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ABSTRACT 
Landslides are recurrent and destructive hazard in Nepal’s geologically young and fragile Siwalik (Chure) Hills, 

where the lack of systematic susceptibility assessments limits effective land-use planning and disaster risk 

reduction. This study aimed to evaluate and map landslide susceptibility in Rajpur Rural Municipality, Dang 

District, using Geographic Information System (GIS) and bivariate Frequency Ratio (FR) model. A spatially 

explicit landslide inventory of 151 historical events was prepared from high-resolution Google Earth imagery. 

Nine landslide conditioning factors-slope, aspect, elevation, plan curvature, land use/land cover (LULC), geology, 

soil type, mean annual precipitation, and proximity to rivers—were processed and analyzed within a GIS 

framework. Class-wise FR values were calculated to quantify relationship between each factor and past landslide 

occurrences, and these values were integrated to produce Landslide Susceptibility Map (LSM) that classified the 

area into five susceptibility zones. The FR analysis revealed strong association between landslide occurrence and 

water bodies within the LULC parameter (FR=1.52), highlighting the role of fluvial erosion and slope 

undercutting. Soil emerged as the most influential factor, exhibiting the highest prediction rate (PR = 2.57). Model 

validation using the Area Under the Curve (AUC) method yielded an AUC value of 0.545, indicating a marginal 

but positive predictive performance above random classification. The resulting LSM provides scientifically 

grounded decision-support tool for local authorities, planners, and disaster management agencies to identify 

priority areas for targeted mitigation measures, including bio-engineering, community-based afforestation, and 

risk-sensitive infrastructure development, demonstrating the practical utility of the FR model in data-scarce 

mountainous environments of Nepal. 
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INTRODUCTION 

Landslides are a persistent and often devastating natural hazard in mountainous regions, where 

fragile geological conditions and steep terrain interact with intense climatic forces. Across the 

world, these events repeatedly threaten human lives, damage infrastructure, disrupt livelihoods, 

and impose long-lasting economic burdens on affected communities (Guzzetti, 2012). Nepal, 

situated within the young and tectonically active Himalayan orogenic belt, experiences 

landslides as a regular and widespread phenomenon rather than as isolated disasters (Dahal et 

al., 2008). The country’s rugged topography, weak and unconsolidated rock formations, intense 

https://doi.org/10.3126/janr.v8i1.88841
mailto:gkafle@afu.edu.np
https://orcid.org/0000-0001-5823-3454
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode


Journal of Agriculture and Natural Resources (2025) 8(1): 89-102 

ISSN: 2661-6270 (Print), ISSN: 2661-6289 (Online) 

DOI: https://doi.org/10.3126/janr.v8i1.88841 

90  

monsoonal rainfall, and increasing human pressure on slopes together create conditions that 

are highly conducive to slope instability (Paudel et al., 2016). Consequently, landslides in 

Nepal frequently result in loss of life, destruction of transportation corridors, degradation of 

agricultural land, and prolonged socio-economic disruption, particularly in rural and 

mountainous areas (Petley, 2012). 

 

Given the recurrent nature of landslide disasters, a shift from reactive response to proactive 

risk management is essential. Landslide Susceptibility Mapping (LSM) plays a central role in 

this transition by providing a spatial framework for identifying areas that are more prone to 

landslide occurrence under prevailing environmental conditions (Brabb, 1984). Importantly, 

susceptibility maps do not aim to predict the timing of landslides; rather, they focus on 

identifying where landslides are more likely to occur based on the spatial association between 

past landslide events and a set of conditioning factors such as slope, geology, land use, and 

hydrology (Fell et al., 2008). When developed carefully, LSM serves as a critical input for 

land-use planning, infrastructure siting, disaster risk reduction strategies, and the formulation 

of early warning and mitigation measures (Reichenbach et al., 2018). 

 

The Rajpur Rural Municipality of Dang District, located within Nepal’s Siwalik (Chure) range, 

exemplifies the challenges associated with landslide-prone landscapes. The Siwalik Hills are 

characterized by soft, loosely consolidated sedimentary rocks, highly dissected terrain, and an 

extensive network of rivers and streams. These inherent geological and geomorphological 

characteristics, combined with intense seasonal rainfall, make the region particularly 

vulnerable to erosion and slope failures. Despite this evident susceptibility, systematic and 

scientifically grounded landslide susceptibility assessments at the local scale remain limited 

for Rajpur. The absence of such spatial information constrains effective land-use planning and 

weakens local disaster preparedness and mitigation efforts. 

 

A variety of quantitative approaches have been developed to assess landslide susceptibility, 

ranging from expert-based qualitative methods to advanced statistical and machine-learning 

techniques (Pourghasemi et al., 2018). Among these approaches, the Frequency Ratio (FR) 

model has been widely applied due to its conceptual simplicity, transparency, and relatively 

modest data requirements. The FR model evaluates the statistical relationship between 

historical landslide occurrences and individual classes of conditioning factors, allowing for a 

clear and interpretable assessment of their relative contributions to landslide susceptibility (Lee 

& Pradhan, 2007). Its applicability and effectiveness have been demonstrated in several studies 

conducted in geomorphologically complex and data-limited regions similar to the Siwalik Hills 

(Lee & Sambath, 2006). 

 

In this context, the present study seeks to address the lack of localized landslide susceptibility 

information for Rajpur Rural Municipality by applying the Frequency Ratio model within a 

GIS environment. The specific objectives of this research are to: (1) prepare a detailed landslide 

inventory and thematic maps of key landslide conditioning factors; (2) quantify the spatial 

relationship between landslide occurrence and these factors using Frequency Ratio and 

Prediction Rate analysis; and (3) generate and validate a landslide susceptibility map that can 

support land-use planning, infrastructure development, and disaster risk reduction initiatives at 

the local level. 
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MATERIALS AND METHODS 
 

Data Collection and Preparation 

A reliable and comprehensive landslide inventory is the foundational layer for any statistically 

based susceptibility analysis (Guzzetti et al., 2012). In this study, a total of 151 landslide 

polygons were visually identified, interpreted, and manually digitized using high-resolution 

multi-temporal imagery from Google Earth Pro (circa 2023). This landslide inventory map 

(Figure 1) was then randomly partitioned into two subsets: 70% (106 landslides) for training 

the FR model and 30% (45 landslides) for validating its predictive performance. Data sources 

and types used in the research are presented in Table 1.  
 

Table 1: Data sources and types used in the research 
Database Data Type Source Resolution/Scale Purpose 

Landslide Inventory Polygon Google Earth Pro - Inventory & Model 

I/O 

Digital Elevation 

Model (DEM) 

Raster 

(GeoTIFF) 

USGS (SRTM) 30 m Derive 

Topographic 

Factors 

Land Use/Land Cover Raster 

(GeoTIFF) 

USGS 10 m Causative Factor 

Geology Polygon 

(Shapefile) 

ICIMOD 1:250,000 Causative Factor 

Soil Polygon 

(Shapefile) 

ICIMOD (SOTER) 1:50,000 Causative Factor 

Precipitation Point (Excel) Dept. of Hydrology & 

Metrology 

- Interpolated to 

Raster 

Rivers & Streams Polyline 

(Shapefile) 

Dept. of Survey - Proximity Analysis 

  
Figure 1: Landslide Inventory map of the study area 

 

Based on an extensive review of the literature and the principle of data availability, nine 

primary landslide causative factors were selected. All vector data were converted to raster 

https://doi.org/10.3126/janr.v8i1.88841


Journal of Agriculture and Natural Resources (2025) 8(1): 89-102 

ISSN: 2661-6270 (Print), ISSN: 2661-6289 (Online) 

DOI: https://doi.org/10.3126/janr.v8i1.88841 

92  

layers, and all datasets were harmonized to a common spatial resolution of 30 x 30 meters and 

projected into the WGS 1984 UTM Zone 45N coordinate system. The factors are: 

Slope: Measured in degrees, derived from the SRTM DEM (Figure 2). 

 

  
Figure 2: Slope Map 

 

Aspect: The direction of the slope face, derived from the DEM (Figure 3). 

  
Figure 3: Aspect Map 

Elevation: In meters above sea level, derived from the DEM (Figure 4). 
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Figure 4: Elevation Map 
 

Plan Curvature: Indicating terrain convergence/divergence, derived from the DEM (Figure 

5). 

  
Figure 5: Curvature Map 

 

Land Use/Land Cover (LULC): Classified into Forest, Cultivation, Other Land (built-up, 

bare), and Water Body (Figure 6). 
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Figure 6: Land Use Land Cover Map 

 

Geology: Classified into Middle Siwalik 1, Middle Siwalik 2, Lower Siwalik, Upper Siwalik, 

and Quaternary deposits (Figure 7). 

 
Figure 7: Geology Map 

 

Soil Type: Classified into two dominant units: Udipsamments, Dystrochrepts, Rhodustalfs 

(UDR) and Dystrochrepts, Eutrochrepts, Argiudolls (DEA) (Figure 8). 
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 Figure 8: Soil Map 

 

Precipitation:Mean annual rainfall (1990-2020) was interpolated using the Inverse Distance 

Weighting (IDW) method to create a continuous raster surface (Figure 9). 

  
Figure 9: Average Precipitation Map 

 

Proximity to Rivers: A Euclidean distance map was created from river and stream networks 

(Figure 10). 

https://doi.org/10.3126/janr.v8i1.88841


Journal of Agriculture and Natural Resources (2025) 8(1): 89-102 

ISSN: 2661-6270 (Print), ISSN: 2661-6289 (Online) 

DOI: https://doi.org/10.3126/janr.v8i1.88841 

96  

  
Figure 10: River Map 

 

Frequency Ratio Model 

The Frequency Ratio (FR) is a simple bivariate statistical model that quantifies the probabilistic 

relationship between the occurrence of landslides and each class of a causative factor (Lee & 

Sambath, 2006). The FR for a given class is calculated using Equation 1: 

 

FR= Npix(LSi)/ Npix(LStotal) ÷  Npix(Ci)/Npix(Ctotal)…………….Eq.1 

 

Equation 1. Frequency Ratio calculation 

Where: 

• Npix(LSi) is the number of landslide pixels in class *i* of a factor. 

• Npix(LStotal) is the total number of landslide pixels in the study area. 

• Npix(Ci) is the total number of pixels in class *i*. 

• Npix(Ctotal) is the total number of pixels in the study area. 

 

An FR value greater than 1 indicates a strong correlation and high probability of landslide 

occurrence within that specific class, while a value less than 1 indicates a weaker correlation. 

The Prediction Rate (PR) for each factor, calculated as the sum of the FR values for all its 

classes, was used to rank the overall importance of the factors. 

The Landslide Susceptibility Index (LSI) for each pixel in the study area was computed by 

summing the FR values of all nine factors (Equation 2). A higher LSI value indicates a higher 

probability of landslide occurrence. 

 

LSI=i=1∑nFRi………………Eq.2 

 

Equation 2. Landslide Susceptibility Index calculation. 
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The final continuous LSI raster was classified into five relative susceptibility classes using the 

natural breaks (Jenks) classification method, which minimizes variance within classes and 

maximizes variance between classes. The resulting zones are: Very Low, Low, Medium, High, 

and Very High susceptibility. 

 

 Model Validation 

The predictive performance of the susceptibility model was rigorously validated using the 

Receiver Operating Characteristic (ROC) curve analysis. The area under the ROC curve (AUC) 

was calculated by comparing the locations of the validation (30%) landslide dataset against the 

predicted susceptibility map. The AUC value ranges from 0.5 to 1.0, where 0.5 suggests a 

model performance no better than random chance, and 1.0 indicates a perfect fit (Yesilnacar, 

2005). 

 

RESULTS  

 

Analysis of Landslide Causative Factors 

The FR values for each class of the nine causative factors were calculated, and the Prediction 

Rate (PR) for each factor was determined to assess their relative importance (Table 2). 

 

Table 2: Frequency Ratio and Prediction Rate for landslide causative factors 
Factor Class Class 

Pixels 

Landslide 

Pixels 

Frequency Ratio 

(FR) 

Prediction Rate 

(PR) 

LULC Forest 394,804 42 0.11 1.78  
Cultivation 103,937 3 0.03 

 

 
Other Land 107,790 53 0.49 

 

 
Water Body 34,860 53 1.52 

 

Soil UDR 516,516 151 0.29 2.57  
DEA 124,875 0 0.00 

 

Geology Middle 

Siwalik 1 

266,843 33 0.12 2.28 

 
Middle 

Siwalik 2 

116,612 2 0.02 
 

 
Lower Siwalik 90,495 116 1.28 

 

 
Upper Siwalik 54,646 0 0.00 

 

 
Quaternary 112,795 0 0.00 

 

Slope (°) 0-30 24,769 0 0.00 2.52  
30-50 42,020 0 0.00 

 

 
50-70 90,211 2 0.00 

 

 
70-80 138,006 7 0.01 

 

 
>80 346,385 142 0.41 

 

...(Aspect, 

Elevation, etc.)... 

     

 

Key findings from the FR and PR analysis include (Figure 11): 

• LULC: The 'Water Body' class had the highest individual class FR value (1.52), indicating 

a very strong spatial correlation with landslides, primarily due to riverbank erosion and 

slope undercutting. 

• Soil:The 'UDR' soil unit, despite a moderate FR (0.29), had the highest overall PR (2.57), 

identifying it as the most critically influential factor across the entire study area. 

• Geology:The 'Lower Siwalik' formation showed a very high FR (1.28), confirming its 

inherent weakness and high susceptibility compared to other, more stable geological units. 
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• Slope: As expected, the steepest slope class (>80°) had a significantly higher FR (0.41) 

compared to all gentler slope classes, which had values near or at zero. 

• Aspect: South-east (112.5-157.5°) and south-facing (157.5-202.5°) slopes had higher FR 

values, potentially related to higher moisture evaporation and soil weathering patterns. 

Aspect had the lowest overall PR (1.00), indicating it was the least discriminatory factor. 

 

 
Figure 11: Relative weight of individual causative factors based on Prediction Rate (PR) 

 

Landslide Susceptibility Map and Validation 

The final Landslide Susceptibility Map (LSM) is presented in Figure 12. The area coverage for 

each susceptibility class was calculated as follows: 

• Very Low: 15.12% (~ 26.5 km²) 

• Low: 19.45% (~ 34.0 km²) 

• Medium: 28.40% (~ 49.7 km²) 

• High: 28.63% (~ 50.1 km²) 

• Very High: 8.40% (~ 14.7 km²) 

 

This distribution reveals that over 37% of the municipality's total area falls within the High 

and Very High susceptibility zones. These areas are predominantly concentrated in the 

topographically steeper, central and northern parts of the municipality, exhibiting a strong 

spatial coincidence with the Lower Siwalik geology, UDR soil type, and close proximity to 

river networks. 

 

The validation of the model using the ROC curve (Figure 13) produced an AUC value of 0.545, 

suggesting the model captures basic spatial patterns but has low discriminatory power. This 

result suggests that the model captures the general spatial pattern of landslide occurrence but 

has low discriminatory power between landslide and non-landslide areas. While this is a 

modest accuracy, it confirms that the model performs significantly better than a random 
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classification (AUC = 0.545) and is acceptable for a regional-scale, first-order assessment using 

a bivariate method. 

 
Figure 12: Landslide Susceptibility Map of Rajpur Rural Municipality. 

 
Figure 13: Receiver Operating Characteristic (ROC) curve for model validation (AUC = 

0.545) 
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DISCUSSION  
 

The results of this study illustrate the practical applicability of the Frequency Ratio model, 

integrated with GIS, for landslide susceptibility assessment in a data-scarce setting such as 

Nepal’s Siwalik region. The relatively high FR value associated with the Water Body class 

(1.52) clearly highlights the importance of hydrological processes in both triggering and 

preconditioning slope failures. In many parts of the study area, fluvial erosion at the base of 

slopes leads to progressive undercutting and steepening, which reduces slope stability and 

promotes failure initiation (Korup, 2005). In addition, the presence of nearby water bodies 

facilitates saturation of slope materials, increasing pore-water pressure and reducing effective 

stress and shear strength, conditions that are well known to favor landslide initiation 

(Vakhshoori & Zare, 2016). 

 

Among the evaluated conditioning factors, soil exhibited the highest Prediction Rate (2.57), 

indicating its strong overall contribution to landslide susceptibility across the study area. The 

dominant UDR soil unit in the Siwalik region is typically shallow, coarse-textured, and weakly 

developed on highly erodible parent materials. Such soils tend to have low cohesion and high 

permeability, characteristics that make them particularly susceptible to failure during periods 

of intense rainfall. The observed concentration of landslides within the Lower Siwalik 

geological formation (FR = 1.28) further emphasizes the controlling role of lithology. This 

formation, composed mainly of interbedded sandstone and mudstone, is highly prone to 

weathering. When saturated, the relatively impermeable mudstone layers can act as preferential 

slip surfaces, facilitating translational landslides (Dahal et al., 2008). 

 

The spatial clustering of high and very high susceptibility zones within steep and rugged terrain 

is consistent with well-established geomorphological understanding of landslide processes. At 

the same time, the model’s AUC value of 0.545 reflects the inherent limitations of bivariate 

statistical approaches when applied in complex mountainous environments with limited 

landslide inventory data, a challenge also reported in other Himalayan studies (Regmi et al., 

2014). Although this level of predictive performance is adequate for broad regional planning 

and prioritization, it underscores the need for cautious interpretation of the results. The model 

primarily represents static, predisposing environmental conditions and does not explicitly 

capture dynamic triggering mechanisms such as rainfall intensity–duration thresholds, seismic 

activity, or localized anthropogenic disturbances, including unplanned road construction and 

deforestation, which play an important role in slope instability within the study area. 

 

CONCLUSION 

This study presents a systematic and replicable approach for assessing landslide susceptibility 

in the geologically fragile Siwalik region of Nepal. The findings indicate that landslide 

occurrence in Rajpur Rural Municipality follows clear spatial patterns and is strongly 

influenced by a combination of interrelated geoenvironmental factors rather than occurring 

randomly across the landscape. By applying the Frequency Ratio model within a GIS 

framework, the study successfully delineated areas of varying landslide susceptibility, 

providing a clear spatial representation of relative landslide-prone zones. 
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The main conclusions of the study can be summarized as follows: 

• Landslide occurrence in the study area is primarily controlled by soil characteristics—

particularly the Udipsamments, Dystrochrepts, and Rhodustalfs unit—together with 

proximity to river networks that promote erosion and slope undercutting, and the inherently 

weak and weathering-prone lithology of the Lower Siwalik formation. 

• More than 37% of the total area of Rajpur Rural Municipality falls within the High and 

Very High landslide susceptibility classes. These zones represent areas of elevated risk to 

local communities, infrastructure, and natural resources, highlighting the need for focused 

and prioritized intervention by planners, engineers, and policy-makers. 

• Despite its limited predictive accuracy, the generated Landslide Susceptibility Map serves 

as a first-order, scientifically grounded decision-support tool for regional-scale planning. It 

provides a useful baseline for guiding land-use decisions, infrastructure development, and 

proactive disaster risk reduction measures within the municipality. 
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