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Abstract 

 

American Sign Language (ASL) classification is crucial in facilitating communication for individuals with hearing 

impairments. Traditional methods rely heavily on manual interpretation, which can be time-consuming and error-prone. 

Inspired by the success of deep learning techniques in image processing, the paper explores the application of 

Convolutional Neural Networks (CNNs) for ASL classification. The paper presents a CNN architecture tailored 

specifically for this task and investigates the effectiveness of transfer learning by leveraging four pre-trained models: 

VGG16, InceptionV3, ResNet50, and DenseNet121. A comparative analysis of these architectures has been presented 

in this paper. The experimental results show that the customized CNN model outperformed other models with a testing 

accuracy of 99.93% when provided with testing set images. Consequently, it is concluded that customized CNN 

outshines other models in accurately classifying sign languages. 

 

Keywords: American Sign Language, Deep Learning, Convolutional Neural Network, Transfer Learning, Image 

Classification, Image Processing 

 

 

1. Introduction  

 

Communication is crucial for everyone, but individuals with speech and hearing challenges often struggle to 

express themselves and understand others, leading to feelings of isolation. Sign language is manual 

communication commonly used by people who are deaf. Sign language is not universal. People who are deaf 

from different countries speak different sign languages (AccessComputing, n.d.). To address this issue, 

researchers have developed hand sign recognition systems, enabling communication through hand gestures 

Initially relying on basic features like color and shape for sign and gesture detection, these systems have 

evolved significantly since their inception in the late 20th century. The advancements in computer vision and 

deep learning have propelled hand sign recognition forward. The Customized Neural Networks (CNNs) excel 

at learning patterns from visual data, enabling them to interpret hand gestures accurately by analyzing both 

shape and movement. Unlike older methods that were manual and less adaptable, CNNs learn and improve 

with training, making hand sign recognition more efficient. These advancements promise to enhance the 

quality of life for individuals with speech and hearing impairments by providing them with more accessible 

means of communication. This paper presents a comprehensive study of a customized CNN architecture and 

four pre-trained CNN models. The primary objective of this study is to evaluate the performance of these 
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models and determine the model with the highest accuracy in classifying hand signs from the video frame 

from a live camera. 

 

2. Related Works  

 

The research on Hand Sign Recognition utilizing CNN (Bhavana et al., 2021) employed a tailored CNN 

model achieving a 75% accuracy in classifying hand signs. For background elimination, the HSV color space 

was utilized to ensure the model's effectiveness across diverse environments. The HSV color mode was used 

to extract hand regions in a paper published in 2015 (Noreem et al., 2015). HSV (Hue, Saturation & Value) 

color space separates color information from brightness, enabling the extraction of the hand region based on 

its distinctive color characteristics, such as skin tone, while disregarding variations in lighting conditions. 

The paper published in 2021 (Harris et al., 2021) with the title illustrated the use of Mediapipe library to 

isolate hand region from an image based on the hand-landmarks. Mediapipe provides a framework for 

machine learning-based hand gesture recognition, enabling the extraction of hand regions from images 

through sophisticated computer vision techniques, thereby enhancing interactivity and usability in 

applications like user guides. 

The paper published in 2018 (Mesbahi et al., 2018) presents a method for hand gesture recognition that 

combines background subtraction with convexity defect detection. By eliminating irrelevant information 

through background subtraction and utilizing convexity defects for feature extraction, the proposed approach 

ensures reliable gesture recognition invariant to translation and rotation. 

Transfer learning is gaining popularity in image classification, where a pre-trained neural network is 

repurposed for a new task. This method leverages the learned features of the pre-trained model, typically 

trained on a large dataset like ImageNet, and fine-tunes it for a specific classification task with a smaller 

dataset. By utilizing this existing knowledge, the model can adapt more quickly and effectively to the new 

task, leading to improved performance and reduced training time compared to starting training from scratch. 

A research paper titled “Sign language recognition: A comparative analysis of deep learning models” 

published in 2022 (Premkumar et al., 2022), demonstrated a comparative study of a customized CNN and 

VGG16 models. The paper concluded that VGG16 was better where it delivered an accuracy of 99.56%, 

followed by customized CNN with an accuracy of 99.38%. 

Hand Gesture Recognition (HGR) dataset was used in a paper (Hussain et al., 2023), where InceptionV3 and 

EfficientNet-B0 models were implemented. In this experimental study, InceptionV3 model achieved 90% 

accuracy with precision, recall and f1-score of 0.93%, 0.91%, and 0.90% respectively whereas EfficientNet-

B0 achieved 99% accuracy with precision, recall and f1-score of 0.98%, 0.97%, 0.98% respectively. 

A 2-level ResNet50 was used in a paper title “Sign Language Recognition Using ResNet50 Deep Neural 

Network Architecture” (Rathi et al., 2020), where the model achieved an accuracy of 99.03% on 12,048 test 

images. 

DenseNet is a CNN architecture that has become widely popular and is extensively used in image processing 

tasks. A research paper published in 2021 (Marjusalinah et al., 2021) performed comparative study of 

ResNet50 and DenseNet121 on American sign language dataset. The dataset was split into training and testing 

set with the ratio of 80:20. ResNet50 achieved an accuracy of 0.999913 with recall, precision, and f1-score 

of 0.998966, 0.998958, and 0.999913 respectively. The same train-test ratio was used to train and test the 

DenseNet121 model where it achieved an accuracy of 0.998872 with recall, precision, and f1-score of 

0.987116, 0.986458 and 0.998872 respectively. 

The ASL dataset sourced from the Modified National Institute of Standards and Technology (MNIST) 

database was used for a research paper (Mohsin et al., 2024), where detailed comparison between VGG16, 

ResNet50, MobileNetV2, InceptionV3 and customized CNN. The paper illustrated that VGG16 and 

InceptionV3 stand out among the stated models with an accuracy of 0.95 and 0.96 respectively. 

 

Despite the notable progress in the field, there exists a significant research gap that demands attention. The 

proposed study, titled "American Sign Language Classification: A Comparative Study" seeks to address 

this gap by investigating the effectiveness of transfer learning in ASL recognition, leveraging pre-trained 

models to improve accuracy. This research aims to contribute by analyzing how transfer learning can enhance 
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ASL recognition using both pre-existing and custom models, comparing their performance in testing 

scenarios. Additionally, the study aims to tackle key challenges in ASL recognition, particularly in real-time 

scenarios, dataset diversity, and variations in hand movements and positions. By exploring the complexities 

of real-time ASL recognition, the study aims to develop methodologies ensuring precise and timely 

interpretation in practical settings. Through these efforts, the proposed study aims to advance the efficiency 

and applicability of ASL recognition systems, ultimately fostering greater accessibility and inclusivity for 

individuals with hearing impairments. 

 

3. Methodology 

 

The dataset titled “ASL Alphabet” was acquired from Kaggle (AKASH, 2018), a renowned website for data 

science and machine learning notebooks and datasets. The model was trained using Google Colab due to its 

provision of free GPU services which provide cost-effective access to accelerated computing resources. 

 

3.1. Dataset Description 

 

The acquired dataset has a training set and a testing set subfolders. The training set subfolder was used for 

training, validation, and testing. The training folder is composed of 29 classes, including 3 classes designated 

for 'del', 'space' and 'nothing', and 26 classes representing the English alphabet. Each class contains 3000 

images, resulting in a total of 87,000 images. However, ‘del’ and ‘nothing’ classes were removed for this 

research. The 'nothing' class was excluded as empty images were deemed unnecessary as Mediapipe is 

utilized to track hand movements. Similarly, the 'del' class was excluded from the experiment to maintain 

focus on the specific objectives of the research in American Sign Language (ASL) recognition, avoiding 

unnecessary gestures that could introduce noise or confusion into the training and evaluation process. 

The training subfolder was divided into sets for training, validation, and testing, with a ratio of 68:17:15. The 

split ratio allocates more data to validation and testing sets, mitigating the risk of overfitting, a common 

concern in deep learning tasks.  

 

 
 

Figure 1. Image samples from each class 

 

Figure 1 depicts images of hand signs across different classes, showcasing variations in brightness and 

distance from the camera. Upon visual inspection of the sample images in the dataset, notable similarities 

between a few signs have been observed. For instance, signs like V and K exhibit visual resemblances in their 

hand configurations. 
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Figure 2. Distribution of images in each class 

 

The above figure indicates that each of the 27 classes comprises 3000 images, ensuring a balanced dataset. 

Balanced datasets are essential as they mitigate the risk of overfitting and bias towards classes with many 

images. 

 

3.2. Preprocessing 

 

Images in the training set were reduced to 128x128x3 to minimize computational complexity while 

maintaining the necessary information. By standardizing pixel values between 0 and 1, normalization was 

used to improve data integrity and decrease redundancy. 

Preprocessing techniques were applied to live images taken from a camera to classify hand signs in real-time. 

The Hand-tracking module from Mediapipe was used to extract the hand region from every frame. 

Furthermore, hand contours were utilized to generate background subtraction masks, guaranteeing 

adaptability to different environments. The resulting images were resized to 128x128x3, and pixel values 

underwent normalization to match the training set. 

 

3.2.1. Mediapipe library for hand region extraction 

 

Mediapipe is an open-source framework developed by Google which is used to build pipelines that perform 

computer vision inference over arbitrary sensory data such as video or audio. Media pipe is used to detect 

hand-landmarks with the help of its hand-tracking module. The hand-tracking model detects 21 key points on 

the hand. These key points track the hand and crop the hand region from the frame.  The model was trained 

on more than 30k real-world images over varying backgrounds. (MediaPipe) 

 

 
 

Figure 3. Illustration of hand-landmarks using Mediapipe 

 

3.2.2. Background subtraction using hand contours 

 

Contours are continuous lines formed by connecting points along the boundary of the hand, determined by 

its color or intensity in the HSV color mode, a technique initially applied to the image. These contours serve 

as a description of the hand's shape and can be employed as a mask for background subtraction, isolating the 

hand from its surroundings. Utilizing contours as a guide, background subtraction algorithms can accurately 

segment the hand from the background, facilitating tasks such as gesture recognition or object tracking in 
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computer vision applications. The mask derived from contours can be seamlessly overlaid onto the cropped 

hand image, eliminating the background. This process ensures a clean separation between the hand and its 

surroundings, enhancing the focus on the hand region for further analysis or visualization purposes. 

 

Figure 4.  Hand region segregation using Mediapipe and hand contours 

 

3.3 Model Selection 

 

Convolutional Neural Networks (CNNs) are the preferred choice for image-processing tasks. CNNs are feed-

forward neural networks that are well known for their capacity to learn feature representations on their own 

by optimizing filters or kernels. The basic architecture of a CNN consists of multiple layers, including 

convolutional layers, pooling layers, and fully connected layers. In the convolutional layers, the network 

applies filters to the input image to extract features such as edges, corners, and textures. The pooling layers 

are used to reduce the spatial dimensions of the feature maps while the fully connected layers are used to 

classify the input image based on the extracted features. CNNs are trained using large datasets of labeled 

images, and they use backpropagation to adjust the network weights to minimize the error between the 

predicted and actual labels. The training process involves several iterations of forward and backward 

propagation, where the network learns to recognize patterns and features in the input images. CNNs are 

exceptional at extracting complex patterns and characteristics from images, which makes them very useful 

for a variety of tasks like object identification, image segmentation, and image classification. (Gurucharan, 

2022) 

 

Figure 5. CNN architecture                

3.3.1 Customized CNN 

 

Customized CNNs are tailored neural network architectures for specific tasks or datasets. These networks are 

often modified by adjusting the number of layers, the types of layers used, or the layer parameters to improve 

performance on a particular problem. Customization can involve adding, removing, or altering layers such as 

convolutional, pooling, or fully connected layers. Additionally, the network's hyperparameters, such as 

learning rate, batch size, and regularization, may be adjusted to optimize performance. Customized CNNs are 

widely used in various applications, including image classification, object detection, and facial expression 

recognition, to achieve superior results on specific tasks or datasets. 
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 Table 1. Applied Customized CNN architecture 

Layer (type) Input Shape Output Shape Param # 

Conv2D (None, 128, 128, 3) (None, 124, 124, 32) 2432 

MaxPooling2D (None, 124, 124, 32) (None, 62, 62, 32) 0 

Dropout (None, 62, 62, 32) (None, 62, 62, 32) 0 

Conv2D (None, 62, 62, 32) (None, 60, 60, 64) 18496 

MaxPooling2D (None, 60, 60, 64) (None, 30, 30, 64) 0 

Dropout (None, 30, 30, 64) (None, 30, 30, 64) 0 

Conv2D (None, 30, 30, 64) (None, 28, 28, 64) 36928 

MaxPooling2D (None, 28, 28, 64) (None, 14, 14, 64) 0 

Dropout (None, 14, 14, 64) (None, 14, 14, 64) 0 

Flatten (None, 14, 14, 64) (None, 12544) 0 

Dense (None, 12544) (None, 128) 1605760 

Dense (None, 128) (None, 27) 3483 

The architecture of the model has been developed through experimentation with various numbers of layers 

and parameters to achieve optimal performance. It consists of three convolutional layers, followed by three 

pooling layers and two fully connected layers. The input layer takes input images of size 128x128x3 and 

applies 32 filters with a 5x5 kernel, resulting in feature maps of size 124x124x32. Max-pooling with a 2x2 

kernel is then applied to down-sample the feature maps by half. Dropout regularization is employed to prevent 

overfitting. Subsequent convolutional layers follow a similar pattern, increasing the number of filters and 

reducing the spatial dimensions of the feature maps. After the final max-pooling layer, the feature maps are 

flattened into a 1D vector and passed through a dense layer with 128 neurons. For the output layer, a softmax 

activation function is used, while for other layers, a ReLU activation function is employed. The output layer 

consists of 27 neurons representing the classes in the ASL classification. This architecture effectively extracts 

hierarchical features from input images and utilizes fully connected layers for classification. 

 

3.3.2 VGG16 

 

VGG16 is a 16-layer deep convolutional neural network (CNN) architecture proposed by the Visual Geometry 

Group at the University of Oxford. The network consists of 13 convolutional layers and three fully connected 

layers. The input size is 224x224x3 (RGB images). The convolutional layers use 3x3 filters with a stride of 

1 and padding to maintain the spatial dimensions. The network has a total of approximately 138 million 

parameters. The VGG16 architecture is known for its simplicity and effectiveness. (Datagen, Understanding 

VGG16) 

 
Figure 6. Detailed VGG16 architecture 
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3.3.3 InceptionV3 

 

The InceptionV3 is a neural network architecture developed by Google's researchers. This complex network 

consists of 48 layers and is intricately designed to analyze images and extract features in a hierarchical 

manner. The standout feature of InceptionV3 lies in its unique Inception modules, which redefine feature 

extraction by utilizing filters of varying sizes, from 1x1 to 5x5, in combination with strategic pooling 

techniques. Thanks to its comprehensive design and sophisticated feature extraction methods, InceptionV3 

achieves exceptional accuracy in tasks such as image classification and various computer vision applications. 

(Pytorch, INCEPTION_V3) 

 
Figure 7. Detailed InceptionV3 architecture  

 

3.3.4 ResNet50 

 

ResNet50 is a neural network created by Microsoft researchers. It is designed especially for applications such 

as image recognition. It is a 50-layer convolutional neural network consisting of 48 convolutional layers, one 

max pooling layer, and one average pooling layer. Residual neural networks are a type of artificial neural 

network (ANN) that forms networks by stacking residual blocks. (Kaushik, A.) 

 

Figure 8. Detailed ResNet architecture 

 

3.3.5 DenseNet121 

DenseNet121 is a robust neural network architecture that stands out for its dense connectivity pattern and is 

highly effective in tasks like image recognition. Unlike traditional networks, where each layer is connected 

only to the next layer, DenseNet121 connects each layer to every other layer in a feed-forward fashion. This 
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dense connectivity promotes feature reuse, enhances gradient flow, and combats the vanishing gradient 

problem, leading to more efficient training and improved accuracy. ( Pytorch, INCEPTION_V3) 

 
Figure 9. Detailed DenseNet architecture 

 

3.4 Evaluation Metrics 

 

After constructing the system model, it undergoes training with the standardized training dataset. Following 

this, the model's performance is validated by testing it with the testing dataset. The effectiveness of the 

system's performance is evaluated based on metrics such as Accuracy, Precision, F1 score, and Recall. The 

confusion matrix is a table that is used to assess a classification model's performance. It provides a matrix-

format summary of the model's predictions based on a dataset. 

 

3.4.1 Accuracy 

 

The accuracy of a model is defined as the ratio of true positives and true negatives to all positive and negative 

observations. 

Accuracy = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
       (Equation 1) 

 

3.4.2 Precision 

 

The precision of a model is defined as the percentage of labels that were correctly predicted positively. 

Precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
         (Equation 2) 

 

3.4.3 Recall 

 

The recall or sensitivity of a model is defined as the ratio of true positives to all the positive instances. 

Recall =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
         (Equation 3) 

 

3.4.3 F1-score 

 

The f1-score is a metric that calculates the harmonic mean of precision and recall. 

f1-score =  
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 
        (Equation 4) 
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3.5 Experimental results 

 
Table 2. Hyper parameters used 

 

Parameter Value 

Epoch 30 

Batch size 32 

Optimizer Adam 

Learning rate 0.001 

 

The hyper parameters for the model training were determined through experimentation to optimize 

performance. An epoch value of 30 was selected to train the model over a sufficient number of iterations 

without excessively prolonging training time or risking overfitting. A batch size of 32 was chosen to balance 

computational efficiency and model convergence. The Adam optimizer with a learning rate of 0.001 was 

employed due to its effectiveness in training deep neural networks, providing a balance between rapid 

convergence and fine-grained parameter updates. These values were found to yield the best performance in 

terms of accuracy and convergence during experimentation. 

 

3.5.1 Customized CNN 

 

The accuracy of the model for testing data: 99.93% 

The loss of the model for testing data: 0.0023 

 
Figure 10. Training and validation set loss and accuracy for customized CNN 

 

3.5.2 VGG16 

 

The accuracy of the model for testing data: 99.34% 

The loss of the model for testing data: 0.035 

 
Figure 11. Training and validation set loss and accuracy for VGG16 
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3.5.3 InceptionV3 

 

The accuracy of the model for testing data: 81.62% 

The loss of the model for testing data: 0.56 

 
Figure 12. Training and validation set loss and accuracy for InceptionV3 

 

3.5.4 ResNet50 

 

The accuracy of the model for testing data: 99.70% 

The loss of the model for testing data: 0.008 

 
Figure 13. Training and validation set loss and accuracy for ResNet50 

 

3.5.4 DenseNet121 

 

The accuracy of the model for testing data: 99.80% 

The loss of the model for testing data: 0.006 

 
Figure 14. Training and validation set loss and accuracy for DenseNet121 
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3.5 Model comparison 

 
Table 3. Model performance comparison on test set 

Model Accuracy (%) Recall Precision F1-score 

Cust. CNN 99.93% 1.00 1.00 1.00 

VGG16 99.34% 0.99 0.99 0.99 

InceptionV3 81.62% 0.87 0.82 0.81 

ResNet50 99.70% 1.00 1.00 1.00 

DenseNet121 99.80% 1.00 1.00 1.00 

The table above presents the performance metrics of various convolutional neural network (CNN) models on 

a classification task. Each model, including Customized CNN, VGG16, InceptionV3, ResNet50V2, and 

DenseNet121, is evaluated based on accuracy, recall, precision, and F1-score. The customized CNN achieves 

outstanding results across all metrics, with nearly perfect scores close to 1.00, indicating exceptional 

performance in correctly classifying instances. VGG16 also demonstrates high accuracy and robust 

performance across all metrics, while ResNet50V2 and DenseNet121 exhibit similar results. However, 

InceptionV3 falls short in comparison, with lower accuracy and performance metrics overall. These findings 

suggest that Customized CNN, VGG16, ResNet50V2, and DenseNet121 are well-suited for the classification 

task, while InceptionV3 may require further optimization or may be less suitable for this specific dataset or 

task. 

 
Figure 15. Confusion Matrix for each class in the testing set using customized CNN 

 

4. Real-time implementation 

 

 

Figure 16. Real-Time ASL Image Classification from Live Camera Feed 
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The image frames captured by the camera undergo hand detection before being fed into the CNN model for 

classification. Upon detection, the model predicts the corresponding hand sign, displaying the predicted 

alphabet. A continuous monitoring mechanism is implemented, wherein if the same sign is predicted for two 

consecutive seconds, the corresponding alphabet is printed in the text section. This functionality enhances 

communication through ASL, enabling users to seamlessly construct phrases and sentences. 

 

5. Conclusion and Future Enhancements 

 

In conclusion, the research on American Sign Language (ASL) recognition involved training several models, 

including a customized CNN, VGG16, InceptionV3, ResNet50, and DenseNet121. Through extensive 

experimentation, it was discovered that the customized CNN demonstrated superior performance in the 

testing dataset, highlighting its robustness in effectively recognizing ASL gestures across various 

environments. This emphasizes the significance of selecting suitable models specifically designed to address 

the distinct challenges of ASL recognition, thereby laying the foundation for the development of more precise 

and dependable ASL recognition systems. Furthermore, integrating background subtraction using Media pipe 

and hand contouring significantly contributed to the research findings. These techniques proved instrumental 

in mitigating environmental variations, enhancing the robustness of the ASL recognition system across 

diverse settings. Leveraging Media pipe for background subtraction and hand contour extraction allowed for 

more accurate localization of hand gestures, thereby improving the overall performance and reliability of the 

ASL recognition models. 

 

The current model exhibits occasional misclassification of images in real-time scenarios. However, there are 

promising avenues for improving its accuracy. By fine-tuning hyper parameters and adjusting the number of 

dense layers following the customized CNN architecture, the model's performance can be enhanced, ensuring 

more precise recognition of American Sign Language (ASL) gestures. Additionally, optimizing 

computational efficiency is essential for real-time applications. Addressing the potential slowness of the 

present model in specific environments could involve refining model architecture, leveraging hardware 

acceleration, or exploring lightweight alternatives to accommodate faster inference speeds without 

compromising accuracy. These enhancements can elevate the effectiveness and usability of the ASL 

recognition system, fostering more significant accessibility and inclusivity for individuals with hearing 

impairments. 
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