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ABSTRACT

This study aimed to evaluate the resilience of two barley varieties (‘Ardhaoui’ and ‘Manel’) to thermo-hydric
stress under conservation agriculture (CA) compared to conventional agriculture, across different sowing dates
(normal, late) and water regimes (rainfed, irrigated). Field experiments were conducted during the 2020-2021
winter growing season at a representative semi-arid site in Western Tunisia, and climatic trends over the past 24
years were analyzed to contextualize current stress conditions. A severe water deficit, coupled with a rise in
temperature and increased ETO, occurred during grain filling. This tendency towards climate change is confirmed
by the site's climatic characterization over 24 years, during which temperatures have risen by 0.16 °C per year (r
=0.800, p = 0.01). Results showed that CA significantly improved barley performance, increasing biological and
grain yields by 26% and 29%, respectively, suggesting more efficient rainfall utilization. Supplemental irrigation
further enhanced grain yield (51%) relative to biological yield (45%). The local variety ‘Ardhaoui’ demonstrated
higher tolerance to drought and heat stress than the improved variety ‘Manel’. Biomass was more sensitive to heat
stress than grain yield (32% vs. 24%), indicating a potential shift in harvest index under extreme conditions. Stress
tolerance indices (HSTI and STI) and phenolic compound analysis confirmed that CA and supplemental irrigation
mitigated the negative effects of thermo-hydric stress. The significant positive interaction (p = 0.001) between
tillage method and sowing date confirms that tillage practices alleviate heat stress expression. These findings
highlight that CA, when combined with appropriate variety selection and irrigation management, can improve
barley resilience under semi-arid conditions. The study also underscores the importance of local varieties in
adapting to climate variability, while cautioning that results are based on a single season and site, and multi-year
evaluations are needed to confirm long-term benefits.
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INTRODUCTION

With climate change, the area of arid and semi-arid land on the African continent is expected
to increase by 5 to 8% by 2080 in a projection under a range of IPCC’s climate scenarios that
assess the potential impacts of climate change. If conventional practices continue, food security
will be jeopardized, and crops will suffer increased water and heat stress (IPCC 2001, 2007).
In fact, yields of major crops in these areas are expected to decline by more than 50% by 2050
and by nearly 90% by 2100 due to climate change. These projections have been made based
on the correlation between the drought risk index and yield reduction rates in major crop lands
between 2050 and 2100 (Li et al. 2009). To mitigate these effects, conservation agriculture
(CA) offers a set of resilient and sustainable management practices (Bechikh et al. 2024). It
maintains agricultural production while having a positive impact on the environment (Su et al.
2021). It should also be pointed out that this study was designed to fill the gap in research on
CA resilience in Tunisia, particularly the lack of studies addressing resilience to heat and water
stress.

According to Michler et al. (2019), CA limits yield losses due to rainfall variability in response
to climate change. This practice mitigates the adverse effects of ploughing by improving soil
water retention, reducing the effects of drought associated with rainfall fluctuations, and
increasing yields (Madejon et al. 2023; Zhang et al. 2022). In addition, it minimizes the effects
of heat stress and promotes cereal development during the grain filling stage (Kumar et al.
2023). CA improves the adaptability of summer cereal production to drought and heat stress
in sub-Saharan Africa (Komarek et al. 2021). Furthermore, CA is a cost-effective approach to
reducing irrigation water consumption for barley while decreasing greenhouse gas emissions
(Fonteyne et al. 2021). Results obtained under natural and simulated drought conditions
confirm that CA systems improve resilience to the increased stress risks associated with
projected national and global climate change (Bahri et al. 2019; Steward et al. 2018).

Crops respond to various abiotic stresses by accumulating phenolic compounds, with the
specificity of this accumulation depending on the type of stress and the plant species. In barley
(Hordeum vulgare L.), phenolic compounds, particularly flavonoids, accumulate primarily
during the visible flag leaf stage under water deficit conditions, coinciding with spring growth
(Sassi et al. 2021). These flavonoids neutralize harmful reactive oxygen species (ROS), thus
protecting the plant from oxidative damage (Kumar et al. 2020). Heat stress initially induces
the biosynthesis of phenolic acids in plant cells (Chowdhary et al. 2022). According to Rivero
et al. (2001), this stress also promotes phenolic accumulation in certain crops by activating
biosynthesis and inhibiting oxidation, probably serving as an acclimation mechanism. Phenolic
compounds are involved in plant responses to various environmental stresses (Chalker-Scott &
Fuchigami 2018; Gil & Tuteja 2010), making their concentration in plant tissues a reliable
indicator of stress.

The objective of this study is to develop a climate characterization to detect the occurrence of

climate change and investigate the resilience of CA as a management strategy for barley
(Hordeum vulgare L.) production in the Tunisian semi-arid environment.
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MATERIALS AND METHODS

Climatic characterization

The experimental site is located at the Experimental Station of the National Institute of
Agricultural Research of Tunisia (INRAT) on the Boulifa plain of the Kef delegation,
northwest Tunisia (36°07'N, 08°43'E, 518 m altitude). A medium semi-arid Mediterranean
bioclimate with moderate rainfall variability characterizes the site. The soil is alkaline (pH =
8.3) with a clayey-sandy texture. Meteorological data, including mean monthly precipitation,
reference evapotranspiration (ETo) according to FAO (2016), and mean monthly temperature,
were collected over 24 cropping seasons (2000/01-2023/24) from the agrometeorological
station at the experimental site. In addition, climate data for the 2021/22 growing season are
presented in Table 1. This meteorological data was used to characterize the site by identifying
the periods of water deficit and potential active vegetation. The period of water deficit was
determined graphically using the mean monthly rainfall curve and the reference
evapotranspiration ETo curve (Gardner et al. 1985). The potential active vegetation period was
determined using the ombrothermic diagram. According to Dupont & Compére (1997), this
period corresponds to the interval on the diagram where the rainfall/2 curve exceeds the mean
temperature curve.

Table 1: Climatic data, ETo, and Water deficit in rainfed conditions during the life cycle,
2021-2022

Mean temperature Monthly rainfall ETo Water deficit

(C) (mm) (mm) (mm)
November 16.3 10.8 65.3 -54.4
2021
December 9.8 54.0 56.2 2.2
January 2022 10.1 72.0 50.7 21.3
February 10.6 37.0 59.7 -22.7
March 12.4 32.0 84.7 -52.7
April 15.2 30.6 123.3 -92.7
May 22.0 8.8 151.0 -142.2
Total 96.4 245.2 590.9 -345.6
Mean/month 13.8 35.0 96.3 -49.4
CV (%) 31.9 64.3 39.9 -112.3

Source: Meteorological Station of Boulifa/Kef, adjacent to the experimental site; ETo: reference
evapotranspiration

The meteorological data were used to characterize the site by identifying the periods of water
deficit and potential active vegetation.

Experimental conduct

The field trial was initiated in the 2017/18 growing season, with cultivation operations
conducted according to protocols adapted for the semi-arid conditions. Two barley varieties,
“Ardhaoui” and “Manel”, were used. ‘Ardhaoui’ is derived from a local ecotype (El Faleh
1998), while ‘Manel’ is an improved variety registered in the official catalog in 1996 (Déghais
et al. 2007). The trial was conducted under i) three crop rotation systems (barley monoculture,
biennial: faba bean/barley, triennial: faba bean/durum-wheat/barley), ii) two sowing dates, iii)
two water regimes (rainfed and irrigated), and iv) two tillage methods (Conservation
Agriculture: CA and Conventional Agriculture: Co). Irrigation was applied when the available
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soil water reserve fell below 40% (Table 2).

Table 2: Phenological stages of barley, irrigation, and water balance (mm) under two
sowing dates

Sowing date 1 Sowing date 2
Month  Phenological Irrigation Water Phenological Irrigation Water balance
stage” balance stage”
Nov. Sowing -54.4 -54.4
Dec. Emergence -2.2 Sowing 10 7.8
Jan. Tillering 20 41.3 Emergence 20 33.3
Feb. 10 -12.7 Tillering 10 -12.7
Mar. -52.7 -52.7
Apr. Heading, 120 27.3 120 27.3
Anthesis
May Milky, Maturity 80 -12.7 Anthesis 80 -62.2
Jun. Maturity
Total 230 -66.1 240 -113.6

*Phenological stages according to Feekes scale

Sowing was performed manually at a rate of 350 grains/m? in six rows, each 1.5 m long and
spaced 25 cm apart. Each experimental plot covered an area of 2.25 m2. Two sowing dates
were tested: the first sowing date was the last week of November (optimum date advised by
the agriculture ministry for the El Kef region), and the second was the last week of December
(late: inducing heat stress). Mineral fertilization consisted of Diammonium Phosphate (DAP)
applied at 100kg/ha. Nitrogen fertilizer (33.5% ammonium nitrate) was applied in two fractions
of 100 kg/ha each at the tillering and bolting stages. Weeding and harvesting were performed
manually, with threshing conducted using an ear thresher.

The field trial followed a split-split-split-plot design with three replications. The main factor
was tillage method (CA, Co), the sub-factor was water regime, the sub-sub-factor was sowing
date, and the sub-sub-sub-factor was crop rotation.

Agronomic parameters

During the 2021/22 growing season, at grain maturity, barley plants in each experimental plot
were harvested manually, and samples of the above-ground biomass were collected to
determine the biological yield (BY) and grain yield (GY). Both were measured at the plot level,
expressed in g/m?, and then converted to g/ha. The thousand-grain weight (TGW in g) was
determined using a grain counter and a precision balance.

Heat and Drought Stress Indices

Heat Stress Indices

During the optimal sowing period (late November), barley was exposed to an average
temperature of 15.2 °C at anthesis, whereas during late sowing (late December), it experienced
22.0 °C at the same stage. According to Lamba et al. (2023), this 6.8°C temperature difference
during grain filling (Tables 1 and 2) likely accelerated ripening and reduced grain yield. Late-
sown barley was subjected to heat stress during and after anthesis. The sensitivity of barley to
heat stress, influenced by tillage method, water regime, and crop rotation, was evaluated by
harmonic mean productivity (HMP) and stress tolerance index (HSTI). Both were calculated
as follows:
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HMp= S2258....Eq.1 (Rosielle & Hamblin 1981).
_ GYnXGYs

HSTI = ~MGYnZ v e EQ. 2 (Fernandez, 1992).
With,

GYn: Average grain yield/variety under normal conditions (date 1).
GYs: Average grain yield/variety under heat stress (date 2).
MGYn: Average grain yield of both varieties under normal conditions (date 1).

Drought Stress Indices

The sensitivity of barley to drought, across two varieties, between tillage methods, sowing date,
and rotation, was evaluated by calculating the sensitivity index using the method of Fischer &
Maurer (1978), based on the following relationship:

mp=EEEED Eq. 3

STI=S0XM Eq. 4
. MGYi

With,

GYr: Grain yield/variety in rainfed conditions,

GYi: Grain yield/variety in irrigated conditions,

MGYi: Average grain yield of both varieties in irrigated conditions,
MP: Mean Productivity,

STI: Stress Tolerance Index.

Phenolic analysis

At maturity, entire barley plants were harvested, separated into leaves, stems, and roots, then
washed with tap water and distilled water. The plant parts were cut into 1 cm pieces and dried
at 50 °C for 24 hours. Tissue extraction was performed following the procedure described by
Ben-Hammouda et al. (1995).

The Denis-Folin method, with gallic acid as standard, was used for the analysis of total
phenolics (TP). A standard gallic acid solution was prepared by dissolving 50 mg of gallic acid
in 100 ml of distilled water, following Ereifej et al. (2016). The absorbance was measured at
750 nm (AOAC, 1990), and the TP content was estimated using the standard curve, expressed
as pg of gallic acid equivalent per ml of water extract. To express the TP in ug of gallic acid
equivalent per g of dry tissue, concentrations were multiplied by 20, based on a 1:20 extraction
ratio (5 g of tissue per 100 ml of solvent).

Data analysis

A nested analysis was conducted to evaluate the effects of tillage methods (CA, Co), water
regime, sowing date (heat stress), and crop rotation on agronomic parameters, drought
sensitivity indices, heat stress tolerance indices, and TP content of barley. The data were
subjected to an analysis of variance using the Statistical Analysis System (SAS Institute, 2023)
software. Treatments with significant effects were separated using Fisher's protected LSD test
at p =0.05 (Steel & Torrie, 1980). Regression analysis of agronomic parameters on TP content
was performed, with plant components as qualitative variables.
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RESULTS AND DISCUSSION
Climatic characterization

Rainfall and evapotranspiration

During the 2020-2021 barley growing season, total rainfall was 245.2 mm, below the regional
average and the optimal requirement for barley crops (Mellouli et al., 2007). January was the
wettest month, with 72,0 mm of rain, while the grain-filling period (April-May) experienced
the greatest water deficit. Inter-month rainfall variability was high with a coefficient of
variation (CV) of 64.3% (Table 1).

Figure 1 shows the distribution of rainfall and mean reference evapotranspiration (ETo) over
24 growing seasons (2000/01-2023/24). Two periods of water deficit were identified: the first
at the beginning of the season (September-October) and the second at the end (April-May),
coinciding with ear formation and grain filling.
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Figure 1: Rainfall deficit curve at Boulifa, means from 2000/01-2023/24

The 2020/21 agricultural year was way below average for 24 growing seasons throughout the
barley growing cycle, except for January (Table 1 vs. Fig. 1). These conditions let us test how
resilient the CA system is to thermo-hydric stress.

Temperature
To remedy the water deficit, supplemental irrigation is necessary in April and May (Fig. 1).

Spring 2022 (March-May) was characterized by higher temperatures and reduced precipitation.
The latter was highly variable, with a coefficient of variation (CV) almost double that of
temperatures, confirming the need for water supply during this period (Table 1). Figure 2 shows
a rising temperature trend over the 24 growing seasons (2000/01-2023/24). The trend followed
a binomial pattern, with an initial decline and a subsequent steeper increase (r2 = 72%). The
initial phase showed a slope of -8%/year, indicating a mean annual temperature decrease, while
the second phase showed a slope of 16%/year, reflecting a temperature increase (r? = 64%).
The highest temperature levels were recorded in the last four years of the study period. Since
2023, the El Niflo effect, combined with climate change, has contributed to record-high
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temperatures (WMO, 2024). According to the IPCC (2021), every 0.5°C increase in mean

temperature results in a noticeable increase in the intensity and frequency of heatwaves and
agricultural droughts.
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Figure 2: Variation in mean temperatures at Boulifa during the last 24 years of study

These results confirm the impact of global warming in the Boulifa-Kef region over the last 12
years. The average temperature increase (0.16°C/year) during this period exceeds that predicted

by the IPCC's most pessimistic scenario (8.5), which forecasts a 4 °C rise by 2100 (IPCC,
2023).

Potentially active vegetation period
The ombrothermic diagram identified a favorable vegetation period for barley extending from

sowing to heading (early April). This period is mostly pronounced from December to February
(Figure 3).
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Figure 3: Ombrothermic diagram at Boulifa, means from 2000/01 to 2020/21
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Agronomic parameters

Analysis of variance (ANOVA) showed no significant differences (p = 0.05) among tillage
methods, water regimes, sowing dates, and crop rotations for biological yield (BY), grain yield
(GY), and thousand-grain weight (TGW) of barley. However, mean BY and GY, averaged
across all treatments, were 26% and 29% higher, respectively, under CA compared to Co.
Supplemental irrigation increased BY and GY by 45 and 51%, respectively. For the late sowing
date (late December, Date 2), yields were reduced, with BY decreasing by 32% and GY by
24% compared to the optimal sowing date (late November, Date 1) (Fig. 4). Jacott & Boden
(2020) report that high ambient temperatures negatively affect barley yields, with an increase
of 1 °C above the optimal temperature, reducing productivity by 5-6%. Whereas TGW was 6%
higher for the late sowing date, indicating larger kernels under heat stress during grain filling.
These findings contrast with Abdelghany et al. (2024), who observe reduced grain size in 29
barley genotypes under heat stress, but align with Shirdelmoghanloo et al. (2022), who note
that heat stress reduces grain number per unit area but increases grain size. Similar responses
were observed in durum-wheat under heat stress (EI Hassouni et al., 2019). The variability of
BY and GY was greater than that of TGW (Fig. 4). The measured agronomic parameters were
highest under biennial rotation (faba bean/barley), followed by monoculture (barley/barley),
and lowest under triennial rotation (faba bean/durum-wheat/barley). This pattern may be
explained by the legume precedent in the biennial rotation, which enhances soil fertility,
whereas barley in the triennial rotation follows durum-wheat, potentially affected by
heterotoxic allelopathic effects of wheat residues (Oueslati et al. 2017; Weiner et al. 2024).
Additionally, combining CA practices with legume-cereal rotations increased cereal yields
(Nyagumbo et al. 2020). The local variety ‘Ardhaoui’ showed 3% higher BY and 4% higher
GY than the improved variety ‘Manel’, while TGW was 3% higher for ‘Manel’ (Fig. 4).
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Figure 4: Effect of tillage method, water regime, sowing date, and rotation on biological yield (BY), grain yield
(GY), and thousand grain weight (TGW) of two barley varieties, ‘Ardhaoui’ and ‘Manel’. (M: monoculture,2-YR:
biennial rotation,3-YR: triennial rotation). Error bars denote the standard error

Heat stress indices

ANOVA showed significant effects of tillage method, water regime, and rotation on the two
heat stress indices (p = 0.05). The significance level of the first two parameters was higher than
that of rotation. There were no significant differences between varieties (Table 3).

Table 3: Mean squares of heat stress indices: Heat Mean Productivity (MP), and Heat
Stress Tolerance Index (STI) under tillage method (TM), water regime (WR), and
rotation

Heat stress indices

Parameter HMP HSTI
™ 2492 77" 4.00"
WR 3529.54™" 7.59™"
Rotation 320.53" 0.41”
Variety 19.86NS 0.002Ns

*Significantly different at p = 0.05; *** Significantly different at p = 0.001; ™ Not significantly different at p =
0.05

Figure 5 showed that barley under CA was 29% more productive (HMP) and 46% more tolerant
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to heat stress (HSTI) than that under Co. Supplemental irrigation increased HMP by 34% and
HSTI by 58% compared to rainfed conditions, indicating that irrigation enhances yield and
mitigates heat stress, consistent with Birthal et al. (2021). Mean productivity and heat stress
tolerance were higher in the biennial rotation, followed by monoculture, and lowest in the
triennial rotation, confirming the results obtained with yield parameters (Figures 4 vs 5). The
combination of CA and legume-based rotations enhances cropping resilience to thermal stress
(Komarek et al. 2021). Although no significant differences were found between varieties, the
local variety ‘Ardhaoui’ is 3% more productive and 1% more tolerant to heat stress than the
improved variety ‘Manel’, consistent with its higher BY (3%) and GY (4%) observed in figure
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Figure 5: Effect of tillage method, water regime, rotation, and variety on Heat Mean
Productivity (HMP), and Heat Stress Tolerance Index (HSTI) of two barley varieties

(‘Ardhaoui’, ‘Manel’). (M: monoculture,2-YR: biennial rotation,3-YR: triennial rotation). Error bars
denote the standard error. Bars having different letters are significantly different at p = 0.05 based on Fisher's
protected LSD test

Drought stress indices

ANOVA revealed a highly significant effect of tillage method (p = 0.001). Sowing date had a
highly significant effect (p = 0.001) on MP and STI, with a significant positive interaction
between tillage method and sowing date, indicating that the heat stress expression is mitigated
by tillage practices. Crop rotation also significantly (p = 0.05) affected both studied indices
(Table 4).

Table 4: Mean squares of drought stress indices: Mean Productivity (MP), and Stress
Tolerance Index (STI) under tillage method (TM), sowing date (SD), and rotation

Treatments Drought stress indices

MP STI
™ 2492.77 3.65™
SD 1575.38™" 0.79"
Interaction TM and SD 74.07NS 0.46"
Rotation 320.49" 0.37"

*Significantly different at p = 0.05; ***Significantly different at p = 0.001; NS Not significantly different at p =
0.05

CA increased MP index by 29% and STI by 51% compared to Co, reflecting greater drought
tolerance and confirming higher yields under CA (Figs 4 and 6). These results align with those
of Mhlanga & Thierfelder (2021), who attribute higher yields under CA to an increase in
available water and enhanced buffering capacity against water stress, facilitated by soil cover
that promotes water absorption and storage (Zhang et al. 2022). These findings support CA as
a resilient climate change adaptation strategy in semi-arid regions, enhancing crop yields
(Cheikh M’hamed et al., 2025; Dusingizimana et al., 2025).

The optimal sowing date increased MP by 24% and STI by 27% compared to the late sowing
date, indicating reduced drought tolerance under heat stress (Fig. 6). This explains the higher
biological yield (BY) and grain yield (GY) for the optimal sowing date, though thousand-grain
weight (TGW) was higher under heat stress (Figs 4 and 6). Under a biannual rotation, barley
expressed the best MP as well as better drought tolerance, as was the case for all studied yield
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parameters (Figures 6 vs 4). The local variety ‘Ardhaoui’ showed 3% higher MP and 18%
higher STI than the improved variety ‘Manel’ (Figure 6), indicating its drought tolerance as
noted in the southern sub-Saharan of Tunisia (Thameur et al., 2012).
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Figure 6: Effect of tillage method, sowing date, and rotation on MP (Mean Productivity),

and Stress Tolerance Index (STI) of two barley varieties (‘Ardhaoui’, ‘Manel’).
(M: monoculture,2-YR: biennial rotation,3-YR: triennial rotation). Error bars denote the standard error. Bars
having different letters are significantly different at p = 0.05 based on Fisher's protected LSD test

Phenolic analysis

The ANOVA showed a highly significant effect of water regime on total phenolic content (TP)
in barley, but no significant differences (p = 0.05) among tillage methods (Table 5). However,
a significant interaction (p = 0.05) was observed between water regime and tillage method.
Additionally, TP differed significantly among plant components (roots, stems, and leaves).
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Table 5: Mean squares of total-phenolic contents of plant components (root, leaf, stem)
of two varieties (‘Ardhaoui’, ‘Manel’) of barley under tillage method (TM), water regime
(WR), sowing date (SD), and rotation

Total-phenolic content'?

™ 173.18NS
WR 1613.27°"
Interaction TM and WR 917.85"

SD 39.14Ns
Rotation 319.47NS
Plant components 68352.03™

*Significantly different at p = 0.05; ***Significantly different at p = 0.001; NS Not significantly different at p =
0.05; "Tug of gallic acid equivalent per gram of dry tissue.

Despite lower TP at maturity, probably due to the phenolic mobilization for lignin biosynthesis
(Chalker-Scott & Fuchigami, 2018), differences were observed across treatment levels. Barley
under CA produced lower phenolic compounds than under Co, with no significant difference,
suggesting greater stress under Co practice (Naikoo 2019; Sassi et al. 2021). Rainfed barley
showed 21% higher TP than irrigated barley, indicating that water stress enhanced phenolic
production, potentially contributing to drought tolerance (Sarker & Oba 2018; Sassi et al.
2021). This aligns with CA’s higher yields and resilience to thermos-hydric stress (Figures 4
and 5 vs 7). Under heat stress (date 2), barley produced 4% less phenolic compounds than under
optimal sowing, probably due to the involvement of other metabolites, such as proline and
starch, in heat stress responses (Chowdhary et al. 2022; Dawood et al. 2020) or shorter
exposure to heat stress for date 2, during key growth stages. Temperature increases from
anthesis onward have been shown to shorten critical growth periods under climate change (Tan
etal. 2021; Xiao et al. 2021). The triennial rotation resulted in 10% lower phenolic compounds
than the biennial rotation and 17% lower TP than monoculture. Higher TP in monoculture may
reflect barley autotoxicity (Oueslati et al. 2016, 2017) and transgenerational stress memory
from thermo-hydric stress during the inter-season, between July and November (Lamelas et al.
2024). Conversely, barley under triennial rotations appeared less stressed (Figure 6). The local
variety ‘Ardhaoui’ produced 3% less phenolics than ‘Manel” but was more tolerant to water
stress and more productive. The 3% reduction in TP for ‘Ardhaoui’ coincided with a 3%
reduction in TGW, both indicating drought tolerance. According to figure 6, leaves showed
significantly higher TP than stems, while no phenolic compounds were detected in roots,
consistent with Sassi et al. (2021).
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Figure 7: Effect of tillage method, water regime, sowing date, and rotation on total-

phenolic

(ug of gallic acid equivalent per gram of dry tissue) content of two barley varieties (‘Ardhaoui’, ‘Manel’). ((M:
monoculture,2-YR: biennial rotation,3-YR: triennial rotation). Error bars denote the standard error. Bars having
different letters are significantly different at p = 0.05 based on Fisher's protected LSD test

For this growing season, no significant association was found between the agronomic
parameters and TP content in barley, despite significant variation in TP among plant
components. Continued research over multiple seasons could provide further insight into these
relationships.

CONCLUSION

Over the past decade, global warming in the Boulifa-Kef region has been evident, with an
average annual temperature increase of 0.16°C per year. Its impact results in a more
pronounced water deficit from the start of barley grain filling. The total phenolic content of the
leaves proves to be an effective bioindicator of water stress, highlighting the resilience of barley
under CA compared to Co. The study shows that Co is more stressful for barley in semi-arid
environments, as evidenced by the higher total phenolic content and lower yields under Co. To
mitigate the effects of climate change in semi-arid regions, it is recommended to adopt CA,
supplemental irrigation, and biennial legume-based rotations, as well as drought-tolerant
varieties such as “Ardhaoui,” to improve barley productivity and resilience.
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