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ABSTRACT

Induced mutagenesis is a pivotal tool for enhancing the genetic diversity and achieving targeted trait selection in
pulse crops. In M, and Mj3 generations of lentil (Lens culinaris Medik, var. Pant L-406), this study assesses the
genetic variability induced in three quantitative traits viz., days to flowering, days to maturity, and plant height.
Different concentrations of sodium azide (SA: 0.01%—-0.04%), hydrazine hydrate (HZ: 0.01%-0.04%), and
ethylmethane sulphonate (EMS: 0.1%—-0.4%) were applied to the seeds. The mean values for all the three
attributes showed a significant negative change, according to the results. In the M3 generation, 0.3% EMS
reduced the flowering by 5.20 days and maturity by 5.60 days, resulting in the most significant decreases in
both. With a negative shift of 5.12 cm in comparison to the control, 0.03% SA was the most effective in
reducing the plant height. Phenotypic coefficient of variation (PCV), genotypic coefficient of variation (GCV),
broad-sense heritability (h?), and genetic advance (GA) were all consistently higher in M generation than in the
M3 generation. For flowering in M, generation, 0.3% EMS produced the highest h? (60.64%). These results
imply that in earlier mutant generations, selection for early maturity and decreased plant height is very
successful.
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INTRODUCTION

Lentil (Lens culinaris Medik) is one of the oldest cultivated protein-rich pulses, essential for
global food security and often referred to as "poor man’s meat" due to its high nutritional
value and digestibility. Beyond its role in human diets, lentil serves as high-quality livestock
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feed and supports rural economies through its lucrative market value. However, as a winter
crop, lentil faces significant production constraints. Its fragile stem and limited root system
makes it highly susceptible to lodging at maturity, while extreme drought and elevated
temperatures during the pod-filling stage (terminal heat stress) often drastically reduce yields
(Tyagi & Khan, 2011). Genetic variation is the prerequisite for any successful crop
improvement program. While conventional breeding (hybridization) is the traditional
approach, it is often limited in lentil due to a narrow natural genetic base and technical
challenges, such as the crop’s small floral architecture which makes artificial emasculation
and pollination difficult. Furthermore, while marker-assisted selection (MAS) and genomic
tools offer precision, they require significant prior genomic information and high costs which
are often unavailable for local varieties. In this context, induced mutagenesis serves as a
powerful, cost-effective alternative to create novel alleles and expand genetic diversity
without disrupting the adapted genetic background of elite varieties (Laskar & Khan, 2017;
Wani, 2018; Goyal et al., 2021; Wani, 2024).

Despite the development of 3,443 mutant varieties globally, including 468 pulse varieties,
mutation breeding remains underutilized in lentil. Out of only 19 global lentil mutant
varieties, just two ‘S-256 (Ranjan)’ and ‘Rajendra Masoor 1’ originated in India. This limited
application is largely due to biological constraints (self-pollinating nature) and a historical
lack of large-scale screening for polygenic traits in this crop. There is a substantial
information vacuum regarding the generation of polygenic variability for complex traits like
maturity and stature using contemporary chemical mutagens because most of the prior
research in lentils has been on chlorophyll mutations or morphological indicators. To close
existing gaps, the current study evaluated the relative effectiveness of three chemical
mutagens viz., EMS, HZ and SA in inducing genetic variability across M: and M;3
generations. The goal was to develop lodging-resistant, shorter-statured plants suitable for
high-density planting and early-maturing mutants capable of escaping terminal heat and
drought stress. It also estimated important genetic parameters like heritability and genetic
advance to guarantee the stability and breeding value of the induced traits for future
improvement initiatives (Laskar ef al., 2018; Wani et al., 2021).

METHODOLOGY

Seeds of lentil (Lens culinaris Medik.) variety Pant L-406 were used in this study. Seeds
were pre-soaked in distilled water for 9 h and treated for 6 h with different concentrations of
ethyl methanesulphonate (EMS; 0.1-0.4%), hydrazine hydrate (HZ; 0.01-0.04%), and
sodium azide (SA; 0.01-0.04%). EMS and HZ solutions were prepared in phosphate buffer
(pH 7.0), while SA solutions were prepared in phosphate buffer (pH 3.0). Control seeds were
soaked in distilled water for 15 h. After treatment, seeds were thoroughly washed under
running tap water.

For raising Mi generation, 300 seeds per treatment and control were sown in the field
following a Complete Randomized Block Design (CRBD) with a spacing of 30 cm x 60 cm.
To raise the Mz generation, 30 healthy seeds from each normal M: plant were sown in
progeny rows. The Ms generation was developed by advancing ten selected M. progenies
showing significant negative deviations for days to flowering, days to maturity, and plant
height compared to the control.
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Observations on days to flowering, days to maturity and plant height (cm) were recorded in
M: and Ms generations. Data were statistically analyzed following the method of Singh and
Chaudhary (1985). Analysis of variance was performed to estimate genotypic and phenotypic
variances, genotypic and phenotypic coefficients of variation (GCV and PCV), broad-sense
heritability (h?), and genetic advance (GA) at 1% selection intensity. Treatment means were
compared using critical difference (CD) at 5% probability level.

Genotypic variance (62g)
The following formula estimated the genotypic variance (c°g):

c’g = (MSBf—I\;MSc) ................ Eq.1

where, MSgrand MSe Mean sum of squares for between families and within
families or error, respectively

N Number of replications

Genotypic coefficient of variation (GCYV)

2
GCV (%) = V‘;_(g X 100 surereereererann Eq.2

Phenotypic variance (c2p)
Phenotypic variance was estimated by summing the estimated genotypic variance (c’g) and
the environmental variance (MS. or c%¢)

o’p=c’g+oie ....coeunn.... Eq3

Phenotypic coefficient of variation (PCV)

2
PCV (%) = V;i(p x 100 .......... Eq.4

Heritability (h?)
It is the ratio of genotypic variance to the total phenotypic variance. The broad-sense
heritability (h?) was estimated by the formula suggested by Johnson et al. (1955).

2
h2 (%) = G—;‘f X 100 ............ Eq.5
o
where, o’g = Induced genotypic variance
c’t = Total phenotypic variance (c*t = 6°g + c’e)

calculated from the treated population
Genetic advance (GA)
The estimates of genetic advance (GA) with 1% selection intensity were based on the formula
given below:

Where, h? = Broad sense heritability
op Phenotypic standard deviation of the mean
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performance of treated population

K = 2.64, constant for 1% selection intensity
GA (% of X) = % x 100............ Eq.7

The data was compiled so that each treatment occupies a column and their replicates were
arranged in rows. If the difference between any two treatment means exceeds the CD value
obtained at 5% level, the difference between the two means is treated to be significant.

RESULTS AND DISCUSSION

Induced variability for days to flowering in M: and Ms generations

Mutagenic treatments induced a clear negative shift in mean days to flowering across both
generations, except at the lowest concentrations of HZ and SA in M2 generation (Table 1). On
the other hand, compared to the control, all treatments in Ms consistently showed earlier
flowering. The greatest reduction was observed with 0.3% EMS, especially in Ms (-5.20
days), indicating that EMS is more effective at causing earliness. Particularly M. treated
populations showed better heritability, genetic advance, and phenotypic and genotypic
coefficients of variation. 0.3% EMS in M. was linked to the highest PCV, GCV, heritability,
and genetic progress, suggesting more exploitable genetic variability at this stage. A partial
stability of generated variation is suggested by Ms's relatively lower genetic parameters.
Mutagenesis successfully steered variability toward early flowering, allowing the selection of
attractive mutants, as evidenced by the reported reduction in flowering time and increased
diversity. Similar genetic control of early flowering through recessive gene action has been
reported earlier in legumes (Gumber & Sarvjeet, 1996).

Table 1: Estimates of mean values (X), shift in X and genetic parameters for days to
flowering in M2 and M3 generations of lentil*

_ GA (% of
Treatment Mean+S.E. Shift in X PCV (%) GCV (%) h*(%) % )

M: generation
Control 81.12+0.41 - 5.25 4.79 20.87 5.56
0.1% EMS 80.76+0.75 -0.36 10.73 8.93 47.13 10.19
0.2% EMS 78.91£0.79 -2.21 12.68 9.13 59.35 11.27
0.3% EMS 77.98+0.71 -3.14 14.13 10.65 60.64 11.69
0.4% EMS 79.50+0.69 -1.62 10.15 8.79 46.85 9.77
CD (p=0.05) 0.83
0.01% HZ 81.39+0.78 +0.27 9.66 5.15 44.12 9.15
0.02% HZ 79.20+0.64 -1.92 11.33 6.22 56.65 9.86
0.03% HZ 78.71£0.66 -2.41 12.89 7.83 57.78 10.32
0.04% HZ 79.78+0.78 -1.34 9.93 593 43.63 8.92
CD (p=0.05) 1.30
0.01% SA 81.74+0.73 +0.62 9.16 5.02 43.52 8.33
0.02% SA 79.55+0.88 -1.57 10.92 6.05 52.26 9.21
0.03% SA 79.07+0.81 -2.05 11.83 6.72 54.80 9.56
0.04% SA 80.01+0.76 -1.11 8.99 5.37 42.71 7.99
CD (p=0.05) 0.98

M3 generation
Control 81.36+0.21 - 5.08 4.10 17.35 5.03
0.1% EMS 80.11+0.83 -1.25 7.63 5.91 32.02 7.35
0.2% EMS 77.26+0.88 -4.10 9.70 6.10 35.13 8.11
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_ GA (% of

Treatment Mean=S.E. Shiftin X PCV (%) GCV (%) h2(%) i)
0.3% EMS 76.16+£0.91 -5.20 11.03 7.53 37.17 8.37
0.4% EMS 79.29+0.85 -2.07 7.12 5.71 31.09 7.13
CD (p=0.05) 0.79
0.01% HZ 80.54+0.78 -0.82 6.53 5.11 30.27 6.65
0.02% HZ 78.11+0.76 -3.25 8.37 5.96 31.16 7.56
0.03% HZ 77.19+0.85 -4.17 9.66 6.13 32.73 7.73
0.04% HZ 79.64+0.67 -1.72 6.73 5.56 28.26 6.79
CD (p=0.05) 0.76
0.01% SA 80.94+0.62 -0.42 6.14 4.78 27.34 6.02
0.02% SA 78.25+0.57 -3.11 7.79 5.17 29.42 6.92
0.03% SA 77.58+0.52 -3.78 8.54 5.74 31.56 7.05
0.04% SA 80.08+0.48 -1.28 5.93 5.02 25.71 5.93
CD (p=0.05) 0.41

*SE= Standard error; PCV=Phenotypic coefficient of variation; GCV=Genotypic coefficient of variation; h’
=Heritability; GA=Genetic advance; CD=Critical difference

Induced variability for days to maturity in Mz and Ms generations

Days to maturity showed a pronounced reduction under most mutagenic treatments in both
generations, with EMS treatments being particularly effective (Table 2). With decreases of
3.87 days in M. and 5.60 days in Ms, the largest decrease was observed with 0.3% EMS.
Induced genetic variability was higher and more selectable in the earlier generation, as
evidenced by the fact that enhanced PCV, GCV, heritability, and genetic advance were more
prominent in M than in Ms generation. The gradual fixing of features by selection is
reflected in the fall in genetic parameters in Ms. Since early-maturing mutants are useful for
surviving terminal heat and drought stress and are ideal for intercropping systems, inducing
early maturity by mutagenesis has long been a significant breeding goal (Micke, 1979).
According to Bolbhat et al. (2012), mutagens can effectively promote early maturity by
causing physiological, biochemical, and hormonal changes that affect crop phenology.

Table 2: Estimates of mean values (X), shift in X and genetic parameters for days to
maturity in M2 and M3 generations of lentil

_ GA (% of
Treatment Mean+S.E.  Shiftin X PCV (%) GCV (%) h*(%) i)
M: generation

Control 137.35+0.33 - 5.33 4.20 16.73 5.13
0.1% EMS 137.47+0.93 +0.12 7.94 6.13 41.17 8.03
0.2% EMS 134.70=0.79 -2.65 8.53 6.35 43.74 8.65
0.3% EMS 133.48+0.99 -3.87 8.74 6.73 45.15 8.91
0.4% EMS 135.62+0.98 -1.73 7.34 5.84 38.67 7.54
CD (p=0.05) 1.13
0.01% HZ 137.57+0.91 +0.22 7.28 5.83 39.30 7.78
0.02% HZ 135.30+0.94 -2.05 7.69 6.18 41.13 8.12
0.03% HZ 134.44+0.99 -2.91 8.10 6.43 43.38 8.28
0.04% HZ 135.85+0.95 -1.50 7.16 5.54 36.25 7.02
CD (p=0.05) 1.44
0.01% SA 137.08+0.92 -0.27 6.64 5.68 37.68 7.31
0.02% SA 135.48+0.98 -1.87 7.14 6.03 38.59 7.83
0.03% SA 134.88+0.96 -2.47 7.57 6.25 41.13 6.92
0.04% SA 137.58+0.91 +0.23 6.30 5.13 34.75 6.68
CD (p=0.05) 0.94

M3 generation
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_ GA (% of

Treatment Mean=S.E.  Shift in X PCV (%) GCV (%) h%(%) X)
Control 137.51+£0.38 - 5.16 4.08 15.43 4.74
0.1% EMS 136.11+£0.93 -1.40 7.62 5.88 32.13 7.93
0.2% EMS 132.99+0.87 -4.52 8.28 6.17 34.54 8.13
0.3% EMS 131.91+0.98 -5.60 8.36 6.38 36.11 8.68
0.4% EMS 134.81+0.96 -2.70 7.13 5.51 29.61 7.21
CD (p=0.05) 124
0.01% HZ 136.29+0.90 -1.22 7.15 5.57 30.33 7.61
0.02% HZ 133.50+0.84 -4.01 7.31 5.98 31.88 7.91
0.03% HZ 132.89+0.86 -4.62 7.93 6.03 34.13 8.06
0.04% HZ 135.09+0.99 -242 6.89 5.13 27.15 6.96
CD (p=0.05) 1.09
0.01% SA 136.49+0.88 -1.02 6.28 5.37 27.68 7.16
0.02% SA 134.58+0.85 -2.93 6.91 5.73 29.28 7.51
0.03% SA 133.46+0.97 -4.05 7.26 5.99 32.15 6.73
0.04% SA 135.61+0.99 -1.90 6.10 4.94 25.13 6.51
CD (p=0.05) 0.87

Induced variability for plant height in M. and Ms generations

A general reduction in plant height was observed across most treatments, with the exception
of higher EMS and lower HZ concentrations in Mz. On the other hand, every treatment in M3
generation showed a steady decline (Table 3). The most successful mutagen for causing
dwarfism was sodium azide, with 0.03% SA resulting in the greatest decrease in plant height
in Ms (=5.12 cm). PCV, GCV, heritability, and genetic advance were among the genetic
parameters that were consistently greater in M2 generation. Heritability and genetic advance
were particularly high under 0.03% SA. Because SA is a respiratory inhibitor that interferes
with cellular energy metabolism and mitotic activity, it may have a larger dwarfing effect.
Shortened internodal length, a feature commonly observed in induced dwarf mutants of
grasses and grain legumes, was the main cause of reduced plant height (Talukdar & Biswas,
2006; Lather, 2000; Gaur et al., 2008). Such reductions in stature are agronomically desirable
due to improved lodging resistance.

Table 3: Estimates of mean values (X), shift in Xand genetic parameters for plant
height (cm) in M2 and M3 generations of lentil

_ GA (% of
Treatment Mean+S.E.  Shiftin X PCV (%) GCV (%) h%(%) X )
M: generation

Control 42.22+0.37 - 3.25 2.12 23.24 4.11
0.1% EMS 42.01+0.61 -0.21 7.33 5.43 66.78 18.55
0.2% EMS 40.33+0.72 -1.89 8.11 5.97 71.20 19.43
0.3% EMS 40.43+0.50 -1.79 9.05 6.11 72.93 20.45
0.4% EMS 43.24+0.43 +1.02 7.43 4.22 74.24 15.03
CD (p=0.05) 0.77
0.01% HZ 42.88+0.52 +0.66 8.22 5.66 77.71 21.17
0.02% HZ 39.67+0.47 -2.55 9.26 6.48 78.22 22.92
0.03% HZ 39.92+0.69 -2.30 9.67 6.98 80.12 25.34
0.04% HZ 41.10+0.44 -1.12 8.77 5.71 70.68 18.61
CD (p=0.05) 0.91
0.01% SA 39.91+0.51 -2.31 9.26 6.11 80.12 25.12
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_ GA (% of
Treatment MeantS.E.  Shiftin X PCV (%) GCV (%) h%(%) i)
0.02% SA 38.55+0.48 -3.67 10.13 7.66 81.30 27.10
0.03% SA 39.34+0.54 -2.88 11.59 8.14 87.55 28.53
0.04% SA 41.85+0.60 -0.37 9.26 6.73 73.07 21.21
CD (p=0.05) 0.70
M3 generation

Control 43.22+0.51 - 2.95 2.07 18.16 3.15
0.1% EMS 40.86+0.46 -2.36 6.37 4.11 44.73 11.01
0.2% EMS 39.32+0.55 -3.90 6.96 4.69 48.15 12.05
0.3% EMS 39.50+0.49 -3.72 791 4.51 50.03 12.86
0.4% EMS 41.35+0.50 -1.87 5.94 3.29 40.11 10.29
CD (p=0.05) 0.86

0.01% HZ 40.70+0.65 -2.52 6.85 4.60 50.16 12.12
0.02% HZ 38.73+£0.63 -4.49 7.02 5.03 51.33 12.25
0.03% HZ 38.51+0.44 -4.71 8.05 5.31 52.01 13.30
0.04% HZ 41.01+£0.41 -2.21 6.70 3.96 45.21 11.25
CD (p=0.05) 0.80

0.01% SA 38.99+0.72 -4.23 7.35 5.19 55.17 13.22
0.02% SA 38.37+0.53 -4.85 7.67 6.12 57.41 15.05
0.03% SA 38.10+0.57 -5.12 8.63 6.63 59.12 16.53
0.04% SA 39.57+0.68 -3.65 7.44 4.15 48.27 14.25
CD (p=0.05) 0.66

Characterization of promising early-maturing and dwarf lentil mutants

A distinct and promising mutant was isolated from 0.03% HZ treatment, which exhibited
significant reductions in days to maturity and plant height as compared to the control. Since
dwarfing genes have traditionally been essential for enhancing lodging resistance, yield
stability, fertility, and adaptability particularly during the Green Revolution, the co-
expression of these traits is especially beneficial. Induced dwarf and early-maturing mutants
have been shown to improve agronomic performance and cropping efficiency in rice, grass
pea, cotton, and wheat (Talukdar, 2009; Andrew-Peter-Leon et al., 2021; Wang et al., 2024;
Jin et al., 2013). The identified mutant is an excellent option for breeding efforts aimed at
creating lentil cultivar appropriate for a variety of agroclimatic conditions and intensive
cropping systems due to its lower plant height, compact growth habit, and early maturity.

CONCLUSION

The current study showed that EMS (0.1-0.4%), HZ (0.01-0.04%), and SA (0.01-0.04%)
chemical mutagenesis successfully increased the genetic variability for days to flowering,
days to maturity, and plant height in lentils. Among these, intermediate HZ doses (especially
0.03%) induced the promising combination phenotypes, while 0.3% EMS was more
successful in triggering earliness and 0.03% SA was better at lowering the plant height. There
was more room for successful selection in earlier generations, as seen by the M. generation's
continuously higher phenotypic and genotypic variability, heritability, and genetic advance
than the Ms generation. Therefore, early maturity and reduced plant stature are best achieved
through selection in M. generation. However, subsequent generations are anticipated to
consolidate these favourable features for use in lentil improvement initiatives.
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