is often deter-
mined based on empirical formulas or laboratory 
testing [4, 5]. These laboratory methods are time-
consuming, resource-intensive, and prone to inaccu-
racies. To mitigate these limitations accurate 

prediction methods are crucial. Also, accurate pre-
diction of concrete compressive strength not only en-
sures the safety and reliability of structures but also 
optimizes material usage and construction costs. 
Thus, machine learning can be an appropriate solu-
tion to address these limitations. In the last decades, 
many researchers have worked on the application of 
robust machine learning techniques in different civil 
engineering sectors as regression and classification 
tasks [4, 12]. Additionally, researchers have focused 
on exploring various techniques to enhance the pre-
diction accuracy of concrete compressive strength 
by using machine learning (ML) techniques as well 
[5, 9, 13-17]. Among these techniques, ensemble 
learning methods have garnered significant attention 
due to their ability to combine multiple models to 
achieve superior predictive performance. However, 
most of the researchers applied single machine-
learning techniques to predict concrete compressive 
strength. Hence, the main aim of this research study 
is to establish an ensemble learning technique to pre-
dict concrete compressive strength.  

2. Ensemble Machine Learning Technique 

The ensemble machine learning technique is a pow-
erful technique that can improve the predictive per-
formance of models by leveraging the strengths of 
multiple models. This technique can apply to both 
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regression and classification problems. Fundamen-
tally this technique consists of three types such as 
Bagging, Boosting, and Stacking ensemble tech-
niques. These ensemble techniques can reduce bias 
and variation, increase model variety, and improve 
the interpretability of the final forecast of regression 
models [18].  
The short form of bootstrap aggregation is indicated 
by bagging. In this technique, the multiple models 
are trained independently, and prediction outcomes 
are combined by averaging for regression and major-
ity vote for classification. Hence, this technique 
helps to reduce overfitting, increase stability, and en-
hance the generalization capability of the model [18-
20]. In addition, Boosting is another ensemble tech-
nique that combines the prediction performance of 
weak learners in sequential order. This technique in-
itially trains base learners in the entire dataset. After 
the first model, initially, equal weights are assigned 
to each instance and adjusted after each iteration. 
Adjustments are sequentially emphasized with mis-
classified instances in previous models. Finally, after 
training all weak learners, their predictions are com-
bined, often through a weighted sum for regression 
or a weighted voting scheme for classification [18, 
20]. Furthermore, the stacking ensemble technique 
fundamentally consists of two main layers namely 
base models and meta-models [18, 20, 21]. In this 
study, different machine learning models such as 
support vector machine (SVM), random forest (RF), 
decision tree (DT), k-nearest neighbor (KNN), bag-
ging, boosting, logistic regression, etc. are used as 
base models, where predictions are made on the 
same training dataset. The predictions of base mod-
els are used as input for the meta-model. After that, 
the final ensemble prediction is established by com-
bining the best prediction outcomes from different 
base models. Thus, this stacking technique shows 
better prediction performance capability, and high 
flexibility in model diversity acceptance in compar-
ison with a single model. 

3. Prediction Model Development 

This research involved gathering 776 sets of data on 
concrete compressive strength from various past 
studies [9-11, 13-16, 22-31]. The concrete compres-
sive strength (CS) was predicted by taking different 
input variables namely cement (C), sand (S), coarse 
aggregate (CA), water (W), and curing time (T). Ad-
ditionally, fly ash (FA) and superplasticizer were 
also selected as input variables. These input param-
eters significantly influence the prediction perfor-
mance of the target variable. Table 1 outlines the sta-
tistical breakdown of these datasets. After the 

selection of these input and target parameters, firstly 
all dataset was precisely preprocessed with data 
cleaning, correlation analysis, data distribution, and 
rescaling. Afterward, the preprocessed dataset was 
split into training and testing sets of 80 % and 20 %, 
respectively. After that, the selected model was tarin 
with corresponding optimal hyperparameters. The 
optimal hypermeters of all models were established 
by using the grid search method with a 5-fold cross-
validation (CV) method. After that, the train perfor-
mance of regression models was validated by using 
a testing set. The outcomes were evaluated by using 
different statistical indicators presented in section 
3.6. If the outcomes are not in satisfactory range, 
then tune selected hyperparameters. In contrast, if 
prediction outcomes are in satisfactory range, then 
compare these results and establish a final prediction 
regression model. Figure 1 presents the detailed re-
search methodology that is used in this research 
work.  

 

Figure 1: Schematic flowchart for ensemble technique 
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Table 1: Statistical indices of selected features 

  Mean Std Min 25% 50% 75% Max 

C 300.2 98.27 134.7 218.9 290.1 372 540 

W  182.1 17.96 140 168.2 186 192.9 238.6 

S 765.7 148.1 0 734.9 780.5 830 1820 

CA 1026.9 142.4 410 966 1028.4 1086.8 1385.2 

FA  69.6 63.54 0 0 97 124.8 200.1 

SP  4.6 5.33 0 0 3.7 9.4 28.2 

T  31.4 27 1 14 28 28 100 

CS  30.9 13.4 6.27 20.4 29.8 39.8 79.9 

 

3.1 Data Correlation Analysis 

In this study, the correlation between selected input 
features and target variables was evaluated by using 
the Pearson correlation coefficients method. In this 
analysis, the range of correlation lies between -1 to 
1. The high negative value is revealed with -1 value 
and vice versa. Figure 2 shows that compressive 
strength is positively correlated with cement (C), su-
perplasticizer (SP), and curing time (T) with values 
of 0.29, 0.14, and 0.54, respectively. That means 
compressive strength is increased with an increase in 
the quantity of these ingredients.  

 

Figure 2: Correlation between input parameters and tar-
get variable 

On the other hand, this compressive strength is neg-
atively correlated with water content (W), sand (S), 
coarse aggregate (CA), and fly ash (FA) with values 
of 0.33, 0.14, 0.09, and 0.01, respectively. Thus, the 
compressive strength of concrete will decrease with 
use of these ingredients. Eventually, this correlation 
analysis underscores the importance of these param-
eters in accurately forecasting concrete compressive 

strength. Thus, all selected parameters were consid-
ered for further analysis. 

3.2 Data Distribution 

Figure 3 presents the visualization and distribution 
of the selected dataset in a combined form of a box-
whisker plot and violin plot. The Figure shows the 
statistical ranges of the dataset with its central ten-
dency and occurrence of outliers. It seems some fea-
tures namely water (W), sand (S), coarse aggregate 
(CA), curing time (T), and compressive strength 
(CS) have some outliers. In the machine learning re-
gression model, the removal of outliers increases the 
performance of the model, in contrast, this removal 
may increase uncertainty in the real construction 
field.  

 

Figure 3: Data distribution in box-whisker and violin 
plot 

Thus, the presence of outliers is selected in this re-
search analysis. In addition, the Figure reveals the 
probability of occurrence by the density curve. It 
seems the compressive strength of the selected 
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dataset mostly occurred in a range of 20 MPa to 40 
MPa. In contrast, compressive strength with a value 
above 70 MPa occurs less. In summary, highly dense 
values are indicated by a wider section, and less oc-
curred values are indicated with a narrow range in 
the violin plot. Hence, data distribution illustrates the 
presence of data conditions. 

3.3 Data Normalization 

The selected data sets in this research study contain 
different scales in input parameters presented in Ta-
ble 1. Thus, rescaling is essential to keep the uniform 
scale in all parameters. In addition, the presence of 
outliers is considered for further regression analysis. 
In this perspective, min-max normalization was ap-
plied for rescaling and to maintain a uniform scale in 
selected parameters. The following equation (1) was 
used for rescaling. 
Xn = (X – Xmin)/ (Xmax – Xmin)        (1) 
Where X represents the actual value of selected pa-
rameters, Xn represents rescaled values. Addition-
ally, Xmax and Xmin correspond to the maximum 
and minimum values of each input feature, respec-
tively. 

3.4 Hyper-Parameters Tuning 

In this research, firstly the range of hyperparameters 
was selected by using the grid search method. After 
that, a 5-fold cross-validation technique was adopted 
to check performance and tune the optimal hyperpa-
rameters. Table 2 demonstrates the summary of op-
timal hyperparameters used in this research. 

Table 2: Hyperparameters in selected ML regression 
model 

Model Optimal Hyperparameter 

SVM 'C': 50.0, 'gamma': 'scale', 'kernel': 'rbf' 

DT 
criterion='mse', max_depth=20, max_fea-
tures='sqrt', min_samples_leaf=1, 
min_samples_split=2, splitter='random' 

KNN 'n_neighbors': 5, 'p': 1, 'weights': 'distance' 

RF 
random_state=42, max_depth=20, 
max_features='sqrt', min_samples_leaf=1, 
min_samples_split=2, n_estimators=100 

XGBoost 
colsample_bytree=1, gamma=1, learn-
ing_rate=0.1, max_depth=5, n_estima-
tors=200, subsample=0.8 

Bagging 
bootstrap=True, bootstrap_features=False, 
max_features=1.0, max_samples=1.0, 
n_estimators=50 

 
For the stacking ensemble classifier, its hyper-pa-
rameters were established based on the optimization 
results of the base models it comprises. These opti-
mal hyper-parameters were then employed to 

configure each regression model before training the 
model. Additionally, apart from the optimized hy-
per-parameters, the remaining initialization hyper-
parameters for each base and meta-regression model 
were set to their default values as defined in the 
Scikit-learn libraries. 

3.5 Base And Meta-Model Selection 

In the stacking ensemble technique, base models 
were selected namely decision tree (DT), support 
vector machine (SVM), random forest (RF), k-near-
est neighbor (KNN), XGBoost, and Bagging. The 
optimal hypermeters of all these base regression 
models were established by using grid search 
method with a 5-fold cross-validation (CV) method. 
Subsequently, prediction outcomes of these base 
models were utilized for further analysis via optimal 
meta-model. Equally, these base models were uti-
lized as meta-models, and outcomes of these meta-
models were compared, and the final optimal meta-
model was established. After that, the prediction out-
comes of base models were used as features to train 
the optimal meta-model. Figure 4 illustrates the per-
formance of each selected meta-model. Output re-
sults indicated that the random forest (RF) shows the 
best results as compared to others. The model shows 
the value of R2 and mean squared error as 0.88, and 
22.06, respectively. These results are good as com-
pared to other meta-models. Thus, this model was 
used as a meta-model in this study for further analy-
sis of the stacking ensemble regression model. 

 

Figure 4: Meta-model results comparison 

3.6 Performance Evaluation Statistical Indica-
tors 

In machine learning regression analysis, the output 
performance of regression analysis has been evalu-
ated by using different statistical indicators. These 
indicators help researchers, data scientists, and ana-
lysts understand how well their models are perform-
ing on unseen data. Thus, these statistical indicators 
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are crucial for assessing the effectiveness and accu-
racy of predictive models. In this research, the fol-
lowing equations (2) to (9) were applied to evaluate 
the effectiveness of model hyperparameters, the per-
formance of the regression model, and in comparing 
different regression models. Eventually, these met-
rics demonstrate the effectiveness of the stacking en-
semble technique over other base models. 

R-squared (R2)  

=  1 − ୱ୳୫ ୭ ୱ୯୳ୟ୰ୣୢ ୰ୣ୰ୣୱୱ୧୭୬ (ୗୗୖ)
ୱ୳୫ ୭ ୱ୯୳ୟ୰ୣୢ ୲୭୲ୟ୪ (ୗୗ)       (2) 

Mean Absolute Error (MAE)  

= ଵ
୬

∑ หy୧
ୟ − y୧

୮ห୬
୧ୀଵ              (3) 

Mean Squared Error (MSE) 

 =  ଵ
୬

∑ ൫y୧
ୟ − y୧

୮൯ଶ୬
୧ୀଵ             (4) 

Root Mean Squared Error (RMSE) 

 = ටଵ
୬

∑ ൫y୧
ୟ − y୧

୮൯ଶ୬
୧ୀଵ            

 (5) 
Relative Root Mean Squared Error (RRMSE)  

= ඨଵ
୬

∑ ൬୷
ି୷

౦

୷
 ൰

ଶ
୬
୧ୀଵ             

 (6) 
Mean Absolute Percentage Error (MAPE)  

= ଵ
୬

∑ ฬ୷
ି୷

౦

୷
 ฬ୬

୧ୀଵ *100%           (7) 

Mean Relative Error (MRE)  

= ଵ
୬

∑ ฬ୷
ି୷

౦

୷
 ฬ୬

୧ୀଵ               (8) 

Variance Accounted For (VAF)  

= 1 − ฬ୴ୟ (୷
ି୷

౦)
୴ୟ୰(୷

) ฬ*100%          (9) 

4. Results and Discussion 

In this study, Bagging, XGBoost, and Stacking en-
semble learning models were analyzed with optimal 
hyperparameters. These hyperparameters were es-
tablished by the Grid search method with fivefold 

cross-validation techniques. In the case of the Stack-
ing ensemble regression model, the final meta-model 
was established with the performance of different 
optimized base models. Thus, in this study, the RF 
model was used as a meta-model. The outcomes of 
each ensemble model are described in the following 
sections. 

4.1 Bagging Ensemble Model 

The Bagging ensemble model was analyzed with op-
timal hyperparameters presented in Table 2. The out-
put results are presented in Figure 5 and Figure 6. In 
Figure 5, predicted results are indicated by blue lines, 
and actual values of concrete compressive strengths 
are represented by black lines. Predicted results of 
the Bagging model exhibit good fitting with actual 
values. 

 

Figure 5: Bagging regression model forecasted out-
comes comparison with actual compressive strength 

Additionally, this model reveals a good correlation 
between the actual values and outcomes of 
forecasted results, which is presented in Figure 6. 
This model shows an R-squared value of 0.92, which 
indicates that this model has good forecasting 
capabilities. Moreover, other statistical indices are 
presented in Table 3. 

 

Figure 6: Correlation between Bagging regression model 
forecasted outcomes with actual strength 
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4.2 Boosting Ensemble Model 

Boosting is a robust ensemble technique widely used 
for regression and classification problems. In this 
study, the XGBoost ensemble model was analyzed 
with optimal hyperparameters, which are presented 
in Table 2. In addition, the output results of this 
model are presented in Figure 7 and Figure 8. In Fig-
ure 7, predicted results are indicated by a pink line, 
and actual values of concrete compressive strengths 
are represented by a black line. These results reveal 
that this ensemble model exhibits good prediction 
capabilities for forecasting the concrete compressive 
strength.  

 

Figure 7: XGBoost regression model forecasted out-
comes comparison with actual concrete compressive 

strength  

Additionally, this model reveals a good correlation 
between the actual values and outcomes of 
forecasted results, which is presented in Figure 8. 
This model shows an R-square value of 0.93, which 
indicates that this model has good forecasting 
capabilities. Moreover, other statistical indices are 
presented in Table 3. 

 

Figure 8: Correlation between XGBoost forecasted out-
comes with actual compressive strength 

4.3 Stacking Ensemble Model 

In this study, the Stacking ensemble model was ana-
lyzed with different base models and RF meta-mod-
els with their optimal hyperparameters. These hy-
perparameters are presented in Table 2. In addition, 
the output results of this stacking ensemble regres-
sion model are presented in Figure 9 and Figure 10. 
In Figure 9, predicted results are indicated by the 
green line, and actual values of concrete compres-
sive strengths are represented by the black line. 
These results reveal that this Stacking ensemble 
model exhibits good prediction capabilities for fore-
casting the concrete compressive strength.  

 

Figure 9: Stacking regression model forecasted outcomes 
comparison with actual compressive strength 

Additionally, this model reveals a good correlation 
between the actual values and outcomes of 
forecasted results, which is presented in Figure 10. 
This model shows R-square value of 0.92, which 
indicates that this model has good forecasting 
capabilities. Moreover, other statistical indices are 
presented in Table 3. 

 

Figure 10: Correlation between Stacking regression 
model forecasted outcomes with actual compressive 

strength 
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4.4 Results Comparison 

The prediction output results were comprehensively 
demonstrated in comparison with the actual results 
in the above section. These comparisons depicted 
that ensemble machine learning techniques have 
good fitting to predict the compressive strength of 
concrete. The detailed statistical parameters of each 
ensemble regression model are presented in Table 3. 
In this Table, the R2 values of ensemble regression 
models range from 0.92 to 0.93, which means en-
semble models have good prediction performance 
capabilities. In addition, in this table, it was observed 
that the R2 and VAF values of XGBoost reveal good 
prediction results as compared to the Stacking and 
Bagging ensemble regression model. Furthermore, 
the Table reveals that the prediction errors in 
XGBoost are also less as compared to other regres-
sion models.  

Table 3: Regression model forecasted outcomes compari-
sons with their statistical indices  

Regression 
model/Indices 

Bag-
ging 

XGBoost 
Stack-
ing 

R2 0.92 0.93 0.92 

VAF (%)   91.86 93.25 91.99 

MAE 2.52 2.31 2.57 

MSE 13.61 11.29 13.41 

RMSE 3.69 3.36 3.66 

RRMSE 0.11 0.10 0.11 

MAPE 8.46 7.44 8.49 

MRE -0.15 0.06 -0.03 

5. Conclusions 

In this study, different ensemble techniques namely 
Bagging, XGBoost, and Stacking were selected to 
predict the compressive strength of concrete. For this 
purpose, 776 number of datasets were collected from 
previously published research papers. The output re-
sults of these ensemble techniques show good pre-
dictive capability. In addition, prediction results es-
tablish a good correlation with the testing dataset. 
The comparison results of R2 and VAF depict that 
the XGBoost has the highest values of 0.93, and 
93.25 %, followed by Stacking with values of 0.92, 
and 91.99%, and Bagging with values of 0.92, and 
91.86 %, respectively. In case of errors, the 
XGBoost has a minimum error in comparison with 
other Sacking and Bagging models. Eventually, it 
concludes that the XGBoost ensemble exhibits good 
prediction results as compared other two ensemble 
models. 

Therefore, this research presented that ensemble 
techniques significantly improve the prediction per-
formance as compared to the individual non-ensem-
ble regression models. In comparison with all en-
semble techniques, the XGBoost shows a good pre-
diction capability to predict concrete compressive 
strength. Thus, this technique might be applicable to 
forecast concrete strength in real construction field 
and further research work as well.  
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