### Research Article:

# PERFORMANCE OF CROSSBRED GOAT KIDS (Khari × Jamunapari) FED WITH RICE POLISH AND MAIZE FLOUR SUPPLEMENTED WITH PROBIOTICS AND ENZYMES IN TANAHUN DISTRICT

Shanker Raj Barsila\*, Saroj Wagle, Dipesh Chetri, and Ramashish Shah Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University, Rampur, Chitwan, Nepal

> \*Corresponding author: srbarsila@afu.edu.np Received date: 10 April 2023, Accepted date: 08 April 2025 DOI: https://doi.org/10.3126/jafu.v6i1.79096

### **ABSTRACT**

An experiment was conducted on 16 crossbred goat kids (Khari×Jamunapari) aged approximately 3-4 months under farmer-managed conditions in Myagde-3, Tanahun, Nepal, from November 15, 2019, to February 15, 2020. The aim of this study was to determine the effects of feeding on crossbred goat kids (Khari × Jamunapari) fed rice polish and maize flour supplemented with probiotics and enzymes. The animals were assigned to a randomized complete block design (RCBD) on the basis of body weight with 4 treatments and were replicated 4 times. The treatment combinations included fodder only (T<sub>1</sub>), fodder + rice polish + probiotics + enzymes (T<sub>2</sub>), fodder + maize flour + probiotics + enzymes (T<sub>2</sub>), and fodder + rice polish + maize flour + probiotics + enzymes (T<sub>4</sub>). The parameters studied included proximate nutrient analysis of the feed ingredients, feed consumption, the feed conversion ratio, growth parameters (body length, wither height, heart girth and neck girth) and economic analysis. Body weight gain was recorded at fortnightly intervals, and body weight was measured once a month. The cumulative body weight and fortnightly and daily body weight gains were greatest in the goats reared on fodder + rice polish + maize flour + probiotics + enzymes (T<sub>d</sub>), at 15540.00 g, 7690.00 g, and 91.55 g, respectively. The mean daily feed consumption was highest in goats fed fodder + maize flour + probiotics + enzymes (T<sub>2</sub>), at 567.54 g. The feed conversion ratio of 5.48 was highest in goats fed fodder along with rice polish and maize flour supplemented with probiotics and enzymes. The greatest body length (4.25 inches), wither height (3.250 inches) and heart girth (4.750 inches) were detected in goats fed fodder along with rice polish and maize flour supplemented with probiotics and enzymes. The highest (1: 3.31) benefit cost ratio was obtained from goats reared on fodder + rice polish + maize flour + probiotics + enzymes (T<sub>4</sub>), and the lowest (1: 2.00) benefit cost ratio was obtained from those reared on fodder only (T<sub>1</sub>). The results obtained from the feeding trial revealed that crossbred goat kids (Khari × Jamunapari) reared on fodder supplemented with rice polish and maize flour supplemented with enzymes and probiotics improved live weight, daily live weight gain, feed efficiency, net profit over the control, and the cost ratio.

Keywords: crossbred goat kids, feeding, growth parameters, supplemented

### **INTRODUCTION**

In subsistence agriculture, goats are remarkably well accustomed to withstanding and surviving in harsh environments (Devendra & Burn, 1970) and have the largest ecological spectrum of any domesticated species (Epstein, 1997). Goat's business is feasible for landless, marginal and small farmers; it provides continuous income and employment to farm families, including women and children with low input. Goat Farming, as a business, is a rapidly increasing enterprise in Nepalese landscapes. These are raised for diverse purposes (Kattel, 2016) to offer horns,

hooves, blood and bone meals; for power; and for the transportation of meat, milk, manure and fibers in the country (Upreti & Mahato, 1995).

According to MoAD (2012), the livestock sector was responsible for 14% of GDP and 32% of AGDP, thus demonstrating the key importance of the livestock sector to the national economy. However, it was shown that goat meat was responsible for 20% of the total livestock supply. In particular, small ruminants, among which goats are more noticeable, are highly important in terms of the total supply of livestock.

Goats, particularly small ruminants, are remarkably valuable to the entire livestock industry. In the hills of Nepal, goats make up the majority of ruminants; 49.66% of the total ruminants are from hills, followed by Terai, where 36.47% are from hills. However, the predominance of high mountain sheep cannot be ignored. In Nepal, the number of goats was approximately 11.2 million in 2016--17 (MOAC, 2017). Province 1 has a population of approximately 2.2 million, province 2 has 1.3 million people, province 3 has 2.4 million, province 4 has 1.2 million inhabitants, province 5 has 1.8 million, province 6 has 1 million and province 7 has 1.2 million (MOAC, 2017).

According to the MOAC (2011), approximately 75% of households in Nepal are engaged in goat farming. This reflects the preference of the farmers for goats over other livestock species. Goats live under traditional management practices that include an open grazing system. The method of raising goats is extensive and involves less investment, natural grassland, forestland and crop residues. The increase in the number of goats helps poor families in rural areas as a side financial opportunity. Farmers generally use seasonal fodder and natural resources to keep goats, which means that they are not very cautious about the energy, protein, vitamin and mineral requirements of goat feed. Grain leftovers such as maize flour, rice polish or wheat bran are usually fed to goats by farmers only in the late stage of pregnancy or when they are kidding. The absence of proper nutrition, which is related to unsatisfactory conditions and resulting heavy losses, is the main factor leading to the low productivity of the goat production chain. The most critical economically bound traits of goats, such as growth and reproduction, are directly related to the protein and energy contents of the feed and forage.

The total digestible nutrient (TDN) feed balance at the country level decreased from 30.9% in the 1980s to 20.05% in 2016/17, with a maximum value of -24.09% in the middle hills sector, followed by Terai, with a value of -18.91. The ecological belt showed a good situation of feed in high hills, with a deficit of -3.56% (Rajbhandari & Shah,1981). Regions 1 and 3 of Nepal were the most affected, with values of -30.48% and -38.44%, respectively. The feed deficit in the remaining provinces varied from -9.19% to -15.85%, whereas a positive balance was observed in Province 6 (+6.35%) (Singh et al., 2019). In general, the inadequate production and poor performance of animal husbandry are a result of a low supply of good-quality animal feeds as well as the inefficient use of available feed resources. The feeding resources of Nepal are crop residues, rice and wheat straw, maize stovers, tree fodder, leaf litter and other green fodder that can be collected from cultivated lands and forests.

Most small ruminants, such as goats in the middle hills of Nepal, depend entirely on grazing for feed. Farmers do not provide goats with any other diet based on concentrates to support the best growth performance of goats. More than 90% of the small ruminant population is owned by landless and marginal farmers. As such, this study aims to analyze the potential performance of goat kids through the application of local feed concentrates such as Rice Polish and Maize Flour, as well as to determine the degree of nutritional deficiency and increase in the income of small-scale farmers in the middle hills of Nepal. The study was aimed at the following

objectives: to estimate the performance (live weight, FCR, body length, heart girth, neck girth and wither height) of crossbred goat kids (Khari × Jamunapari) fed with Polish and maize flour, probiotics and enzymes.

### MATERIALS AND METHODS

### **Experimental site and duration**

The experiment was conducted at Farmers Field Myagde-3, Kilchowk, Tanahun, from Nov. 15, 2019, to Feb. 15, 2020. The site is located approximately 15 km southwest of Damauli, Tanahun. It lies in temperate midhills located in the southern part of central Nepal. It is situated between 27°59'35" north longitude and 84°07'40" east latitude at 450 masl.

### Selection of experimental kids

In total, 16 kids aged 3–4 months were weighed individually, and their mean weights were taken as their initial weights. They were allowed to adapt for 15 days so that the kids could easily consume the rice bran and maize flour. They were treated against ectoparasites and endoparasites by injecting "Ivermectin" subcutneously 1 ml/25 kg body weight. The kids were divided into four treatment groups. Each treatment group had a similar average weight, with 4 replications.

### **Experimental design**

The experiment was conducted via a randomized complete block design (RCBD). Four treatments of 4 replicates each were used. The children were taken as individual treatment units. The kids were classified into a different block on the basis of their live weight.

# **Treatments combination**

T<sub>1</sub>: Stall feeding ad libitum fodder only

T<sub>1</sub>: Stall feeding ad libitum fodder + Rice polish + probiotics + enzymes.

 $T_3$ : Stall feeding ad libitum fodder + maize flour + probiotics + enzymes.

T<sub>4</sub>: Stall feeding ad libitum fodder + Rice polish + Maize flour + Probiotics + enzymes.

### Feed preparation and feeding

The desired feed ingredients and feed supplements, such as rice polish, maize flour, enzymes (microzymes), probiotics, minerals (Agriminforte) and salt, were purchased from the local market. The enzymes (500 g/ton) and probiotics (1 kg/ton) were mixed with the ingredients to be fed to the kids.

Morning and evening feeding were also performed as per the feeding schedule in two equal parts of the allowance. The tree fodder from Khanayo (*Ficus semicordata*) was weighed and provided ad libitum. All the feed and tre fodder were stall-based. Rice polish and maize flour were fed at rates of 100 g, 150 g and 200 g in the 1st, 2nd and 3rd months, respectively, in two split doses every morning and in the evening.

### **Nutrient analysis**

To determine the dry matter content, the feed samples from each of the treatments were dried in an oven at 70 °C for 24 hours. For dry matter determination, 100 grams of Polish rice and maize flour (from each treatment) were taken as samples to evaluate dry matter. The proximate nutritional composition of the samples from all the treatments was evaluated twice throughout the entire experimental period. Crude protein (CP), crude fiber (CF), ether extracts (EEs) and total ash were studied at the Animal Nutrition Laboratory according to the AOAC (1994).

### **Economic analysis**

The total variable cost for each treatment was calculated considering the feed cost, health care cost, and labor cost. The cost of the rice polish was NRs. 35/kg, the cost of the

maize flour was NRs. 45/kg, the cost of the probiotics was NRs. 220/kg, the mineral cost was NRs. 160/kg, and the salt cost was NRs. 18/kg in the locality. The labor cost was considered to be the number of NRs. 500 per day for taking care of 16 young kids. The fodder used to feed the kids was considered free of cost. Fixed costs and miscellaneous expenses, such as the costs of utensils and ropes, were not considered. Similarly, the cost of live body weight was NR.500 per kg of live body weight. The amount of dung voided by the animals was 1.5 kg per week on a dry matter basis, and the manure was sold at NRs. 4 kg/kg dry manure. The cost–benefit ratio was calculated by dividing the gross return by the total variable cost of rearing.

# Statistical analysis

Recorded data were tabulated in Ms-Excel. One-way analysis of variance (ANOVA) was performed via M statistics (C Version 6.1.4). Least significant difference (LSD) tests were used to compare the means. The initial weight of the kids at the beginning of the experiment was taken as a covariate to minimize the variability due to differences in initial weight. The graphical representations of the data were generated via Microsoft Excel.

The statistical model for the analysis of the parameters is as follows:

Y<sub>ij</sub>= any observation for which i is the treatment factor j is the replication factor = the mean T<sub>i</sub>= The effect of being in treatment i B<sub>j</sub>= the effect of being in replication j

### **RESULTS**

# Analysis of the experimental diets

All the feeding materials were analyzed in the nutrition laboratory of Agriculture and Forestry University (AFU) according to AOAC (1994). The chemical composition and nutritive value of the materials fed to experimental crossbred kids are presented in Table 1. Accordingly, the maximum dry matter content (91.35%) was recorded in Maize Flour + Probiotics + Enzymes, followed by the dry matter content (91.06%) of Rice polish + Maize flour + Probiotics + Enzymes. However, the minimum dry matter content (34.6%) was recorded in Khaniyo. The maximum percentage of ether extract (12.65%) was recorded in Rice polish + Probiotics + Enzymes, and the minimum percentage was recorded in Khaniyo (2.85%). However, other crude fiber treatments were used to compare rice polishing and khaniyu. The maximum crude fiber content (25.6%) was recorded in khaniyo, and the minimum crude fiber content (4.35%) was recorded in Maize Flour; the crude fiber contents of the other treatments were between those of the Khaniyo and Maize Flour treatments. The crude protein content ranged between 9.84% and 12.68%. Similarly, the ash contents of the experimental diets of goats ranged between 5.7% and 8.3%.

Table 1. Chemical composition of the feed materials of crossbred kids fed a diet supplemented with enzymes and probiotics at Myagde-3, Tanahun, 2019

| Treatments                                      | %DM   | %EE   | %CF  | %CP    | %Ash |
|-------------------------------------------------|-------|-------|------|--------|------|
| Khaniyo (Ficus semicordata)                     | 34.6  | 2.85  | 25.6 | 10.475 | 5.7  |
| Rice polish + probiotics + enzymes              | 89.8  | 12.65 | 5.2  | 12.68  | 6.35 |
| Maize flour + Probiotics + enzymes.             | 91.35 | 7.08  | 4.35 | 9.84   | 8.3  |
| Rice polish+ maize flour + probiotics + enzymes | 91.06 | 7.65  | 4.45 | 10.165 | 7.0  |

# Feed consumption Daily feed consumption

The mean daily feed consumption (g) of crossbred kids fed a diet supplemented with enzymes and probiotics is presented in Table 2. The mean daily feed consumption during the  $1^{st}$  fortnight and  $2^{nd}$  fortnights was similar (p >0.05).

The mean daily feed consumption at  $3^{rd}$  fortnight was significantly different (p <0.05); the maximum daily feed consumption (562.02 g) was observed in the treatment group fed Fodder + rice polish + probiotics + enzymes, which was statistically similar to that in the treatment groups fed Fodder + maize flour + probiotics + enzymes and Fodder + rice polish + maize flour + probiotics + enzymes. However, the minimum mean daily feed consumption (78.95 g) was observed in the treatment group fed with Fodder only.

Table 2. Mean daily feed consumption (g) of crossbred kids fed a diet supplemented with probiotics and enzymes at Myagde-3, Tanahun, 2019

| Treatment                                                 | 1st<br>fortnight | 2nd<br>fortnight | 3rd<br>fortnight     | 4th<br>fortnight | 5th<br>fortnight | 6th<br>Fortnight | Total feed consumption | average daily<br>feed<br>consumption |
|-----------------------------------------------------------|------------------|------------------|----------------------|------------------|------------------|------------------|------------------------|--------------------------------------|
| Fodder only                                               | 227.98           | 513.20           | 78.95 b              | 176.27           | 425.87           | 280.37           | 1702.64                | 283.77                               |
| Fodder + rice polish + probiotics + enzymes               | 759.71           | 663.55           | 562.02 <sup>ab</sup> | 300.05           | 369.27           | 309.45           | 2964.05                | 494.01                               |
| Fodder + maize flour + probiotics + enzymes               | 665.41           | 569.29           | 338.77 <sup>ab</sup> | 336.54           | 977.75           | 517.48           | 3405.23                | 567.54                               |
| Fodder + rice polish + maize flour + probiotics + enzymes | 923.66           | 510.14           | 300.08 b             | 489.39           | 436.29           | 349.73           | 3009.29                | 501.55                               |
| Grand mean                                                | 644.19           | 564.04           | 319.95               | 325.56           | 552.29           | 364.26           | 2770.30                | 461.72                               |
| SEM                                                       | 10.00            | 6.38             | 7.07                 | 5.37             | 10.09            | 7.79             | 26.97                  | 4.483                                |
| F value                                                   | $2.42^{\rm ns}$  | $0.42^{\rm ns}$  | $4.30^{*}$           | $2.45^{\rm ns}$  | $2.96^{\rm ns}$  | $0.33^{\rm ns}$  | $3.33^{ns}$            | $3.33^{ns}$                          |
| Probability                                               | > 0.05           | > 0.05           | < 0.05               | > 0.05           | > 0.05           | > 0.05           | > 0.05                 | > 0.05                               |
| LSD                                                       | -                | -                | 28.75                | -                | -                | -                | -                      | -                                    |

The means in columns followed by the same superscript are not significantly different (p > 0.05) and are significantly different (p < 0.05).

### Feed conversion ratio (FCR)

The mean feed conversion ratios of the crossbred kids fed diets supplemented with probiotics and enzymes are presented in Table 3. The mean feed conversion ratio at 1<sup>st</sup> fortnight was significantly different (p<0.01); a better feed conversion ratio (FCR of 5.76) was recorded in the Fodder + rice polish + maize flour + probiotics + enzyme treatment group than in the other treatment groups (p<0.01). However, a poor feed conversion ratio (FCR 8.89) was observed in the treatment group fed with fodder only without supplementation with probiotics or enzymes. Others were in between fodder only and Fodder + rice polish + maize flour + probiotics + enzymes.

Similarly, the mean feed conversion ratios on the 2nd, 3rd, 4th, 5<sup>th</sup> and 6<sup>th</sup> fortnights were also significantly different (p<0.01).

The overall mean feed conversion ratio of the kids was significantly (p<0.01) greater than the feed conversion ratio (FCR 5.48) recorded in the Fodder + rice plymish + maize flour + probiotics + enzyme treatment group, which was significantly different (p< 0.01) from the results of the other treatments. However, a poor feed conversion ratio (FCR 8.93) was recorded in the treatment group fed with fodder only without supplementation with probiotics

<sup>\*</sup> Significant at the 5% level, \*\* significant at the 1% level, ns not significantly different

or enzymes. Others were in between fodder only and Fodder + rice polish + maize flour + probiotics + enzymes.

Table 3. Mean feed conversion ratio (FCR) of crossbred kids fed a diet supplemented with probiotics and enzymes at Myagde-3, Tanahun, 2019

| Treatment                                                    | 1 <sup>st</sup>   | 2 <sup>nd</sup>   | 3 <sup>rd</sup>    | 4 <sup>th</sup>    | 5 <sup>th</sup>   | 6 <sup>th</sup>   | Overall           |
|--------------------------------------------------------------|-------------------|-------------------|--------------------|--------------------|-------------------|-------------------|-------------------|
|                                                              | fortnight         | fortnight         | fortnight          | fortnight          | fortnight         | fortnight         | gain              |
| Fodder only                                                  | 8.89a             | 9.20a             | 10.33a             | 9.14ª              | 8.78a             | 9.04ª             | 8.93a             |
| Fodder + polish + probiotics + enzymes                       | 7.49ª             | 7.68 <sup>b</sup> | 8.24 <sup>ab</sup> | 8.97ª              | 8.32ª             | 8.26ª             | 8.02 <sup>b</sup> |
| Fodder + maize flour + probiotics<br>+ enzymes               | 7.505ª            | 7.19 <sup>b</sup> | 6.87 <sup>bc</sup> | 6.770 <sup>b</sup> | 7.15 <sup>b</sup> | 6.83 <sup>b</sup> | 7.11°             |
| Fodder + rice polish + maize flour<br>+ probiotics + enzymes | 5.76 <sup>b</sup> | 5.52°             | 5.270°             | 5.27 <sup>b</sup>  | 5.28°             | 5.39°             | 5.48 <sup>d</sup> |
| Grand mean                                                   | 7.413             | 7.397             | 7.678              | 7.539              | 7.382             | 7.381             | 7.385             |
| SEM                                                          | 0.346             | 0.307             | 0.629              | 0.503              | 0.403             | 0.406             | 0.361             |
| F value                                                      | 7.57**            | 17.17**           | 7.47**             | 13.84**            | 18.00**           | 28.77**           | 52.83**           |
| Probability                                                  | < 0.01            | < 0.01            | < 0.01             | < 0.01             | < 0.01            | < 0.01            | < 0.01            |
| LSD                                                          | 1.407             | 1.01              | 2.363              | 1.506              | 1.109             | 0.906             | 0.610             |

The means in columns followed by the same superscript are not significantly different (p > 0.05) and are significantly different (p < 0.05).

# Growth performance of crossbred kids Daily Weight Gain

The mean daily body weight gain (g) of crossbred kids fed a diet supplemented with probiotics and enzymes is shown in Table 4. The 1st fortnight mean daily body weight gain was significantly different (p < 0.05); the highest daily body weight gain (158.750 g) was observed in the treatment group (Fodder + rice polish + maize flour + probiotics + enzymes), and it was statistically at par with that of the treatment groups fed Fodder + rice polish + maize flour + probiotics + enzymes, which was statistically similar to that of the treatment groups fed Fodder + maize flour + probiotics + enzymes and Fodder + rice polish + maize flour + probiotics + enzymes. However, the minimum daily body weight gain (25.00 g) was observed in the treatment group fed with Fodder only.

The mean daily body weight gains during the 2nd fortnight and 3rd fortnights were similar (p >0.05). There was a statistically significant difference (p <0.05) in the mean daily body weight gain of the kids at the 4th fortnight, with significantly greater (91.96 g) daily body weight gain in the Fodder + rice polish + maize flour + probiotics + enzymes group than in all the other treatment groups (p < 0.05). However, the daily minimum body weight gain during the  $5^{th}$  fortnight and the  $6^{th}$  fortnight was similar (p >0.05).

Overall, the mean daily body weight gain of the kids was highly significantly (p <0.01) greater than the maximum daily body weight gain (91.55 g) found in the Fodder + rice polish+ maize flour + probiotics + enzymes treatment, which was significantly different from the T1 and T2 treatments but was similar to the T3 treatment. However, the lowest minimum daily body weight gain (31.70 g) was found in the Fodder treatment group.

<sup>\*</sup> Significant at the 5% level, \*\* significant at the 1% level, ns not significantly different

Probability

LSD

| productes and enzymes at Myagae 3, Tananan, 2017             |                     |                    |                    |                    |                    |                    |                     |
|--------------------------------------------------------------|---------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|
| Transferent                                                  | 1 s t               | 2 n d              | 3 r d              | 4 t h              | 5 t h              | 6 t h              | Average             |
| Treatment                                                    | fortnight           | fortnight          | fortnight          | fortnight          | fortnight          | fortnight          | daily gain          |
| Fodder only                                                  | 25.00°              | 59.11              | 9.29               | 19.64 b            | 47.68              | 29.46              | 31.70 °             |
| Fodder + rice polish + probiotics + enzymes                  | 98.93 <sup>ab</sup> | 86.08              | 68.75              | 38.57 <sup>b</sup> | 48.21              | 36.43              | 62.83 b             |
| Fodder + maize flour + probiotics + enzymes                  | 86.96 <sup>bc</sup> | 95.36              | 55.72              | 52.68 b            | 132.86             | 77.32              | 81.10 <sup>ab</sup> |
| Fodder + rice polish + maize flour<br>+ probiotics + enzymes | 158.75°             | 93.36              | 56.43              | 91.96 a            | 81.25              | 67.50              | 91.55 a             |
| Grand mean                                                   | 92.41               | 79.91              | 47.54              | 50.71              | 77.50              | 52.68              | 66.79               |
| SEM                                                          | 15.55               | 9.46               | 10.50              | 9.83               | 13.90              | 12.00              | 7.84                |
| F value                                                      | 5.39*               | 1.24 <sup>ns</sup> | 3.58 <sup>ns</sup> | 6.81*              | 3.09 <sup>ns</sup> | 0.75 <sup>ns</sup> | 7.79**              |

Table 4. Mean daily body weight gain (g) of crossbred kids fed a diet supplemented with probiotics and enzymes at Myagde-3, Tanahun, 2019

The means in columns followed by the same superscript are not significantly different (p > 0.05) and are significantly different (p < 0.05).

> 0.05

< 0.05

3.55

> 0.05

> 0.05

< 0.01

> 0.05

< 0.05

7.13

# Morphological attributes of crossbred kids Body Length

The mean monthly body length (inch) of crossbred kids fed a diet supplemented with probiotics and enzymes is presented in Table 5. The initial mean monthly body length was statistically similar (p > 0.05) across the different treatments. Similarly, during the 1st and 2nd months of the experimental period, the mean monthly body length was not significantly different (p > 0.05). The mean monthly body length at the 3rd month was significantly different (p <0.05) from the maximum body length (19.00 inches) recorded in the treatment group fed with Fodder + rice polish + maize flour + probiotics + enzymes, which was significantly different (p <0.05) from those at  $T_1$  and  $T_3$  but was similar to that at  $T_2$ . However, the minimum body length (15.75 inches) was recorded in the treatment group fed with fodder only. The overall increase in the mean monthly body length was also significantly different (p <0.05); the maximum body length (4.25 inches) was recorded in the treatment group fed with Fodder + rice polish + maize flour + probiotics + enzymes, which was significantly different (p <0.05) from that at  $T_1$  and  $T_3$  but was similar to that at  $T_2$ . However, the minimum body length (1.50 inches) was recorded in the treatment group fed with fodder only.

Table 5. Mean monthly body length (inch) of crossbred kids fed a diet supplemented with probiotics and enzymes at Myagde-3 Tanahun, 2019

| Tuestonerat                                    | Initial         | 1 <sup>st</sup> | 2 <sup>nd</sup> | 3 <sup>rd</sup> | O11 :            |
|------------------------------------------------|-----------------|-----------------|-----------------|-----------------|------------------|
| Treatment                                      | initiai         | month           | month           | month           | Overall increase |
| Fodder only                                    | 14.25           | 15.00           | 15.00           | 15.75°          | 1.50°            |
| Fodder + rice polish + probiotics + enzymes    | 14.75           | 16.25           | 16.25           | $18.12^{ab}$    | $3.25^{ab}$      |
| Fodder + maize flour + probiotics + enzymes    | 14.26           | 15.50           | 15.75           | 16.75bc         | $2.50^{bc}$      |
| Fodder + rice polish+ maize flour + probiotics | 14.76           | 16.50           | 17.25           | 19.00a          | 4.25a            |
| + enzymes                                      | 14.70           | 10.50           | 17.23           | 19.00           | 4.23             |
| Grand mean                                     | 14.50           | 15.81           | 16.06           | 17.37           | 2.87             |
| SEM                                            | 0.27            | 0.33            | 0.41            | 0.51            | 0.35             |
| F value                                        | $0.43^{\rm ns}$ | $3.74^{\rm ns}$ | $2.20^{\rm ns}$ | 6.47*           | 5.27*            |
| Probability                                    | > 0.05          | >0.05           | >0.05           | < 0.05          | < 0.05           |
| LSD                                            | -               |                 | -               | 1.68            | 1.53             |

The means in columns followed by the same superscript are not significantly different (p > 0.05) and are significantly different (p < 0.05).

<sup>\*</sup> Significant at the 5% level, \*\* significant at the 1% level,  $^{\rm ns}$  not significantly different

<sup>\*</sup> Significant at the 5% level, \*\* significant at the 1% level, ns not significantly different

### Wither height

The average monthly wither height (inch) of the crossbred kids given a diet with added enzymes and probiotics is shown in Table 6. Similarly, (p >0.05), represents the mean monthly withering heights in the initial, 1st and 2nd months. The mean monthly wither height at the 3rd month was significantly different (p<0.05) from the maximum wither height (19.25 inches) recorded in the treatment group fed with Fodder + rice polish + maize flour + probiotics + enzymes, which was significantly different (p<0.05) from the highest recorded height at T1 and was similar to those recorded at T2 and T3 (Table 1). Nonetheless, the shortest body length (16.00 inches) was obtained from the treatment group, which was fed only fodder. The mean monthly body length significantly increased (p<0.05), and the maximum body length (3.26 inches) in the treatment group, Fodder + rice polish + maize flour + probiotics + enzymes, significantly differed (p<0.01) from that in T1 and was statistically similar to that in T2 and T3. On the other hand, the minimum body length (0.75 in) was noted for the treatment group fed with fodder alone.

Table 6. Mean monthly wither height (inch) of crossbred kids fed a diet supplemented with probiotics and enzymes at Myagde-3 Tanahun, 2019

| 1                                                            | . 0                  |                      | ,                    |                    |                   |
|--------------------------------------------------------------|----------------------|----------------------|----------------------|--------------------|-------------------|
| Treatment                                                    | Initial              | 1 <sup>st</sup>      | 2 <sup>nd</sup>      | 3 <sup>rd</sup>    | Overall           |
|                                                              |                      | month                | month                | month              | Increase          |
| Fodder only                                                  | 15.25                | 15.50                | 15.25                | 16.00 <sup>b</sup> | $0.75^{b}$        |
| Fodder + rice polish + probiotics + enzymes                  | 16.25                | 17.50                | 17.25                | $19.00^{a}$        | 2.75ª             |
| Fodder + maize flour + probiotics + enzymes                  | 15.25                | 17.25                | 16.75                | 18.50a             | 3.25 <sup>a</sup> |
| Fodder + rice polish + maize flour<br>+ probiotics + enzymes | 16.00                | 18.25                | 17.50                | 19.25ª             | 3.26ª             |
| Grand mean                                                   | 15.69                | 17.12                | 16.81                | 18.19              | 2.50              |
| SEM                                                          | 0.36                 | 0.45                 | 0.39                 | 0.53               | 0.33              |
| F value                                                      | $0.57^{\mathrm{ns}}$ | $3.19^{\mathrm{ns}}$ | $2.38\mathrm{^{ns}}$ | 4.55*              | 9.27**            |
| Probability                                                  | > 0.05               | > 0.05               | > 0.05               | < 0.05             | < 0.01            |
| LSD                                                          | -                    | -                    | -                    | 2.10               | 1.18              |

The means in columns followed by the same superscript are not significantly different (p > 0.05) and are significantly different (p < 0.05).

### Heart Girth

Table 7 shows the mean monthly heart girth (inches) of crossbred kids on a diet supplemented with probiotics and enzymes. Notably, the initial mean monthly heart girth was statistically similar (p > 0.05) across the different treatments. Furthermore, during the 1st and 2nd months of the experimental period, the mean monthly heart girth did not differ significantly (p > 0.05). The mean heart girth for the 3rd month was significantly (p < 0.05) greater than the maximum recorded heart girth (23.00 inches) in the treatment group, which was fed with Fodder + rice polish + maize flour + probiotics + enzymes and was significantly different (p < 0.05) from that at T1 and statistically similar to that at T2 and T3. In contrast, the minimum body length (19.75 inches) was observed in the treatment group fed with fodder only.

The mean monthly body length significantly increased (p <0.01), whereas the maximum body length (4.75) was found in treatment T3 (Fodder + Rice polish + Maize Flour + Probiotics + Enzymes), which was significantly (p<0.05) different from that in T1 and T3 and statistically (p<0.05) different from that in T2. The shortest body size (1.50 inches) was obtained from the treated group, which was fed only fodder.

<sup>\*</sup> Significant at the 5% level, \*\* significant at the 1% level, ns not significantly different

| r-vyyyyyyyyyyyy-                                      |             | ,               | _                  |                    |                      |
|-------------------------------------------------------|-------------|-----------------|--------------------|--------------------|----------------------|
| Treatment                                             | Initial     | 1 st            | $2^{\rm nd}$       | $3^{\rm rd}$       | Overall              |
| Treatment                                             | IIIIIII     | month           | Month              | month              | Increase             |
| Fodder only                                           | 18.25       | 18.50           | 18.25              | 19.75 <sup>b</sup> | 1.50°                |
| Fodder+ Rice polish +probiotics +enzymes              | 18.01       | 18.75           | 19.75              | $22.00^{a}$        | $4.00^{\mathrm{ab}}$ |
| Fodder + Maize flour + Probiotics + enzymes           | 18.00       | 18.25           | 18.75              | $21.50^{a}$        | $3.50^{b}$           |
| Fodder+ Rice polish+ Maize flour +Probiotics +enzymes | 18.26       | 19.75           | 20.50              | 23.00ª             | 4.75ª                |
| Grand mean                                            | 18.12       | 18.81           | 19.31              | 21.56              | 3.44                 |
| SEM                                                   | 0.39        | 0.46            | 0.57               | 0.55               | 0.36                 |
| F value                                               | $0.16^{ns}$ | $1.47^{\rm ns}$ | 2.21 <sup>ns</sup> | 6.61*              | 13.74**              |
| Probability                                           | > 0.05      | > 0.05          | > 0.05             | < 0.05             | < 0.01               |
| LSD                                                   | _           | _               | _                  | 4.90               | 1.13                 |

Table 7. Mean monthly heart girth (inch) of crossbred kids fed a diet supplemented with probiotics and enzymes at Myagde-3 Tanahun, 2019

The means in columns followed by the same superscript are not significantly different (p > 0.05) and are significantly different (p < 0.05).

### Neck Girth

The mean monthly neck girth (inch) of the crossbred kids fed a diet supplemented with enzymes and probiotics is presented in Table 8. The initial,  $1^{st}$ -month and  $2^{nd}$ -month mean monthly neck girth values were similar (p >0.05).

The results from the third month revealed that the difference in the mean number of neck girths was significant (p < 0.01). The maximum neck girth was recorded in the treatment group fed Fodder + Rice polish + Maize Flour + Probiotics + Enzymes, which was significantly different (p < 0.05) from that at T1 but was on par (p < 0.05) with those at T2 and T3. However, the minimum body length in inches was recorded in the treatment group fed with fodder only.

The mean monthly body length increase described above was significantly (p<0.05) greater than the maximum body length of 4.25 inches shown in the treatment group fed Fodder + Maize Flour + Probiotics + Enzymes, which was significantly different (p<0.05) from that of T1 and T2 but was on par (p<0.05) with that of T3. The minimum body length of 1.75 inches was recorded in the treatment group fed with Fodder only.

Table 8. Mean monthly neck girth (inch) of crossbred kids fed a diet supplemented with probiotics and enzymes at Myagde-3 Tanahun, 2019

| Tuestment                                    | Initial     | 1 <sup>st</sup> | 2 <sup>nd</sup> | 3 <sup>rd</sup>    | Overall            |
|----------------------------------------------|-------------|-----------------|-----------------|--------------------|--------------------|
| Treatment                                    | minai       | Month           | month           | month              | Increase           |
| Fodder only                                  | 9.00        | 9.75            | 10.50           | 10.75 <sup>b</sup> | 1.75°              |
| Fodder+ Rice polish +probiotics +enzymes     | 10.00       | 10.50           | 11.50           | $13.00^{a}$        | $3.00^{b}$         |
| Fodder + Maize flour +Probiotics +enzymes    | 9.500       | 10.50           | 11.25           | $13.75^{a}$        | $4.25^{a}$         |
| Fodder+ Rice polish+ Maize flour +Probiotics | 10.25       | 11 25           | 12.50           | 13.76a             | 3.50 <sup>ab</sup> |
| +enzymes                                     | 10.23       | 11.23           | 12.30           | 13.70              | 3.30               |
| Grand mean                                   | 9.68        | 10.50           | 11.44           | 12.81              | 3.12               |
| SEM                                          | 0.19        | 0.30            | 0.34            | 0.40               | 0.30               |
| F value                                      | $2.72^{ns}$ | $2.08^{\rm ns}$ | $3.25^{\rm ns}$ | 9.59**             | 7.57**             |
| Probability                                  | >0.05       | > 0.05          | > 0.05          | < 0.01             | < 0.01             |
| LSD                                          | -           | -               | -               | 1.38               | 1.15               |

The means in columns followed by the same superscript are not significantly different (p > 0.05) and are significantly different (p < 0.05).

<sup>\*</sup> Significant at the 5% level, \*\* significant at the 1% level, ns not significantly different

<sup>\*</sup> Significant at the 5% level, \*\* significant at the 1% level, ns not significantly different

### **Economic analysis**

Table 9 presents the economic analysis of the crossbred kids that received a diet supplemented with probiotics and enzymes. (Rs.2628. 2) In the treatment group, they received Fodder + Maize flour + Probiotics + enzymes. However, the lowest (Rs.1042. 8) expense was noted just in fed with fodder alone treatment group. The net income was highest (Rs.5392. 3744.483) in the treatment group (Table 8). 2) and fodder (Rs.4114. 2) Treatment groups. However, the lowest (Rs.3632. 8) between the treatment and control groups fed with Fodder + Maize flour +Probiotics +enzymes only.

The net profit over the control was highest (Rs.1278.6) in the treatment group fed Fodder+ Rice polish+ Maize flour +Probiotics +enzymes, but it decreased in the treatment groups fed Fodder+ Rice polish+ Maize flour +Probiotics +enzymes (Rs.481.4) and Fodder+ Rice polish +probiotics +enzymes (Rs.213). The benefit cost ratio was the lowest (1:2.00) in the treatment group fed with Fodder only, and it increased in the treatment groups fed with Fodder + Maize flour +Probiotics +enzymes (1:2.38) and Fodder+ Rice polish +probiotics +enzymes (1:2.85). The highest (1:3.31) benefit cost ratio was recorded in the treatment group fed with Fodder+ Rice polish+ Maize flour +Probiotics +enzymes.

Table 9. Cost benefit analysis of the experimental crossbred kids fed a diet supplemented with probiotics and enzymes at Myagde-3 Tanahun, 2019

| Expenditure                          | T,     | T,     | T <sub>3</sub> | $T_{\scriptscriptstyle A}$ |
|--------------------------------------|--------|--------|----------------|----------------------------|
| Fodder Consumed (kg DM)              | 67.10  | 64.10  | 65.90          | 65.90                      |
| Fodder Cost @ Rs 8/kg                | 536.8  | 512.8  | 527.2          | 527.2                      |
| Rice polish consumed (kg)            | -      | 27     | -              | 13.5                       |
| Rice polish Cost @ Rs 35/kg          | -      | 945    | -              | 472.5                      |
| Maize flour consumed (kg)            | -      | -      | 27             | 13.5                       |
| Maize flour cost@ Rs 45/kg           | -      | -      | 1215           | 607.5                      |
| Probiotics +Enzyme consumed (Rs)     | -      | 220    | 220            | 220                        |
| Minerals (Rs)                        | 180    | 180    | 180            | 180                        |
| Salt (Rs)                            | 6      | 6      | 6              | 6                          |
| Labor (Rs)                           | 500    | 500    | 500            | 500                        |
| Total Expenditure                    | 1042.8 | 2343.8 | 2628.2         | 2333.2                     |
| Income                               |        |        |                |                            |
| Live weight (kg)                     | 9.63   | 12.67  | 11.85          | 14.78                      |
| Income from sale of goat @ Rs.500/kg | 4815   | 6335   | 5925           | 7390                       |
| Income from dung (Rs)                | 336    | 336    | 336            | 336                        |
| Total Income (Rs)                    | 5151   | 6671   | 6261           | 7726                       |
| Net Income (Rs)                      | 4114.2 | 4327.2 | 3632.8         | 5392.8                     |
| Net Profit over control              | -      | 213    | 481.4          | 1278.6                     |
| Benefit cost ratio (B : C)           | 1:2.00 | 1:2.85 | 1:2.38         | 1:3.31                     |

<sup>\*</sup>Labor cost Rs.500/day, rice polishing cost Rs.35/kg, maize flour cost Rs.45/kg, live weight Rs.500/kg and dung Rs.4/kg.

### **DISCUSSION**

### **Feed Intake**

The feed intake (average daily intake) was highest in the goats fed the fodder in combination with probiotics and enzymes 7. Higher feed intake may result from the efficient utilization of nutrients. These results are supported by the work of Das et al. (2001), Kim et al. (1992) and Weidmeire et al (1987). Gomez-Alarcon et al. (1987) demonstrated that the addition of yeast culture to the rumen of dairy cows increased feed intake. Beauchemin et al. (1998), Judkins and Stobart (1988), Krause et al. (1998) and Kung et al. (1998) reported that the application

of fibrolytic enzymes enhanced digestion, which was associated with increases in feed consumption and the particulate passage rate. Enzymes have been shown to increase the rate of feed consumption by dairy calves (Dong, 1998; Feng et al., 1996) and to exert beneficial effects (Beauchemin et al., 1998; Yang et al., 1998). An increase in the passage rate can be associated with a faster rate of particle size reduction in the rumen and a corresponding increase in feed intake (Maertens et al., 1984).

### **Growth Performance**

The weight gain of crossbred kids in the treatment group, which had a diet supplemented with probiotics and enzymes, was high. This weight gain is probably the result of a more efficient intake of the dietary nutrients where probiotics and enzymes are included in the diet. The daily weight gain of beef cows and calves maintained on poor-quality pasture increased from 0.57 to 0.80 kg per day when supplemented with Aspergillus oryzae (Weidmeire, 1989). Dawson (1989) and Weidmeier et al. (1987) reported that the addition of yeast culture to dairy cows increased the total number of viable bacteria and cellulolytic bacteria by 1.3- and 1.5-fold, respectively. A Saccharomyces cerevisiae strain for growth stimulated the growth of Fibrobacter succinogenes S85 and reduced the log time for the growth of Ruminococcus albus 7, Ruminococcus flavefaciens FD1 and Butyrivibrio fibrisolvens D1 in vitro (Girard and Dawson, 1994). The use of Enterococcus faecium (EF212), a lactate-producing bacterium, alone or in combination with yeast, to feedlot cattle fed a high-grain diet could improve feed digestion (Beauchemin et al., 2003). Chaucheyras-Durant and Fonty (2001) reported that most polysaccharide and glycoside-hydrolase activities increased in the presence of this yeast product. Harrison et al. (1988a) reported a 60% increase in the total bacterial population and an 82% increase in the number of cellulolytic bacteria in the rumen of lactating dairy cows supplemented with 57 g/day Saccharomyces cerevisiae. Frumholtz et al. (1989a) reported an 80% increase in the total bacterial population and an 88% increase in the cellulolytic bacterial population in the rumen of lactating cows supplemented with 250 mg/day. Fiems et al. (1993) reported that the effect of yeast on ruminal pH was more pronounced in sheep fed a maize silage/cereal-based concentrate diet (high sugar/starch contents) than in those fed grass hayand sugar beet pulp-based concentrates.

### **CONCLUSION**

Maize flour feed is relatively expensive, but mixing maize flour with Polish rice flour is economical for small-scale goat production. The proper growth performance of crossbred goats can be achieved via the consumption of locally available ingredients such as maize flour and rice polish. Further verification of the results is needed by conducting multiple trials with a large number of goats.

### REFERENCES

- AOAC. (1994). Official methods of analysis (15th ed.). Association of Official Analytical Chemists, Arlington, VA, USA.
- Arcos-Garcia, J. L., Castrejon, F. A., Mendoza, L. D., & Perez-Gavilan, E. P. (2000). Effect of two commercial cultures with *Saccharomyces cerevisiae* on ruminal fermentation and digestion in sheep fed sugarcane tops. *Livestock Production Science*, 63, 153–157.
- Beauchemin, K. A., Rode, L. M., Yang, Z., & McAllister, T. A. (1998b). Use of feed enzymes in ruminant nutrition. In *Proceedings of the 33rd Pacific Northwest Nutrition Conference* (pp. 121–135). Vancouver, British Columbia.
- Beauchemin, K. A., Yang, V. Z., & Rude, L. M. (1998a). Effects of enzyme additive or grain source on site and extent of nutrient digestion in dairy cows. *Journal of Dairy Science*, 25, 254–264.

- Beauchemin, K. A., Yang, W. Z., Morgavi, D. P., Ghorbani, G. R., Kautz, W., & Leedle, J. A. (2003). Effects of bacterial direct-fed microbials and yeast on site and extent of digestion, blood chemistry and subclinical ruminal acidosis in feedlot cattle. *Journal of Animal Science*, 81, 1628–1640. http://jas.fass.org/cgi/reprint/80/7/1977
- Bedford, M. R. (1993). Mode of action of feed enzymes. *Journal of Applied Poultry Research*, 2, 85–92.
- Chaucheyras-Durand, F., & Fonty, G. (2001). Establishment of cellulolytic bacteria and development of fermentative activities in the rumen of gnotobiotically reared lambs receiving the microbial additive *Saccharomyces cerevisiae* CNM I-1077. *Reproduction and Nutrition Development*, 41, 57–68. http://rnd.edpsciences.org/
- Dawson, K. A. (1990). Designing the yeast culture of tomorrow: Mode of action of yeast culture for ruminants and nonruminants. In T. P. Lyons (Ed.), *Biotechnology in the Feed Industry* (pp. 59–78). Alltech Technical Publications, Nicholasville, KY.
- Devendra, C., & Burn, M. (1970). *Goat production in the tropics* (Technical communication No. 19). Commonwealth Agriculture Bureaux, Franthanm Royal, Bucks, England, pp. 184.
- Feng, P., Hunt, C. W., Pritchard, G. T., & Julien, W. E. (1996). Effect of enzyme preparations on in situ and in vitro degradation and in vivo digestive characteristics of mature coolseason grass forage in beef steers. *Journal of Animal Science*, 74, 1349–1357.
- Fiems, L. O., Cottyn, B. G., Dussert, L., & Vanacer, J. M. (1993). Effect of a viable yeast culture on digestibility and rumen fermentation in sheep fed different types of diets. *Reproduction and Nutrition Development*, 33, 43–49.
- Gomez-Alarcon, R. A., Dudas, C., & Huber, J. T. (1990). Influence of cultures of *Aspergillus oryzae* on rumen and total tract digestibility of dietary components. *Journal of Dairy Science*, 73, 703–709. http://jds.fass.org/cgi/reprint/73/3/703
- Harrison, G. A., Hemken, R. W., Dawson, K. A., Harmon, R. J., & Barker, K. B. (1988a). Influence of addition of yeast culture supplement to diets of lactating cows on ruminal fermentation and microbial populations. *Journal of Dairy Science*, 71, 2967–2975. http://jds.fass.org/cgi/reprint/71/11/2967
- Havenaar, R., Brin, B. T., & Huis, J. H. J. (1992). In R. Fuller (Ed.), *Probiotics: The Scientific Basis* (pp. 209–224). Chapman and Hall, London.
- Joshi, B. R., Shrestha, B. S., & Mishra, K. (2003). Growth potential of indigenous Khari and Sinhal goat breeds of Nepal under optimum feeding management. *Agriculture Research Station Lumle*, Technical Paper No. 2003/1.
- Judkins, M. D., & Stobart, R. H. (1988). Influence of two levels of enzyme preparation on ruminal fermentation, particulate and fluid passage rate and cell wall digestion in wether lambs consuming either a 10% or 25% grain diet. *Journal of Animal Science*, 66, 1010–1015.
- Kadariya, I. (2006). Growth performance and socioeconomic impact of Khari goat and its crosses under farmer's managed condition (M.Sc. thesis). Tribhuvan University, Institute of Agriculture and Animal Science, Rampur, Chitwan, Nepal.
- Kharel, M. (1997). Goat (*Capra hircus*) genetic resources in Nepal. *Veterinary Review*, 12, 14–16.
- Kharel, M., & Neopane, S. P. (1997). Goat genetic resources. In J. N. B. Shrestha (Ed.), Proceedings of the First National Workshop on Animal Genetic Resources Conservation and Genetic Improvement of Domestic Animals in Nepal (pp. 48–54). Nepal Agricultural Research Council, Khumaltar, Lalitpur, Nepal.

- Kim, D. Y., Figueroa, M. R., Dawson, D. P., Batallas, C. E., Arambel, M. J., & Walters, J. L. (1992). Efficacy of supplemental viable yeast culture with or without *Aspergillus oryzae* on nutrient digestibility and milk production in early to mid-lactating dairy cows. *Journal of Dairy Science*, 75, 206.
- Kolachhapati, M. R., & Devkota, N. R. (2003). A package of practices on hill goat husbandry (study based on technology generation). TU/IAAS HARP, Nepal. pp. 38.
- Kolachhapati, M. R., Kharel, M., Sharma, M., & Nepali, D. B. (1998–1999). Growth performance of Israeli crossbred goats under farmers' field conditions. *Journal of the Institute of Agriculture and Animal Science*, 19–20, 169–173.
- Kung, L. J., Treacher, R. J., & Cohen, M. A. (1998). Enzyme-treated forages for lactating cows. *Journal of Animal Science*, 76, 196.
- Lehninger, A. L. (1982). Principles of Biochemistry. Worth Publishers, Inc., New York, NY.
- Malik, R. (1993). Effect of live microbes as dietary adjunct on ruminal fermentation, nutrient utilization and growth of calves (Ph.D. Thesis). National Dairy Research Institute, Karnal (Haryana), India.
- Martin, S. A., Nisbet, D. J., & Dean, R. G. (1989). Influence of a commercial yeast supplement on the in vitro ruminal fermentation. *Nutrition Report International*, 40, 395.
- McAllister, T. A., Bae, H. D., Jones, G. A., & Cheng, K. J. (1994). Microbial attachment and feed digestion in the rumen. *Journal of Animal Science*, 72, 3004–3018.
- MOAC. (2011). *Statistical Year Book of Nepal-2011*. Government of Nepal, National Bureau of Statistics, Ramshahpath, Thapathali, Kathmandu.
- MOAC. (2017). Statistical Information on Nepalese Agriculture 2017/2018. Government of Nepal, Ministry of Agriculture and Cooperatives, Agribusiness Promotion and Statistics Division, Singha Durbar, Kathmandu, Nepal.
- Neopane, S. P. (1997). *The genetics of productive traits in a Nepalese hill goat flock* (Ph.D. Thesis). University of London, U.K. pp. 278.
- Newbold, C. J., Wallace, R. J., Chen, X. B., & McIntosh, F. M. (1995). Different strains of *Saccharomyces cerevisiae* differ in their effects on ruminal bacterial numbers in vitro and in sheep. *Journal of Animal Science*, 73, 1811–1818. http://jds.fass.org/cgi/reprint/73/6/1811.pdf
- Oli, K. P. (1987a). *Small ruminant production in the eastern hills of Nepal*. PAC Working Paper No. 11. Pakhribas Agricultural Center, Dhankuta, C/O BAPSO, P.O. Box 106, Kathmandu, Nepal. pp. 21.
- Pandey, R. S. (1997). *Fodder and Pasture Development in Nepal*. Udaya Research and Development Services P. Ltd., Kathmandu, Nepal.
- Pradhan, S. L. (2000). Livestock development in Nepal: Future challenges, development concept and approaches. In *Proceedings of 3rd National Animal Science Convention*, October 2000, Kathmandu, Nepal. pp. 15–25.
- Raut, Y. (1998). A Handbook of Animal Husbandry: Pasture Production. His Majesty's Government, Nepal, Ministry of Agriculture, Department of Livestock Services, Hills Leasehold Forestry and Forage Development Project, Harihar Bhawan, Lalitpur.
- Shrestha, Y. K. (2002). Study on production parameters of goat in mid-western Terai region of Nepal (M.Sc. Thesis). Institute of Agriculture and Animal Science, Tribhuvan University, Rampur.
- Upreti, C. R., & Khanal, R. C. (1997). Comparative performance of seven goat breeds (Khari, Sinhal, Khari × Jamunapari, Khari × Barbari, Khari × Kiko, Jamunapari, and Barbari) at ARS Bandipur. In *Proceedings of the Second National Workshop on Livestock and Fisheries in Nepal*, September 24–25, 1997. National Animal Science Research Institute, NARC, Khumaltar. pp. 37.

- Varel, V. H., Kreikemeier, K. K., Jung, H. G., & Hatfield, R. D. (1993). In vitro stimulation of forage fiber degradation by ruminal microorganisms with *Aspergillus oryzae* fermentation extract. *Applied and Environmental Microbiology*, 59, 3171–3176.
- Weidmeier, R. D., Arambel, M. J., & Walters, J. L. (1987). Effect of yeast culture and *Aspergillus oryzae* fermentation extract on ruminal characteristics and nutrient digestibility. *Journal of Dairy Science*, 70, 2063–2070. http://jds.fass.org/cgi/reprint/70/10/2063.pdf
- Yang, W. Z., Beauchemin, K. A., & Rode, E. M. (1998a). Effects of enzyme feed additives on extent of digestion and milk production of lactating dairy cows. *Journal of Dairy Science*, 81, 85.
- Zeuner, F. E. (1963). A History of Domesticated Animals. In C. Gall (Ed.), Goat Production. Academic Press, London.