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ABSTRACT 
This study aimed to evaluate the resilience of two barley varieties (‘Ardhaoui’ and ‘Manel’) to thermo-hydric 

stress under conservation agriculture (CA) compared to conventional agriculture, across different sowing dates 

(normal, late) and water regimes (rainfed, irrigated). Field experiments were conducted during the 2020–2021 

winter growing season at a representative semi-arid site in Western Tunisia, and climatic trends over the past 24 

years were analyzed to contextualize current stress conditions. A severe water deficit, coupled with a rise in 

temperature and increased ET0, occurred during grain filling. This tendency towards climate change is confirmed 

by the site's climatic characterization over 24 years, during which temperatures have risen by 0.16 °C per year (r 

= 0.800, p = 0.01). Results showed that CA significantly improved barley performance, increasing biological and 

grain yields by 26% and 29%, respectively, suggesting more efficient rainfall utilization. Supplemental irrigation 

further enhanced grain yield (51%) relative to biological yield (45%). The local variety ‘Ardhaoui’ demonstrated 

higher tolerance to drought and heat stress than the improved variety ‘Manel’. Biomass was more sensitive to heat 

stress than grain yield (32% vs. 24%), indicating a potential shift in harvest index under extreme conditions. Stress 

tolerance indices (HSTI and STI) and phenolic compound analysis confirmed that CA and supplemental irrigation 

mitigated the negative effects of thermo-hydric stress. The significant positive interaction (p = 0.001) between 

tillage method and sowing date confirms that tillage practices alleviate heat stress expression. These findings 

highlight that CA, when combined with appropriate variety selection and irrigation management, can improve 

barley resilience under semi-arid conditions. The study also underscores the importance of local varieties in 

adapting to climate variability, while cautioning that results are based on a single season and site, and multi-year 

evaluations are needed to confirm long-term benefits. 
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INTRODUCTION 

With climate change, the area of arid and semi-arid land on the African continent is expected 

to increase by 5 to 8% by 2080 in a projection under a range of IPCC’s climate scenarios that 

assess the potential impacts of climate change. If conventional practices continue, food security 

will be jeopardized, and crops will suffer increased water and heat stress (IPCC 2001, 2007). 

In fact, yields of major crops in these areas are expected to decline by more than 50% by 2050 

and by nearly 90% by 2100 due to climate change. These projections have been made based 

on the correlation between the drought risk index and yield reduction rates in major crop lands 

between 2050 and 2100 (Li et al. 2009). To mitigate these effects, conservation agriculture 

(CA) offers a set of resilient and sustainable management practices (Bechikh et al. 2024). It 

maintains agricultural production while having a positive impact on the environment (Su et al. 

2021).  It should also be pointed out that this study was designed to fill the gap in research on 

CA resilience in Tunisia, particularly the lack of studies addressing resilience to heat and water 

stress. 

 

According to Michler et al. (2019), CA limits yield losses due to rainfall variability in response 

to climate change. This practice mitigates the adverse effects of ploughing by improving soil 

water retention, reducing the effects of drought associated with rainfall fluctuations, and 

increasing yields (Madejón et al. 2023; Zhang et al. 2022). In addition, it minimizes the effects 

of heat stress and promotes cereal development during the grain filling stage (Kumar et al. 

2023).  CA improves the adaptability of summer cereal production to drought and heat stress 

in sub-Saharan Africa (Komarek et al. 2021). Furthermore, CA is a cost-effective approach to 

reducing irrigation water consumption for barley while decreasing greenhouse gas emissions 

(Fonteyne et al. 2021). Results obtained under natural and simulated drought conditions 

confirm that CA systems improve resilience to the increased stress risks associated with 

projected national and global climate change (Bahri et al. 2019; Steward et al. 2018). 

 

Crops respond to various abiotic stresses by accumulating phenolic compounds, with the 

specificity of this accumulation depending on the type of stress and the plant species. In barley 

(Hordeum vulgare L.), phenolic compounds, particularly flavonoids, accumulate primarily 

during the visible flag leaf stage under water deficit conditions, coinciding with spring growth 

(Sassi et al. 2021). These flavonoids neutralize harmful reactive oxygen species (ROS), thus 

protecting the plant from oxidative damage (Kumar et al. 2020). Heat stress initially induces 

the biosynthesis of phenolic acids in plant cells (Chowdhary et al. 2022). According to Rivero 

et al. (2001), this stress also promotes phenolic accumulation in certain crops by activating 

biosynthesis and inhibiting oxidation, probably serving as an acclimation mechanism. Phenolic 

compounds are involved in plant responses to various environmental stresses (Chalker-Scott & 

Fuchigami 2018; Gil & Tuteja 2010), making their concentration in plant tissues a reliable 

indicator of stress. 

 

The objective of this study is to develop a climate characterization to detect the occurrence of 

climate change and investigate the resilience of CA as a management strategy for barley 

(Hordeum vulgare L.) production in the Tunisian semi-arid environment. 
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MATERIALS AND METHODS 
 

Climatic characterization  

The experimental site is located at the Experimental Station of the National Institute of 

Agricultural Research of Tunisia (INRAT) on the Boulifa plain of the Kef delegation, 

northwest Tunisia (36°07'N, 08°43'E, 518 m altitude). A medium semi-arid Mediterranean 

bioclimate with moderate rainfall variability characterizes the site. The soil is alkaline (pH = 

8.3) with a clayey-sandy texture. Meteorological data, including mean monthly precipitation, 

reference evapotranspiration (ET₀) according to FAO (2016), and mean monthly temperature, 

were collected over 24 cropping seasons (2000/01–2023/24) from the agrometeorological 

station at the experimental site.  In addition, climate data for the 2021/22 growing season are 

presented in Table 1. This meteorological data was used to characterize the site by identifying 

the periods of water deficit and potential active vegetation. The period of water deficit was 

determined graphically using the mean monthly rainfall curve and the reference 

evapotranspiration ET0 curve (Gardner et al. 1985).  The potential active vegetation period was 

determined using the ombrothermic diagram. According to Dupont & Compère (1997), this 

period corresponds to the interval on the diagram where the rainfall/2 curve exceeds the mean 

temperature curve. 

 

Table 1: Climatic data, ET0, and Water deficit in rainfed conditions during the life cycle, 

2021-2022  
 Mean temperature 

(°C) 

Monthly rainfall  

(mm) 

ET0  

(mm) 

Water deficit 

(mm) 

November 

2021 

16.3 1 0.8 65.3   -54.4 

December 9.8  54.0 56.2     -2.2 

January 2022 10.1  72.0 50.7     21.3 

February 10.6  37.0 59.7   -22.7 

March 12.4  32.0 84.7   -52.7 

April 15.2   30.6 123.3   -92.7 

May 22.0    8.8 151.0 -142.2 

 

Total 

 

96.4 

 

245.2 

 

590.9 

 

-345.6 

Mean/month 13.8   35.0 96.3 -49.4 

CV (%) 31.9   64.3 39.9 -112.3 

Source: Meteorological Station of Boulifa/Kef, adjacent to the experimental site; ET0: reference 

evapotranspiration 

 

The meteorological data were used to characterize the site by identifying the periods of water 

deficit and potential active vegetation. 

 

Experimental conduct  

The field trial was initiated in the 2017/18 growing season, with cultivation operations 

conducted according to protocols adapted for the semi-arid conditions. Two barley varieties, 

“Ardhaoui” and “Manel”, were used. ‘Ardhaoui’ is derived from a local ecotype (El Faleh 

1998), while ‘Manel’ is an improved variety registered in the official catalog in 1996 (Déghaïs 

et al. 2007). The trial was conducted under i) three crop rotation systems (barley monoculture, 

biennial: faba bean/barley, triennial: faba bean/durum-wheat/barley), ii) two sowing dates, iii) 

two water regimes (rainfed and irrigated), and iv) two tillage methods (Conservation 

Agriculture: CA and Conventional Agriculture: Co). Irrigation was applied when the available 
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soil water reserve fell below 40% (Table 2). 

 

Table 2: Phenological stages of barley, irrigation, and water balance (mm) under two 

sowing dates 
 Sowing date 1 Sowing date 2 

Month Phenological 

stage* 

Irrigation Water 

balance 

Phenological 

stage* 

Irrigation Water balance 

Nov. Sowing   -54.4     -54.4 

Dec. Emergence    -2.2 Sowing   10     7.8 

Jan. Tillering   20   41.3 Emergence   20    33.3 

Feb.    10  -12.7 Tillering   10   -12.7 

Mar.    -52.7     -52.7 

Apr. Heading, 

Anthesis 

120    27.3  120     27.3 

May Milky, Maturity   80  -12.7 Anthesis   80   -62.2 

Jun.    Maturity   

Total  230  -66.1  240 -113.6 

  *Phenological stages according to Feekes scale 

 

Sowing was performed manually at a rate of 350 grains/m2 in six rows, each 1.5 m long and 

spaced 25 cm apart. Each experimental plot covered an area of 2.25 m2. Two sowing dates 

were tested: the first sowing date was the last week of November (optimum date advised by 

the agriculture ministry for the El Kef region), and the second was the last week of December 

(late: inducing heat stress). Mineral fertilization consisted of Diammonium Phosphate (DAP) 

applied at 100kg/ha. Nitrogen fertilizer (33.5% ammonium nitrate) was applied in two fractions 

of 100 kg/ha each at the tillering and bolting stages. Weeding and harvesting were performed 

manually, with threshing conducted using an ear thresher. 

 

The field trial followed a split-split-split-plot design with three replications. The main factor 

was tillage method (CA, Co), the sub-factor was water regime, the sub-sub-factor was sowing 

date, and the sub-sub-sub-factor was crop rotation.  

Agronomic parameters  

 

During the 2021/22 growing season, at grain maturity, barley plants in each experimental plot 

were harvested manually, and samples of the above-ground biomass were collected to 

determine the biological yield (BY) and grain yield (GY). Both were measured at the plot level, 

expressed in g/m2, and then converted to q/ha. The thousand-grain weight (TGW in g) was 

determined using a grain counter and a precision balance. 

 

Heat and Drought Stress Indices 

Heat Stress Indices 

During the optimal sowing period (late November), barley was exposed to an average 

temperature of 15.2 °C at anthesis, whereas during late sowing (late December), it experienced 

22.0 °C at the same stage. According to Lamba et al. (2023), this 6.8°C temperature difference 

during grain filling (Tables 1 and 2) likely accelerated ripening and reduced grain yield. Late-

sown barley was subjected to heat stress during and after anthesis. The sensitivity of barley to 

heat stress, influenced by tillage method, water regime, and crop rotation, was evaluated by 

harmonic mean productivity (HMP) and stress tolerance index (HSTI). Both were calculated 

as follows:  
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HMP =  
(GYn + GYs)

2
  … … … … … . Eq. 1  (Rosielle & Hamblin 1981). 

HSTI =  
GYn X GYs

MGYn2   … … … … … . . . Eq. 2     (Fernandez, 1992). 

 

With, 

GYn: Average grain yield/variety under normal conditions (date 1). 

GYs: Average grain yield/variety under heat stress (date 2). 

MGYn: Average grain yield of both varieties under normal conditions (date 1). 

 

Drought Stress Indices 

The sensitivity of barley to drought, across two varieties, between tillage methods, sowing date, 

and rotation, was evaluated by calculating the sensitivity index using the method of Fischer & 

Maurer (1978), based on the following relationship: 

 

MP = 
(GYr + GYi)

2
……………. Eq. 3 

 

STI = 
GYr X GYi

MGYi2 ………………Eq. 4 

With, 

GYr: Grain yield/variety in rainfed conditions, 

GYi: Grain yield/variety in irrigated conditions, 

MGYi: Average grain yield of both varieties in irrigated conditions, 

MP: Mean Productivity, 

STI: Stress Tolerance Index. 

Phenolic analysis 

At maturity, entire barley plants were harvested, separated into leaves, stems, and roots, then 

washed with tap water and distilled water. The plant parts were cut into 1 cm pieces and dried 

at 50 °C for 24 hours. Tissue extraction was performed following the procedure described by 

Ben-Hammouda et al. (1995). 

The Denis-Folin method, with gallic acid as standard, was used for the analysis of total 

phenolics (TP). A standard gallic acid solution was prepared by dissolving 50 mg of gallic acid 

in 100 ml of distilled water, following Ereifej et al. (2016). The absorbance was measured at 

750 nm (AOAC, 1990), and the TP content was estimated using the standard curve, expressed 

as µg of gallic acid equivalent per ml of water extract. To express the TP in μg of gallic acid 

equivalent per g of dry tissue, concentrations were multiplied by 20, based on a 1:20 extraction 

ratio (5 g of tissue per 100 ml of solvent).  

Data analysis 

A nested analysis was conducted to evaluate the effects of tillage methods (CA, Co), water 

regime, sowing date (heat stress), and crop rotation on agronomic parameters, drought 

sensitivity indices, heat stress tolerance indices, and TP content of barley. The data were 

subjected to an analysis of variance using the Statistical Analysis System (SAS Institute, 2023) 

software. Treatments with significant effects were separated using Fisher's protected LSD test 

at p = 0.05 (Steel & Torrie, 1980). Regression analysis of agronomic parameters on TP content 

was performed, with plant components as qualitative variables. 
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RESULTS AND DISCUSSION 

Climatic characterization  

Rainfall and evapotranspiration 

During the 2020-2021 barley growing season, total rainfall was 245.2 mm, below the regional 

average and the optimal requirement for barley crops (Mellouli et al., 2007). January was the 

wettest month, with 72,0 mm of rain, while the grain-filling period (April-May) experienced 

the greatest water deficit. Inter-month rainfall variability was high with a coefficient of 

variation (CV) of 64.3% (Table 1). 

Figure 1 shows the distribution of rainfall and mean reference evapotranspiration (ET0) over 

24 growing seasons (2000/01–2023/24). Two periods of water deficit were identified: the first 

at the beginning of the season (September-October) and the second at the end (April-May), 

coinciding with ear formation and grain filling. 

 

 
Figure 1: Rainfall deficit curve at Boulifa, means from 2000/01-2023/24 

 

The 2020/21 agricultural year was way below average for 24 growing seasons throughout the 

barley growing cycle, except for January (Table 1 vs. Fig. 1). These conditions let us test how 

resilient the CA system is to thermo-hydric stress. 

 

Temperature 

To remedy the water deficit, supplemental irrigation is necessary in April and May (Fig. 1).  

 

Spring 2022 (March-May) was characterized by higher temperatures and reduced precipitation. 

The latter was highly variable, with a coefficient of variation (CV) almost double that of 

temperatures, confirming the need for water supply during this period (Table 1). Figure 2 shows 

a rising temperature trend over the 24 growing seasons (2000/01-2023/24). The trend followed 

a binomial pattern, with an initial decline and a subsequent steeper increase (r² = 72%). The 

initial phase showed a slope of -8%/year, indicating a mean annual temperature decrease, while 

the second phase showed a slope of 16%/year, reflecting a temperature increase (r² = 64%).  

The highest temperature levels were recorded in the last four years of the study period. Since 

2023, the El Niño effect, combined with climate change, has contributed to record-high 
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temperatures (WMO, 2024). According to the IPCC (2021), every 0.5°C increase in mean 

temperature results in a noticeable increase in the intensity and frequency of heatwaves and 

agricultural droughts.  

 

 
Figure 2: Variation in mean temperatures at Boulifa during the last 24 years of study  

 

These results confirm the impact of global warming in the Boulifa-Kef region over the last 12 

years. The average temperature increase (0.16°C/year) during this period exceeds that predicted 

by the IPCC's most pessimistic scenario (8.5), which forecasts a 4 °C rise by 2100 (IPCC, 

2023). 

 

Potentially active vegetation period 

The ombrothermic diagram identified a favorable vegetation period for barley extending from 

sowing to heading (early April). This period is mostly pronounced from December to February 

(Figure 3).  

 

 
Figure 3: Ombrothermic diagram at Boulifa, means from 2000/01 to 2020/21 
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Agronomic parameters  

Analysis of variance (ANOVA) showed no significant differences (p = 0.05) among tillage 

methods, water regimes, sowing dates, and crop rotations for biological yield (BY), grain yield 

(GY), and thousand-grain weight (TGW) of barley. However, mean BY and GY, averaged 

across all treatments, were 26% and 29% higher, respectively, under CA compared to Co. 

Supplemental irrigation increased BY and GY by 45 and 51%, respectively. For the late sowing 

date (late December, Date 2), yields were reduced, with BY decreasing by 32% and GY by 

24% compared to the optimal sowing date (late November, Date 1) (Fig. 4). Jacott & Boden 

(2020) report that high ambient temperatures negatively affect barley yields, with an increase 

of 1 °C above the optimal temperature, reducing productivity by 5-6%. Whereas TGW was 6% 

higher for the late sowing date, indicating larger kernels under heat stress during grain filling. 

These findings contrast with Abdelghany et al. (2024), who observe reduced grain size in 29 

barley genotypes under heat stress, but align with Shirdelmoghanloo et al. (2022), who note 

that heat stress reduces grain number per unit area but increases grain size. Similar responses 

were observed in durum-wheat under heat stress (El Hassouni et al., 2019). The variability of 

BY and GY was greater than that of TGW (Fig. 4). The measured agronomic parameters were 

highest under biennial rotation (faba bean/barley), followed by monoculture (barley/barley), 

and lowest under triennial rotation (faba bean/durum-wheat/barley). This pattern may be 

explained by the legume precedent in the biennial rotation, which enhances soil fertility, 

whereas barley in the triennial rotation follows durum-wheat, potentially affected by 

heterotoxic allelopathic effects of wheat residues (Oueslati et al. 2017; Weiner et al. 2024). 

Additionally, combining CA practices with legume-cereal rotations increased cereal yields 

(Nyagumbo et al. 2020). The local variety ‘Ardhaoui’ showed 3% higher BY and 4% higher 

GY than the improved variety ‘Manel’, while TGW was 3% higher for ‘Manel’ (Fig. 4). 
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Figure 4: Effect of tillage method, water regime, sowing date, and rotation on biological yield (BY), grain yield 

(GY), and thousand grain weight (TGW) of two barley varieties, ‘Ardhaoui’ and ‘Manel’. (M: monoculture,2-YR: 

biennial rotation,3-YR: triennial rotation). Error bars denote the standard error 

Heat stress indices 

ANOVA showed significant effects of tillage method, water regime, and rotation on the two 

heat stress indices (p = 0.05). The significance level of the first two parameters was higher than 

that of rotation. There were no significant differences between varieties (Table 3). 

 

Table 3: Mean squares of heat stress indices: Heat Mean Productivity (MP), and Heat 

Stress Tolerance Index (STI) under tillage method (TM), water regime (WR), and 

rotation 
 Heat stress indices 

Parameter 

 

HMP HSTI 

TM 2492.77***   4.00*** 

WR 3529.54***   7.59*** 

Rotation 320.53** 0.41* 

Variety 19.86NS     0.002NS 

*Significantly different at p = 0.05; *** Significantly different at p = 0.001; NS Not significantly different at p = 

0.05 

Figure 5 showed that barley under CA was 29% more productive (HMP) and 46% more tolerant 
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to heat stress (HSTI) than that under Co. Supplemental irrigation increased HMP by 34% and 

HSTI by 58% compared to rainfed conditions, indicating that irrigation enhances yield and 

mitigates heat stress, consistent with Birthal et al. (2021). Mean productivity and heat stress 

tolerance were higher in the biennial rotation, followed by monoculture, and lowest in the 

triennial rotation, confirming the results obtained with yield parameters (Figures 4 vs 5). The 

combination of CA and legume-based rotations enhances cropping resilience to thermal stress 

(Komarek et al. 2021). Although no significant differences were found between varieties, the 

local variety ‘Ardhaoui’ is 3% more productive and 1% more tolerant to heat stress than the 

improved variety ‘Manel’, consistent with its higher BY (3%) and GY (4%) observed in figure 

4.  
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Figure 5: Effect of tillage method, water regime, rotation, and variety on Heat Mean 

Productivity (HMP), and Heat Stress Tolerance Index (HSTI) of two barley varieties 

(‘Ardhaoui’, ‘Manel’). (M: monoculture,2-YR: biennial rotation,3-YR: triennial rotation). Error bars 

denote the standard error. Bars having different letters are significantly different at p = 0.05 based on Fisher's 

protected LSD test 

Drought stress indices 

ANOVA revealed a highly significant effect of tillage method (p = 0.001). Sowing date had a 

highly significant effect (p = 0.001) on MP and STI, with a significant positive interaction 

between tillage method and sowing date, indicating that the heat stress expression is mitigated 

by tillage practices. Crop rotation also significantly (p = 0.05) affected both studied indices 

(Table 4). 

 

Table 4: Mean squares of drought stress indices: Mean Productivity (MP), and Stress 

Tolerance Index (STI) under tillage method (TM), sowing date (SD), and rotation  
Treatments Drought stress indices 

 MP STI 

TM 2492.77***    3.65*** 

SD 1575.38*** 0.79* 

Interaction TM and SD    74.07NS 0.46* 

Rotation 320.49* 0.37* 

*Significantly different at p = 0.05; ***Significantly different at p = 0.001; NS Not significantly different at p = 

0.05 

 

CA increased MP index by 29% and STI by 51% compared to Co, reflecting greater drought 

tolerance and confirming higher yields under CA (Figs 4 and 6). These results align with those 

of Mhlanga & Thierfelder (2021), who attribute higher yields under CA to an increase in 

available water and enhanced buffering capacity against water stress, facilitated by soil cover 

that promotes water absorption and storage (Zhang et al. 2022). These findings support CA as 

a resilient climate change adaptation strategy in semi-arid regions, enhancing crop yields 

(Cheikh M’hamed et al., 2025; Dusingizimana et al., 2025). 

 

The optimal sowing date increased MP by 24% and STI by 27% compared to the late sowing 

date, indicating reduced drought tolerance under heat stress (Fig. 6). This explains the higher 

biological yield (BY) and grain yield (GY) for the optimal sowing date, though thousand-grain 

weight (TGW) was higher under heat stress (Figs 4 and 6). Under a biannual rotation, barley 

expressed the best MP as well as better drought tolerance, as was the case for all studied yield 
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parameters (Figures 6 vs 4). The local variety ‘Ardhaoui’ showed 3% higher MP and 18% 

higher STI than the improved variety ‘Manel’ (Figure 6), indicating its drought tolerance as 

noted in the southern sub-Saharan of Tunisia (Thameur et al., 2012). 

 

  

  

  

  
Figure 6: Effect of tillage method, sowing date, and rotation on MP (Mean Productivity), 

and Stress Tolerance Index (STI) of two barley varieties (‘Ardhaoui’, ‘Manel’).  
(M: monoculture,2-YR: biennial rotation,3-YR: triennial rotation). Error bars denote the standard error. Bars 

having different letters are significantly different at p = 0.05 based on Fisher's protected LSD test 

 

Phenolic analysis 

The ANOVA showed a highly significant effect of water regime on total phenolic content (TP) 

in barley, but no significant differences (p = 0.05) among tillage methods (Table 5). However, 

a significant interaction (p = 0.05) was observed between water regime and tillage method. 

Additionally, TP differed significantly among plant components (roots, stems, and leaves). 
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Table 5: Mean squares of total-phenolic contents of plant components (root, leaf, stem) 

of two varieties (‘Ardhaoui’, ‘Manel’) of barley under tillage method (TM), water regime 

(WR), sowing date (SD), and rotation 
 Total-phenolic content†† 

TM     173.18NS 

WR   1613.27*** 

Interaction TM and WR   917.85* 

SD      39.14NS 

Rotation   319.47NS 

Plant components 68352.03*** 

*Significantly different at p = 0.05; ***Significantly different at p = 0.001; NS Not significantly different at p = 

0.05; ††μg of gallic acid equivalent per gram of dry tissue. 

Despite lower TP at maturity, probably due to the phenolic mobilization for lignin biosynthesis 

(Chalker-Scott & Fuchigami, 2018), differences were observed across treatment levels. Barley 

under CA produced lower phenolic compounds than under Co, with no significant difference, 

suggesting greater stress under Co practice (Naikoo 2019; Sassi et al. 2021). Rainfed barley 

showed 21% higher TP than irrigated barley, indicating that water stress enhanced phenolic 

production, potentially contributing to drought tolerance (Sarker & Oba 2018; Sassi et al. 

2021). This aligns with CA’s higher yields and resilience to thermos-hydric stress (Figures 4 

and 5 vs 7). Under heat stress (date 2), barley produced 4% less phenolic compounds than under 

optimal sowing, probably due to the involvement of other metabolites, such as proline and 

starch, in heat stress responses (Chowdhary et al. 2022; Dawood et al. 2020) or shorter 

exposure to heat stress for date 2, during key growth stages. Temperature increases from 

anthesis onward have been shown to shorten critical growth periods under climate change (Tan 

et al. 2021; Xiao et al. 2021). The triennial rotation resulted in 10% lower phenolic compounds 

than the biennial rotation and 17% lower TP than monoculture. Higher TP in monoculture may 

reflect barley autotoxicity (Oueslati et al. 2016, 2017) and transgenerational stress memory 

from thermo-hydric stress during the inter-season, between July and November (Lamelas et al. 

2024). Conversely, barley under triennial rotations appeared less stressed (Figure 6). The local 

variety ‘Ardhaoui’ produced 3% less phenolics than ‘Manel’ but was more tolerant to water 

stress and more productive.  The 3% reduction in TP for ‘Ardhaoui’ coincided with a 3% 

reduction in TGW, both indicating drought tolerance. According to figure 6, leaves showed 

significantly higher TP than stems, while no phenolic compounds were detected in roots, 

consistent with Sassi et al. (2021). 
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Figure 7: Effect of tillage method, water regime, sowing date, and rotation on total- 

phenolic 
 (μg of gallic acid equivalent per gram of dry tissue) content of two barley varieties (‘Ardhaoui’, ‘Manel’). ((M: 

monoculture,2-YR: biennial rotation,3-YR: triennial rotation). Error bars denote the standard error. Bars having 

different letters are significantly different at p = 0.05 based on Fisher's protected LSD test 

 

For this growing season, no significant association was found between the agronomic 

parameters and TP content in barley, despite significant variation in TP among plant 

components. Continued research over multiple seasons could provide further insight into these 

relationships. 

 
CONCLUSION 

Over the past decade, global warming in the Boulifa-Kef region has been evident, with an 

average annual temperature increase of 0.16°C per year. Its impact results in a more 

pronounced water deficit from the start of barley grain filling. The total phenolic content of the 

leaves proves to be an effective bioindicator of water stress, highlighting the resilience of barley 

under CA compared to Co. The study shows that Co is more stressful for barley in semi-arid 

environments, as evidenced by the higher total phenolic content and lower yields under Co. To 

mitigate the effects of climate change in semi-arid regions, it is recommended to adopt CA, 

supplemental irrigation, and biennial legume-based rotations, as well as drought-tolerant 

varieties such as “Ardhaoui,” to improve barley productivity and resilience. 
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