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ABSTRACT

Landslides are recurrent and destructive hazard in Nepal’s geologically young and fragile Siwalik (Chure) Hills,
where the lack of systematic susceptibility assessments limits effective land-use planning and disaster risk
reduction. This study aimed to evaluate and map landslide susceptibility in Rajpur Rural Municipality, Dang
District, using Geographic Information System (GIS) and bivariate Frequency Ratio (FR) model. A spatially
explicit landslide inventory of 151 historical events was prepared from high-resolution Google Earth imagery.
Nine landslide conditioning factors-slope, aspect, elevation, plan curvature, land use/land cover (LULC), geology,
soil type, mean annual precipitation, and proximity to rivers—were processed and analyzed within a GIS
framework. Class-wise FR values were calculated to quantify relationship between each factor and past landslide
occurrences, and these values were integrated to produce Landslide Susceptibility Map (LSM) that classified the
area into five susceptibility zones. The FR analysis revealed strong association between landslide occurrence and
water bodies within the LULC parameter (FR=1.52), highlighting the role of fluvial erosion and slope
undercutting. Soil emerged as the most influential factor, exhibiting the highest prediction rate (PR = 2.57). Model
validation using the Area Under the Curve (AUC) method yielded an AUC value of 0.545, indicating a marginal
but positive predictive performance above random classification. The resulting LSM provides scientifically
grounded decision-support tool for local authorities, planners, and disaster management agencies to identify
priority areas for targeted mitigation measures, including bio-engineering, community-based afforestation, and
risk-sensitive infrastructure development, demonstrating the practical utility of the FR model in data-scarce
mountainous environments of Nepal.
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INTRODUCTION

Landslides are a persistent and often devastating natural hazard in mountainous regions, where
fragile geological conditions and steep terrain interact with intense climatic forces. Across the
world, these events repeatedly threaten human lives, damage infrastructure, disrupt livelihoods,
and impose long-lasting economic burdens on affected communities (Guzzetti, 2012). Nepal,
situated within the young and tectonically active Himalayan orogenic belt, experiences
landslides as a regular and widespread phenomenon rather than as isolated disasters (Dahal et
al., 2008). The country’s rugged topography, weak and unconsolidated rock formations, intense
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monsoonal rainfall, and increasing human pressure on slopes together create conditions that
are highly conducive to slope instability (Paudel et al., 2016). Consequently, landslides in
Nepal frequently result in loss of life, destruction of transportation corridors, degradation of
agricultural land, and prolonged socio-economic disruption, particularly in rural and
mountainous areas (Petley, 2012).

Given the recurrent nature of landslide disasters, a shift from reactive response to proactive
risk management is essential. Landslide Susceptibility Mapping (LSM) plays a central role in
this transition by providing a spatial framework for identifying areas that are more prone to
landslide occurrence under prevailing environmental conditions (Brabb, 1984). Importantly,
susceptibility maps do not aim to predict the timing of landslides; rather, they focus on
identifying where landslides are more likely to occur based on the spatial association between
past landslide events and a set of conditioning factors such as slope, geology, land use, and
hydrology (Fell et al., 2008). When developed carefully, LSM serves as a critical input for
land-use planning, infrastructure siting, disaster risk reduction strategies, and the formulation
of early warning and mitigation measures (Reichenbach et al., 2018).

The Rajpur Rural Municipality of Dang District, located within Nepal’s Siwalik (Chure) range,
exemplifies the challenges associated with landslide-prone landscapes. The Siwalik Hills are
characterized by soft, loosely consolidated sedimentary rocks, highly dissected terrain, and an
extensive network of rivers and streams. These inherent geological and geomorphological
characteristics, combined with intense seasonal rainfall, make the region particularly
vulnerable to erosion and slope failures. Despite this evident susceptibility, systematic and
scientifically grounded landslide susceptibility assessments at the local scale remain limited
for Rajpur. The absence of such spatial information constrains effective land-use planning and
weakens local disaster preparedness and mitigation efforts.

A variety of quantitative approaches have been developed to assess landslide susceptibility,
ranging from expert-based qualitative methods to advanced statistical and machine-learning
techniques (Pourghasemi et al., 2018). Among these approaches, the Frequency Ratio (FR)
model has been widely applied due to its conceptual simplicity, transparency, and relatively
modest data requirements. The FR model evaluates the statistical relationship between
historical landslide occurrences and individual classes of conditioning factors, allowing for a
clear and interpretable assessment of their relative contributions to landslide susceptibility (Lee
& Pradhan, 2007). Its applicability and effectiveness have been demonstrated in several studies
conducted in geomorphologically complex and data-limited regions similar to the Siwalik Hills
(Lee & Sambath, 2006).

In this context, the present study seeks to address the lack of localized landslide susceptibility
information for Rajpur Rural Municipality by applying the Frequency Ratio model within a
GIS environment. The specific objectives of this research are to: (1) prepare a detailed landslide
inventory and thematic maps of key landslide conditioning factors; (2) quantify the spatial
relationship between landslide occurrence and these factors using Frequency Ratio and
Prediction Rate analysis; and (3) generate and validate a landslide susceptibility map that can
support land-use planning, infrastructure development, and disaster risk reduction initiatives at
the local level.
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MATERIALS AND METHODS

Data Collection and Preparation

A reliable and comprehensive landslide inventory is the foundational layer for any statistically
based susceptibility analysis (Guzzetti et al., 2012). In this study, a total of 151 landslide
polygons were visually identified, interpreted, and manually digitized using high-resolution
multi-temporal imagery from Google Earth Pro (circa 2023). This landslide inventory map
(Figure 1) was then randomly partitioned into two subsets: 70% (106 landslides) for training
the FR model and 30% (45 landslides) for validating its predictive performance. Data sources
and types used in the research are presented in Table 1.

Table 1: Data sources and types used in the research

Database Data Type Source Resolution/Scale  Purpose
Landslide Inventory Polygon Google Earth Pro - Inventory & Model
1/0
Digital Elevation Raster USGS (SRTM) 30m Derive
Model (DEM) (GeoTIFF) Topographic
Factors
Land Use/Land Cover  Raster USGS 10m Causative Factor
(GeoTIFF)
Geology Polygon ICIMOD 1:250,000 Causative Factor
(Shapefile)
Soil Polygon ICIMOD (SOTER) 1:50,000 Causative Factor
(Shapefile)
Precipitation Point (Excel)  Dept. of Hydrology & - Interpolated to
Metrology Raster
Rivers & Streams Polyline Dept. of Survey - Proximity Analysis
(Shapefile)
Landslide Inventory Map }N\

Legend

Il Landside Invertory
[ Rajapur Rural Municipaity

20
—— Kilometers

Figure 1: Landslide Inventory map of the study area

Based on an extensive review of the literature and the principle of data availability, nine
primary landslide causative factors were selected. All vector data were converted to raster
91
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layers, and all datasets were harmonized to a common spatial resolution of 30 x 30 meters and
projected into the WGS 1984 UTM Zone 45N coordinate system. The factors are:
Slope: Measured in degrees, derived from the SRTM DEM (Figure 2).
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Figure 2: Slope Map

Aspect: The direction of the slope face, derived from the DEM (Figure 3).
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Figure 3: Aspect Map
Elevation: In meters above sea level, derived from the DEM (Figure 4).
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Figure 4: Elevation Map

Plan Curvature: Indicating terrain convergence/divergence, derived from the DEM (Figure
5).
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Figure 5: Curvature Map

Land Use/Land Cover (LULC): Classified into Forest, Cultivation, Other Land (built-up,
bare), and Water Body (Figure 6).

93


https://doi.org/10.3126/janr.v8i1.88841

Journal of Agriculture and Natural Resources (2025) 8(1): 89-102
ISSN: 2661-6270 (Print), ISSN: 2661-6289 (Online)
DOI: https://doi.org/10.3126/janr.v8i1.88841

RSVE 219UE 2150E 220vE 2250 2WUE
1 1 it 1 1 1

Land Use Land Cover Map A

rsgr

Legend LULC 2023

- Forest

[ cutivation
- Other Land
B Water Body

¢ [ Rajapur Rural Municipaiity o 25 5 10 15 :

T T T T T T
@svE 820TE s 22wvE wsoe wNoE

Figure 6: Land Use Land Cover Map

Geology: Classified into Middle Siwalik 1, Middle Siwalik 2, Lower Siwalik, Upper Siwalik,
and Quaternary deposits (Figure 7).
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Figure 7: Geology Map

Soil Type: Classified into two dominant units: Udipsamments, Dystrochrepts, Rhodustalfs
(UDR) and Dystrochrepts, Eutrochrepts, Argiudolls (DEA) (Figure 8).
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Figure 8: Soil Map

Precipitation:Mean annual rainfall (1990-2020) was interpolated using the Inverse Distance
Weighting (IDW) method to create a continuous raster surface (Figure 9).
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Figure 9: Average Precipitation Map
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Proximity to Rivers: A Euclidean distance map was created from river and stream networks
(Figure 10).
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Figure 10: River Map

Frequency Ratio Model

The Frequency Ratio (FR) is a simple bivariate statistical model that quantifies the probabilistic
relationship between the occurrence of landslides and each class of a causative factor (Lee &
Sambath, 2006). The FR for a given class is calculated using Equation 1:

FR= Npix(LSi)/ Npix(LStotar) + Npix(Ci)/Npix(Crotar) ... ....vevne... Eq.1

Equation 1. Frequency Ratio calculation

Where:

Npix(LSi) is the number of landslide pixels in class *i* of a factor.
Npix(LStotal) is the total number of landslide pixels in the study area.
Npix(Ci) is the total number of pixels in class *i*.

Npix(Ctotal) is the total number of pixels in the study area.

An FR value greater than 1 indicates a strong correlation and high probability of landslide
occurrence within that specific class, while a value less than 1 indicates a weaker correlation.
The Prediction Rate (PR) for each factor, calculated as the sum of the FR values for all its
classes, was used to rank the overall importance of the factors.

The Landslide Susceptibility Index (LSI) for each pixel in the study area was computed by
summing the FR values of all nine factors (Equation 2). A higher LSI value indicates a higher
probability of landslide occurrence.

LSI=i=13NFRI..c.oveeeree. Eq.2

Equation 2. Landslide Susceptibility Index calculation.
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The final continuous LSI raster was classified into five relative susceptibility classes using the
natural breaks (Jenks) classification method, which minimizes variance within classes and
maximizes variance between classes. The resulting zones are: Very Low, Low, Medium, High,
and Very High susceptibility.

Model Validation

The predictive performance of the susceptibility model was rigorously validated using the
Receiver Operating Characteristic (ROC) curve analysis. The area under the ROC curve (AUC)
was calculated by comparing the locations of the validation (30%) landslide dataset against the
predicted susceptibility map. The AUC value ranges from 0.5 to 1.0, where 0.5 suggests a
model performance no better than random chance, and 1.0 indicates a perfect fit (Yesilnacar,
2005).

RESULTS
Analysis of Landslide Causative Factors
The FR values for each class of the nine causative factors were calculated, and the Prediction

Rate (PR) for each factor was determined to assess their relative importance (Table 2).

Table 2: Frequency Ratio and Prediction Rate for landslide causative factors

Factor Class Class Landslide Frequency Ratio  Prediction Rate
Pixels Pixels (FR) (PR)
LULC Forest 394,804 42 0.11 1.78
Cultivation 103,937 3 0.03
Other Land 107,790 53 0.49
Water Body 34,860 53 1.52
Soil UDR 516,516 151 0.29 2.57
DEA 124,875 0 0.00
Geology Middle 266,843 33 0.12 2.28
Siwalik 1
Middle 116,612 2 0.02
Siwalik 2
Lower Siwalik 90,495 116 1.28
Upper Siwalik 54,646 0 0.00
Quaternary 112,795 0 0.00
Slope (°) 0-30 24,769 0 0.00 2.52
30-50 42,020 0 0.00
50-70 90,211 2 0.00
70-80 138,006 7 0.01
>80 346,385 142 0.41
...(Aspect,

Elevation, etc.)...

Key findings from the FR and PR analysis include (Figure 11):

e LULC: The 'Water Body' class had the highest individual class FR value (1.52), indicating
a very strong spatial correlation with landslides, primarily due to riverbank erosion and
slope undercutting.

e Soil:The 'UDR' soil unit, despite a moderate FR (0.29), had the highest overall PR (2.57),
identifying it as the most critically influential factor across the entire study area.

e Geology:The 'Lower Siwalik' formation showed a very high FR (1.28), confirming its
inherent weakness and high susceptibility compared to other, more stable geological units.
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e Slope: As expected, the steepest slope class (>80°) had a significantly higher FR (0.41)
compared to all gentler slope classes, which had values near or at zero.

e Aspect: South-east (112.5-157.5°) and south-facing (157.5-202.5°) slopes had higher FR
values, potentially related to higher moisture evaporation and soil weathering patterns.
Aspect had the lowest overall PR (1.00), indicating it was the least discriminatory factor.

Weight of Individual Factors

0 4 ¢ % 5 &

Aspect Elevation {m) LULC Rainfall Geology Slope (Degree) Soil

g PR === PR "1‘."E:ght
Figure 11: Relative weight of individual causative factors based on Prediction Rate (PR)

Landslide Susceptibility Map and Validation

The final Landslide Susceptibility Map (LSM) is presented in Figure 12. The area coverage for
each susceptibility class was calculated as follows:

e Very Low: 15.12% (~ 26.5 km?)

Low: 19.45% (~ 34.0 km?)

Medium: 28.40% (~ 49.7 km?)

High: 28.63% (~ 50.1 km?)

Very High: 8.40% (~ 14.7 km?)

This distribution reveals that over 37% of the municipality's total area falls within the High
and Very High susceptibility zones. These areas are predominantly concentrated in the
topographically steeper, central and northern parts of the municipality, exhibiting a strong
spatial coincidence with the Lower Siwalik geology, UDR soil type, and close proximity to
river networks.

The validation of the model using the ROC curve (Figure 13) produced an AUC value of 0.545,
suggesting the model captures basic spatial patterns but has low discriminatory power. This
result suggests that the model captures the general spatial pattern of landslide occurrence but
has low discriminatory power between landslide and non-landslide areas. While this is a
modest accuracy, it confirms that the model performs significantly better than a random
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classification (AUC =0.545) and is acceptable for a regional-scale, first-order assessment using
a bivariate method.
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Figure 12: Landslide Susceptibility Map of Rajpur Rural Municipality.
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Figure 13: Receiver Operating Characteristic (ROC) curve for model validation (AUC =
0.545)
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DISCUSSION

The results of this study illustrate the practical applicability of the Frequency Ratio model,
integrated with GIS, for landslide susceptibility assessment in a data-scarce setting such as
Nepal’s Siwalik region. The relatively high FR value associated with the Water Body class
(1.52) clearly highlights the importance of hydrological processes in both triggering and
preconditioning slope failures. In many parts of the study area, fluvial erosion at the base of
slopes leads to progressive undercutting and steepening, which reduces slope stability and
promotes failure initiation (Korup, 2005). In addition, the presence of nearby water bodies
facilitates saturation of slope materials, increasing pore-water pressure and reducing effective
stress and shear strength, conditions that are well known to favor landslide initiation
(Vakhshoori & Zare, 2016).

Among the evaluated conditioning factors, soil exhibited the highest Prediction Rate (2.57),
indicating its strong overall contribution to landslide susceptibility across the study area. The
dominant UDR soil unit in the Siwalik region is typically shallow, coarse-textured, and weakly
developed on highly erodible parent materials. Such soils tend to have low cohesion and high
permeability, characteristics that make them particularly susceptible to failure during periods
of intense rainfall. The observed concentration of landslides within the Lower Siwalik
geological formation (FR = 1.28) further emphasizes the controlling role of lithology. This
formation, composed mainly of interbedded sandstone and mudstone, is highly prone to
weathering. When saturated, the relatively impermeable mudstone layers can act as preferential
slip surfaces, facilitating translational landslides (Dahal et al., 2008).

The spatial clustering of high and very high susceptibility zones within steep and rugged terrain
is consistent with well-established geomorphological understanding of landslide processes. At
the same time, the model’s AUC value of 0.545 reflects the inherent limitations of bivariate
statistical approaches when applied in complex mountainous environments with limited
landslide inventory data, a challenge also reported in other Himalayan studies (Regmi et al.,
2014). Although this level of predictive performance is adequate for broad regional planning
and prioritization, it underscores the need for cautious interpretation of the results. The model
primarily represents static, predisposing environmental conditions and does not explicitly
capture dynamic triggering mechanisms such as rainfall intensity—duration thresholds, seismic
activity, or localized anthropogenic disturbances, including unplanned road construction and
deforestation, which play an important role in slope instability within the study area.

CONCLUSION

This study presents a systematic and replicable approach for assessing landslide susceptibility
in the geologically fragile Siwalik region of Nepal. The findings indicate that landslide
occurrence in Rajpur Rural Municipality follows clear spatial patterns and is strongly
influenced by a combination of interrelated geoenvironmental factors rather than occurring
randomly across the landscape. By applying the Frequency Ratio model within a GIS
framework, the study successfully delineated areas of varying landslide susceptibility,
providing a clear spatial representation of relative landslide-prone zones.
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The main conclusions of the study can be summarized as follows:

e Landslide occurrence in the study area is primarily controlled by soil characteristics—
particularly the Udipsamments, Dystrochrepts, and Rhodustalfs unit—together with
proximity to river networks that promote erosion and slope undercutting, and the inherently
weak and weathering-prone lithology of the Lower Siwalik formation.

e More than 37% of the total area of Rajpur Rural Municipality falls within the High and
Very High landslide susceptibility classes. These zones represent areas of elevated risk to
local communities, infrastructure, and natural resources, highlighting the need for focused
and prioritized intervention by planners, engineers, and policy-makers.

e Despite its limited predictive accuracy, the generated Landslide Susceptibility Map serves
as a first-order, scientifically grounded decision-support tool for regional-scale planning. It
provides a useful baseline for guiding land-use decisions, infrastructure development, and
proactive disaster risk reduction measures within the municipality.
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