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Abstract 

Air pollution, particularly fine Particulate Matter (PM 2.5), poses significant health risks and environmental challenges 

worldwide. Therefore, it is essential to monitor air pollution to act on it. In this study, PM 2.5 was estimated using 

meteorological data and Sentinel-5P air pollution data using machine learning algorithms. The Sentinel-5P data are   

and the meteorological data utilized are air temperature, Relative Humidity (RH), and Wind Speed (WS). The three Air 

Quality Monitoring (AQM) stations in Kathmandu, Nepal, were chosen as a study area for this research. The effective-

ness of several machine learning methods, such as K-Nearest Neighbors (KNN), Support Vector Machine (SVM), eX-

treme Gradient Boosting (XGBoost), and Random Forest (RF), were evaluated. Both RF and XGBoost consistently 

performed better than SVM and KNN in terms of PM 2.5 estimation accuracy. RF got the highest R2 value of 0.80 and 

SVM with the lowest R2 value of 0.62 in the Sentinel-5P dataset only. The addition of meteorological data further im-

proved the model's performance. After including metrological data in Sentinel-5P data the RF demonstrated the maxi-

mum R2 score of 0.816 and XGBoost with R2 score of 0.814. Hence, this study demonstrated machine learning algo-

rithms can be used to estimate PM 2.5 by utilizing satellite and meteorological data, providing important information 

for air quality monitoring and management.  
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1. Introduction 

Air pollution is a serious environmental problem that 
affects human health and the environment worldwide. 
PM2.5 refers to fine particulate matter and has a diam-
eter of 2.5 micrometers or smaller. PM 2.5 is a tiny 
particle suspended in the air that can come from a va-
riety of sources like construction, industrial work, 
forest fires, dust, and so on. Exposure to PM2.5 has 
been linked to a range of health problems, particularly 
respiratory and cardiovascular issues. When people 
are exposed to high levels of PM2.5 for an extended 
period, it can cause or worsen respiratory diseases 
such as asthma, bronchitis, and other chronic obstruc-
tive pulmonary diseases (COPD). Additionally, it may 
increase the risk of heart attacks, strokes, birth defects 
and premature death [1]. 
One of the most common and accurate methods for 
monitoring air quality is through air quality monitor-
ing stations. However, measurements are only availa-
ble in the surrounding area of the stations [2]. Through 
air 

quality monitoring, air pollutant concentration data are 
obtained to determine whether the concentration levels 
are good, unhealthy for sensitive groups, or at emer-
gency levels. Due to the high personnel, infrastructure, 
and financial demands associated with their establish-
ment, operation, and maintenance, these stations are 
dispersed widely [3].  
On the other hand, air quality monitoring is also con-
ducted nowadays by utilizing geospatial and remote 
sensing techniques to gather air quality data over large 
areas. It is convenient to use the satellite remote sens-
ing data information inference method because of the 
widespread remote sensing satellite coverage, large 
area synchronized observation that can be performed 
in a short amount of time, handy and quick access to 
the real-time global range of all kinds of natural phe-
nomena, and efficiency of the PM2.5 measurement [4-
5]. Air quality data is either directly obtained from 
sensors on various satellite platforms or derived from 
satellite images using regression analysis or dispersion 
models. As computer technology advances, machine 
learning techniques are being used extensively to pre-
dict PM2.5 concentrations. Classical machine learning 
methods using decision trees, random forests, support 
vector machines, and artificial neural networks have 
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demonstrated good predictive ability for PM2.5 con-
centrations [6-7]. To estimate PM2.5 concentrations, 
machine learning methods often combine several data 
sources, such as meteorological, air pollution, spatio-
temporal, land use, and satellite remote sensing infor-
mation [8]. 
The level of particle air pollution in Nepal frequently 
ranks among the worst in the world. Nepal was ranked 
177th out of 180 nations in 2016 and was ranked 162 
in the 2022 Environmental Performance Index (EPI) 
for air pollution [9]. Air quality monitoring in Nepal is 
conducted through ground monitoring station data reg-
ulated by the Department of Environment under the 
Ministry of Forests and Environment. According to 
the Department of Environment of Nepal, 27 air qual-
ity monitoring stations measure the following signifi-
cant parameters: PM1, PM2.5, PM10, and Total Sus-
pended Particulates (TSP) [10]. Some of the limita-
tions of these ground stations are limited coverage, 
spatial variability, and expensive and complex equip-
ment. These few stations are not well sufficient for 
measuring air quality throughout the country. How-
ever, the technique of using satellite remote sensing to 
estimate air pollution concentrations has the benefit of 
being highly effective and inexpensive [11]. 

1.1 Related works 

Based on the data source, the related works can be 
classified into three groups. The methods in the first 
group used the historical PM readings from the 
ground-based air quality monitoring stations for PM 
estimation. Several machine learning algorithms linear 
regression, K-neighbors, decision tree, RF, gradient 
boosting, CNN, and LSTM were used, to estimate the 
PM value in the current day or future days [12-13]. In 
addition to the PM measurements from the available 
stations, the second group uses satellite-derived data 
such as aerosol optical depth (AOD). Moreover, 
several studies have included meteorological 
data (temperature, humidity, wind speed, etc.) 
[14-15]. In the third group, instead of using the satel-
lite-derived products, the satellite images are directly 
used [16]. However, only a few studies have used air 
pollutant concentrations (SO2, CO, NO2, and O3) for 
PM 2.5 computations [17].   
The proposed study is one of the first in Nepal to di-
rectly estimate PM2.5 concentrations using Sentinel-
5P pollution data. One of the worst affected areas in 
Nepal is the Kathmandu Valley, located in the mid-
hills of Nepal at a latitude of 27.7◦N and a longitude of 
85.3◦E. Most of the studies regarding air pollution in 
Kathmandu Valley are based on air pollution stations 
and satellite-derived products (AOD) [18]. The use of 

AOD and other atmospheric products has some diffi-
culties such as computational burden and uncertainties 
due to aerosol model selection and cloud screening 
schemes. AOD products have coarse spatial resolu-
tions which make them a good candidate for monitor-
ing of global distribution of aerosols on large scales 
and wide coverage. However, the AOD products are 
not capable to estimate PM 2.5 concentration in 
smaller area. The purpose of this study is to develop 
low-computing and simple machine-learning models 
for the estimation of PM 2.5 concentration. It uses free 
Sentinel-5P pollution data to estimate PM in small ar-
eas, such as cities. 
The proposed study offers several key contributions. 
Since there are fewer air quality monitoring stations 
in Nepal and most of the stations are not operating 
properly, this study will help enhance the analysis of 
the near-ground PM2.5 pollution situation. It will 
also be helpful to estimate the ground-level PM 2.5 
using satellite images where there is no availability 
of ground-level AQM stations. Rather than using 
AOD products, Sentinel-5P air pollution data is di-
rectly used. We compared the effectiveness of vari-
ous machine learning models on Sentinel-5P da-
tasets, both with and without metrological data. 

2. Materials and Method  

2.1 Study Area 

For this study, we have selected Kathmandu, Nepal, 
as our study area. There are seven air quality moni-
toring stations located around the Kathmandu Val-
ley: in Dhulikhel, Ratnapark, Sankhapark, Bhaisep-
ati, Pulchowk, Bhaktapur, and Kirtipur. The research 
locations and PM 2.5 monitoring sites in Kathmandu 
are shown in Figure 1.  

 

Figure 1: AQM stations used for this research 



  

Thapa and Devkota                                                Journal of Engineering and Sciences 3(1) 2014 

76 

 

2.2 Datasets 

The dataset used in this study includes air pollution 
data from the Sentinel-5P satellite, PM2.5 along with 
meteorological factors and data from ground stations. 
Two datasets were created based on ground stations, 
as shown in Table 1. Dataset 1 contains Ratnapark 
station data, while Dataset 2 consists of three stations 
(Ratnapark, Shankapark, and Pulchowk) data.  

Table 1. Description of dataset 1 and dataset 2 

.2.2.1 Ground station AQM data 

Daily average PM 2.5 data were collected from the 
Department of Environment office located at Forest 
Complex, Babarmahal, Kathmandu [19]. AQM Data 
from Ratnapark, Shankhapark, and Pulchowk sta-
tions were used in this study. Table 2 shows the sum-
mary of AQM station data and the overall total data 
that was used, excluding the missing value. 

Table 2. Summary of AQM station data 

2.2.2 Metrological data 

To check the performance and effectiveness of PM 
2.5 estimation with and without metrological da-
tasets, the minimum and maximum meteorological 
data, such as air temperature, RH and WS, were used. 
These data sets were obtained from the Department 
of Hydrology and Meteorology, Babarmahal, Kath-
mandu, Nepal, following the completion of the met-
rological data request payment procedure [20]. 

 

2.2.3 Satellite data 

Sentinel-5P is the first mission of the Copernicus air 
pollution control program. Sentinel-5P can be used 
to detect gases such as NO2, SO2, CH4, HCHO, AI, 
CO and O3.  
Google Earth Engine (GEE) has been used by sev-
eral researchers for Air Pollutants (AP) retrieval [21-
22]. GEE is a cloud-based platform developed by 
Google for planetary-scale for analyzing environ-
mental data. It provides a huge collection of satellite 
imagery, geospatial datasets, and computational ca-
pabilities that helps to visualize, analyze, and pro-
cess remote sensing data for a wide range of appli-
cations. Therefore, AP retrieval from the Sentinel-5P 
satellite has been done in this study using GEE. 

2.3 Methodology 

Data on NO2, SO2, CH4, HCHO, AI, CO, and O3 pol-
lutant levels from Sentinel-5P air pollution were re-
trieved using GEE. The GEE platform was used to 
extract Sentinel-5P air pollution data, providing a 
strong toolkit for accessing and processing satellite 
imagery. To begin the extraction process, a region of 
interest (ROI) was defined. This defines the geo-
graphic area from which the data were gathered. The 
Sentinel-5P dataset was filtered based on the speci-
fied ROI, date range, and desired pollutants. The se-
lected bands were then aggregated by calculating the 
mean value for each band across all available images 
within the dataset over the specific time period. Ad-
ditionally, the dataset was clipped to the ROI to re-
tain only the data relevant to the study area. Finally, 
the processed data was exported in CSV format. 
Data preprocessing was done on the gathered data 
from Sentinel-5P, AQM stations, and meteorologi-
cal sources, as shown in Figure 2. 

2.3.1 Data preprocessing 

To enable temporal analysis and modeling, the date 
values in the date column of the gathered datasets 
were transformed into a standard date format that in-
cluded the day, month, and year. Missing values in 
the datasets were handled using linear interpolation 
techniques to fill in the gaps and ensure continuity in 
the data [23]. This approach effectively addresses 
missing data issues while preserving the temporal 
and spatial integrity of the datasets. 
 

 

Dataset 1 

 

Ratnapark 

station 

Sentinel-5P only 

Sentinel-5P and metro-

logical data 

 

Dataset 2 

Ratnapark, 

Shankapark, 

Pulchowk 

station 

Sentinel-5P only 

Sentinel-5P and metro-

logical data 

Station Latitude, 

Longitude 

Time Pe-

riod 

Overall 

data ac-

cessibility 

Ratnapark 27.7, 

85.31 

2019-1-1 

to 2021-

12-31 

886 

Shanka-

park 

27.7328252, 

85.342826 

2019-2-12 

to 

2020-5-10 

601 

Pulchowk 27.682581, 

85.318841 

2019-1-1 

to 2020-2-

20 

415 
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Figure 2: Methodology used for the estimations of PM 2.5 

2.3.2 Algorithm selection 

In this study, we have used four different algorithms, 
RF, SVM, XGBOOST and KNN. RF is a part of the 
ensemble learning techniques, which improve pre-
diction performance by combining several models. 
To do regression tasks, RF builds a large number of 
decision trees during training and outputs the aver-
age prediction of each tree [24].  SVM works by 
finding the optimal hyperplane that best separates 
the data points into different classes or predicts con-
tinuous values. It accomplishes this by maximizing 
the margin between the hyperplane and the nearest 
data points (support vectors) [25]. XGBoost belongs 
to the ensemble learning category and is based on the 
gradient boosting framework. It combines the pre-
dictions of multiple weak models to create a  
stronger, more accurate model. XGBoost em-
ploys a technique called tree boosting, where de-
cision trees are added one at a time and their pre-
dictions are combined with the predictions of 
previously added trees [26].  
KNN is based on the principle that similar data 
points tend to have similar target values. In 
KNN, the prediction for a new data point is 
made based on the majority class (for classifica-
tion) or the average of the values of its k nearest 
neighbors (for regression) in the feature space 
[27].  

2.3.3 Hyperparameter Tuning 

Hyperparameters play an important role in determin-
ing the complexity, flexibility, and generalization 
ability of the model. In this study, we have used grid 
search cross-validation for hyperparameter tuning 

[28]. It involves systematically searching through a 
specified parameter grid and evaluating each combi-
nation of hyperparameters to identify the optimal 
configuration. One of the main features of grid 
search CV is its extensive search capability and sim-
plicity.  

Table 3: Best hyperparameters for Dataset 1 and Dataset2 

Algo-

rithms 

Best Hyperparam-

eters (Dataset 1) 

Best Hyperparam-

eters (Dataset 2) 

RF 'max_depth': None 

'min_samples_split':

 2 

'n_estimators': 200 

 

'max_depth': 10 

'min_samples_split':

 2 

'n_estimators': 100 

 

XGBO

OST 

learning_rate': 0.3 

max_depth': 7 

n_estimators': 500 

 

learning_rate': 0.01 

max_depth': 5 

n_estimators': 1000 

 

SVM C=10 

epsilon=0.5 

gamma='auto' 

 

C=10 

epsilon=0.2 

gamma='auto'  

KNN metric='manhattan' 

n_neighbors=3 

weights='distance' 

 

metric='manhattan' 

n_neighbors=3 

weights='distance' 

 

 

3. Results and Discussion 

This study used evaluation metrics like the coeffi-
cient of determination (R2) and Root Mean Square 
Error (RMSE). The dataset was divided into two 
parts, with 80% allocated for model training and 
20% reserved for testing. 
In this section, the PM 2.5 modeling performances 
of RF, XGBoost, KNN, and SVM are compared. The 
performance of these models on the Ratnapark sta-
tion dataset 1 is presented in Table 4. The first model 
performance was evaluated on Sentinel-5P data only, 
and after that, it was again evaluated on Sentinel-5P 
data, including metrological data.  
The results reveal that RF and XGBoost demon-
strated superior performance compared to SVM and 
KNN. Across both, RF performed slightly better 
than the others. In Sentinel-5P data only, the RF ob-
tained R2 and RMSE of 0.82 and 13.17, respectively, 
whereas including metrological data in Sentinel AP 
data, R2 and RMSE were 0.75 and 15.60, respec-
tively. The results of dataset 1 indicated that SVM 
performed poorly, with the lowest R2 values of 0.62 
and 0.67 and the highest RMSE values of 19.38 and 
18.07. Additionally, the addition of meteorological 
data in dataset 1 appears to have a significant effect 
on model performance.  
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Table 4. Model performance on Ratnapark dataset 1 with 

and without metrological data 

To see the model performance on datasets of differ-
ent locations, Dataset 2 was prepared by combining 
three station data sets (Ratnapark, Shankapark, and 
Pulchowk). The model's performance was evaluated 
on Sentinel-5P air pollution data with and without 
metrological data. The performance of the model on 
dataset 2 is shown in Table 5. In Sentinel-5P data 
only, RF showed the lowest RMSE of 11.68, 
whereas after including the metrological data, RF 
showed the lowest RMSE of 11.36, indicating better 
accuracy in predicting PM2.5 concentrations.  
Table 5. Model performance on dataset 2 with and without 

metrological data 

In dataset 2, for both cases of including and exclud-
ing metrological data with Sentinel-5P data, RF 
achieved the highest R2 score of 0.816, indicating a 
good fit of the model to the data. XGBoost showed 
competitive performance with the RF in both cases. 
SVM had the highest RMSE values among all algo-
rithms in both cases, indicating lower accuracy and 
larger errors in predictions. Also, SVM achieves rel-
atively lower R2 and RMSE scores compared to RF, 
XGBoost and KNN, suggesting a poorer fit of the 
model to the data. Overall, RF had the best perfor-
mance across most metrics for both cases, followed 

by XGBoost and KNN, while SVM performed rela-
tively poorly.  
From the Table 4 result, it is seen that, when metro-
logical data were added to dataset 1, the model per-
formance seemed to have slightly declined. We have 
only used RH, wind speed, and temperature because 
other meteorological data such as wind direction, 
cloud cover, precipitation, and air pressure are not 
available from DOHM, Nepal. The model's perfor-
mance might have been impacted in some way by 
the exclusion of these data. The linear interpolation 
method was used to handle the missing values; it 
may introduce some level of uncertainty or error in 
the data, especially if there are large gaps between 
observations. Also, in the combined dataset, the 
larger number of actual values available may help 
mitigate the impact of missing data. Additionally, 
having data from multiple stations may provide more 
robust and representative information about the un-
derlying patterns and relationships in the data  
[29]. As we increased the dataset by combining three 
AQM stations (Ratnapark, Shankapark, and Pul-
chowk) data in dataset 2, the result of Table 5 shows 
that the model performance improved after including 
the metrological data. The average change in R2 and 
RMSE values across all algorithms is +0.032 and -
0.77, respectively, indicating an overall improve-
ment in model performance on dataset 2 compared 
to dataset 1. It was seen that the size of the dataset 
had a great impact on the model performance.  
With the help of the AQI breakpoint table presented 
in Table 6, a further analysis was carried out to figure 
out if the actual and expected levels of the Air Qual-
ity Index (AQI) would be identical based on the es-
timated PM2.5 values obtained. By looking at the re-
sults shown in Table 7, it is seen that our model can 
also be used to determine the AQI level. The pre-
dicted PM 2.5 value is in the same AQI category as 
the actual PM 2.5 category. 
Table 6. AQI breakpoint table by US Environmental Pro-

tection Agency (EPA) [30] 

PM 2.5 

(µg/m³) 

AQI 
AQI category 

0.0 - 12.0 0 - 50 Good 

12.1 - 35.4 51 - 100 Moderate 

35.5 - 55.4 101 - 150 Unhealthy for 

Sensitive 

Groups 

55.5 - 150.4 151 - 200 Unhealthy 

150.5 - 250.4 201 - 300 Very Un-

healthy 

250.5 - 500.4 301 - 400 Hazardous 

 

Algorithm Sentinel-5P Sentinel-5P and 

metrological data 

R2 RMSE R2 RMSE 

RF 0.82 

 

13.17 0.75 

 

15.60 

 

XGBOOS

T 

0.80 

 

13.83 

 

0.74 

 

15.98 

 

SVM 0.62 19.38 0.67 

 

18.07 

 

KNN 0.74 

 

16.10 

 

0.80 

 

14.05 

 

Algo-

rithm 

Sentinel-5P Sentinel-5P and 

metrological data 

R2 RMSE R2 RMSE 

RF 0.80 

 

11.68 0.816 

 

11.36 

 

XGBOO

ST 

0.79 

 

11.93 

 

0.814 

 

11.43 

 

SVM 0.62 16.17 0.67 

 

15.12 

 

KNN 0.67 

 

15.08 

 

0.72 

 

13.87 
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Table 7. AQI level analysis based on predicted PM 2.5 

PM 2.5 

(Actual) 

AQI Level 

(Actual) 

PM 2.5 

(Predicted) 

AQI Level 

(Pre-

dicted) 

12.7 Moderate 15.63 Moderate 

64.51958 Unhealthy 64.33551 Unhealthy 

83.64704 Unhealthy 81.72928 Unhealthy 

45.77664 

 

Unhealthy 

for sensitiv-

ity groups 

39.62779 Unhealthy 

for sensi-

tivity 

groups 

3.2 Limitations of the Study 

One limitation of the study is the availability of Sen-
tinel-5P data from Google Earth Engine (GEE), 
which started in 2018. Additionally, data from air 
quality monitoring (AQM) stations showed incon-
sistencies due to device malfunctions. Consequently, 
the models were trained using limited datasets, 
which may not provide sufficient information for ro-
bust machine learning (ML) model training. Future 
work should focus on increasing the datasets and ad-
dition of other metrological data and relevant fea-
tures. Additionally, checking the performance of 
deep learning algorithms could be a promising direc-
tion for further work. 

4. Conclusion 

This study illustrated the use of Sentinel-5P air pol-
lution data and metrological data for the estimation 
of PM 2.5 using machine learning techniques. Our 
findings confirm that air pollution data obtained 
from Sentinel-5P can be used for the estimation of 
PM 2.5. Taking advantage of satellite data and a 
cloud platform like GEE is the most cost-effective 
and efficient method for AP retrieval. Over the four 
machine learning algorithms used, the performance 
of RF was found to be superior with the R2 of 0.81 
and RMSE of 11.36, while the performance of SVM 
was found to be the worst in all the scenarios. This 
study also confirmed that the addition of metrologi-
cal data had a significant impact on model perfor-
mances, and it was observed that there was an im-
provement in model performance after adding the 
metrological data. This study concludes that ade-
quately trained machine learning models, utilizing 
sufficient data, hold promise for accurately estimat-
ing PM 2.5 levels at local scales. The integration of 
Sentinel-5P air pollution data and meteorological 
data presents an economically feasible solution, par-
ticularly in regions such as Nepal, where the estab-
lishment and maintenance costs of traditional air 
quality monitoring stations are costly. 
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