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Abstract  

This paper demonstrates image classification using deep learning. Deep learning has the inherent ability to automatically discover 

and extract meaningful features for specific applications. Among the popular techniques in deep learning, the convolutional neural 

network (CNN) stands out. CNN consists of an input layer, hidden layers, and an output layer, where meaningful features are 

automatically extracted from input images.  

This paper presents the performance and identifies the most effective CNN architectures for accurately classifying images in the  

CIFAR-10 dataset. Five CNN architectures were implemented, namely [Architecture 1], [Architecture 2], [Architecture 3], 

[Architecture 4], and [Architecture 5] using the CIFAR-10 dataset. The architectures were selected based on the need to explore 

variations in convolutional filter sizes, dense layers, and batch normalization to assess their impact on CIFAR-10 image 

classification performance. Each architecture was trained on a standard training set and evaluated on a validation set. We used 

specific details on data preprocessing and training settings for a consistent and fair comparison. After training and evaluation, we 

have obtained the following results for each architecture.  

Architecture 1 has a training accuracy of 74.7% and validation accuracy of 76.6%, Architecture 2 has 96.09% and 86.08%, 

Architecture 3 has 77% and 78.1%, Architecture 4 has 67.91% and 69.54%, and Architecture 5 has 94.64% and 87.34% of training 

accuracy and validation accuracy respectively.  After conducting a comparative analysis, we found that Architecture 5 has achieved 

the highest validation accuracy in classifying images in the CIFAR-10 dataset. These findings suggest that Architecture 5 is a 

promising choice for image classification tasks involving the CIFAR-10 dataset.  

 

Keywords: Convolutional Neural Network (CNN), CIFAR-10 dataset, image classification, architecture comparison, performance 

evaluation.  

 
  

 1. Introduction  

Image classification is a fundamental task in computer vision that involves the application of computer algorithms to 

process digital images. This process typically comprises several essential steps, including importing the image 

through an acquisition tool, analyzing the acquired image, and generating results based on the analysis. Various 

operations can be performed on the input image throughout these steps to enhance its quality or extract valuable 

information (MOHAMED NOUR, 2022). 

37

http://www.kec.edu.np/journal
mailto:bharat.bhatta@sagarmatha.edu.np


International Journal on Engineering Technology (InJET)       Volume 1, issue no. 1, Nov 2023 
 

 
 

Image classification involves categorizing and labeling groups of pixels or vectors in an image based on predefined 

rules. In supervised image classification, training data is selected from the image assigned to predefined categories 

or classes. Deep learning, a type of machine learning, utilizes layered algorithms structured as artificial neural 

networks (ANNs), and ANNs are inspired by the biological networks of the human brain and can be simulated to 

perform complex tasks such as image classification  (MOHAMED NOUR, 2022).   

In recent years, Convolutional Neural Networks (CNNs) have become widely acclaimed for their effectiveness in 

image classification tasks. The initial work by Yann LeCun et al.  (LeCun, 1998) known as LeNet, introduced CNNs 

for the classification of handwritten digits and Alex Krizhevsky’s AlexNet  (Krizhevsky, 2012) achieved remarkable 

performance on the CIFAR-10 dataset (Ajala, 2021) and set a benchmark in the ImageNet classification competition 

in 2012.  

This groundbreaking contribution has contributed to the surge in popularity and utilization of CNNs in image 

classification tasks. CNNs can automatically extract higher-level representations from visual data, eliminating the 

need for manual feature extraction. This eliminates the time-consuming and costly process of constructing features 

based on domain expertise for machine learning algorithms  (Maminiaina Alphonse Rafidison, 2023).  

The study aims to explore and understand various CNN architectures used for image classification. Our primary focus 

is on the CIFAR-10 dataset, which contains 60,000 color images, each sized 32 x 32 pixels, grouped into ten distinct 

categories. CIFAR-10 is widely recognized as a benchmark for rigorously evaluating classification models. To delve 

into the intricacies of CNN performance, we meticulously design and train these architectures by progressively adding 

layers. Importantly, we augment the third, fourth, and fifth layers with dropout layers, strategically included to 

mitigate overfitting during training. The culmination of this comprehensive exploration is our quest to identify the 

most optimal architecture, driven by the pursuit of accuracy optimization. 

In the following sections, we’ll explain the methods we used, the experiments we conducted, and the results we got. 

We aim to help others understand which CNN architecture works best for classifying images with the CIFAR-10 

dataset. 

2. Literature Review  

Vision is the act or state of seeing. We humans rely on our senses of sight more than a lot of other animals (Ryan, 

2011). It is easy for us to recognize people whom we just met but on the other hand, it is very difficult for state-of-

the-art classifiers (Kris, 2020).  

Machine learning is an application of artificial intelligence (AI) that provides systems with the ability to automatically 

learn and improve from experience without being explicitly programmed. Machine learning focuses on the 

development of computer programs that can access data and use it to learn for themselves (Megantara, 2021)  

Computer vision is a field of artificial intelligence (AI) that enables computers and systems to derive meaningful 

information from digital images, videos, and other visual inputs and take actions or make recommendations based on 

that information. If AI enables computers to think, computer vision enables them to see, observe, and understand. 

Computer vision works much the same as human vision, except humans have a head start. Human sight has the 

advantage of lifetimes of context to train how to tell objects apart, how far away they are, whether they are moving, 

and whether there is something wrong with an image (Megantara, 2022). 

 Deep Learning is a sub-field within Machine Learning, and it is concerned with the utilization of Artificial Neural 

Networks (ANN) for solving natural language and computer vision tasks such as object detection, object recognition, 

face detection, pose estimation, semantic segmentation, and more (Jiahuan Zhang, 2022).  

There are varieties of configurations of ANN that are present within the deep learning field, and notable configurations 

are convolutional neural networks (CNN), recurrent neural networks (RNN), and deep neural networks (DNN) 

(Jiahuan Zhang, 2022). 
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Convolutional neural networks (CNN) are one of the Deep Learning models that are often used to classify an image 

in .jpeg form [8]. Convolutional neural networks are distinguished from other neural networks by their superior 

performance with image, speech, or audio signal inputs. Convolutional neural networks power image recognition and 

computer vision tasks. A CNN helps a machine learning or deep learning model “look” by breaking images down 

into pixels that are given tags or labels. It uses the labels to perform convolutions (a mathematical operation on two 

functions to produce a third function) and makes predictions about what it is “seeing.” The neural network runs 

convolutions and checks the accuracy of its predictions in a series of iterations until the predictions start to come true. 

It is then recognizing or seeing images in a way like humans(Megantara, 2022). 

3. Methodology  

 

The following steps were performed while building architectures using CNN:  

 

3.1. Dataset  

We used the CIFAR-10 tiny images dataset from image classification. It provided 10 classes of data with 5000 training 

and 1000 testing images per class. The classes obtained from the CIFAR-10 dataset are: ‘airplane’, ‘automobile’, 

‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, and ‘truck’ (Doon, 2018).  

3.2. Preprocessing  

The collected dataset underwent pre-processing. Various augmentation techniques were applied to the data, such as 

re-scaling, shear range, zoom range, horizontal flip, and normalization, to ensure consistency in image size and 

quality.  We have used the Shear Range of 0.2 to control deformations to images, aiding the model’s ability to 

generalize across variations in object orientations, a Zoom Range of 0.2 to handle different object sizes, and exposing 

the model to diverse scales of objects and horizontal flip which helps CNN recognize objects regardless of whether 

they are oriented to the left or right. 

These augmentation techniques collectively contribute to the dataset’s robustness and help the model generalize better 

across a wide range of scenarios. 

 The resulting images were of 32x32 size with RGB color channels. The dataset was then split into a training set of 

50,000 images which were further divided into batches of 32, and a validation set with a split ratio of 0.1.  

To facilitate these preprocessing steps, we leveraged the Image Data Generator utility function provided by Keras. 

This powerful tool not only automates the application of augmentation techniques but also ensures data consistency 

and scalability throughout the training process. By automating these tasks, we maintain data quality and reduce the 

risk of overfitting, ultimately contributing to the robustness of the generalization capability of the trained model 

(Boualam, 2021). For normalization the following equation is used (Chansung, 2018):  

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = (𝑥 − 𝑚)/(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛  )                                                             (Equation 1) 

Where,  

x = data point to normalize, 

m = mean of the dataset, 

𝑥𝑚𝑖𝑛 = minimum value, 

𝑥𝑚𝑎𝑥 = maximum value 
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Fig 1: Data Flowchart 

 

 

3.3. Train-validate-test Split 

The CIFAR-10 dataset contains 5000 images per class for training which was split into 4500 images for testing and 

500 images for validation. Further, there are 1000 images per class for testing purposes.   

The split categories  

• Training data: 4500 images per class  

• Validation data: 500 images per class  

• Testing data: 1000 images per class  
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 Fig 2: Data split chart  

3.4. CNN model architecture  

A local machine was used to build and train the image classifier model. The different layers used in each architecture 

are described below in each section.   

  

3.4.1.  Input Layer  

The input layer takes 32x32-sized images as input. The images used for training are of 3 color channels (i.e., RGB) 

to increase the feature count of the image. The input convolutional layers consist of 32 filters of size 3x3.  

3.4.2.  Convolutional Layer  

In total, 6 convolutional layers were used in this architecture. In each convolutional layer, the number of filters doubles 

that of the previous one to increase the feature extraction in the model. However, the filter size was kept constant at 

3x3.  

3.4.3.  Padding  

For padding, we have utilized the padding = "same" feature of Kera’s library. This feature adds a single layer of ’0’ 

values at the edge of the images so that the edge pixels are not lost while features are being extracted.  

3.4.4.  Batch Normalization  

Batch normalization is a technique for training very deep neural networks that normalize the contributions to a layer 

for every mini batch. This has the impact of settling the learning process and drastically decreasing the number of 

training epochs required to train deep neural networks. After each Convolutional layer, batch normalization is applied 

to normalize the parameters to normalize the results.  

3.4.5.  Max Pooling  

Max Pooling layers were applied after a pair of convolutional layers. By doing this, we have been able to reduce the 

information the image contains (by keeping only half of the pixels) but keep and intensify the useful features the 

filters show when convolving the image.  
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3.4.6.  Dropout  

Our model has over 10 million parameters, out of which some of them might not be necessary. Therefore, to deactivate 

the unnecessary neurons in the architecture, we have applied two Dropout layers of value 0.5 each in the Fully 

connected layers which causes 50% of the neurons to disable randomly. Moreover, by adding dropout layers we have 

reduced the chances of our model over-fitting.  

3.4.7.  Callbacks  

During the training process, we might need to check the model at various stages for performance and stop the training 

process if the model is not improving. Also, we need to record the logs of training to visualize the parameter changes 

for improving the model architecture in the next iteration. Therefore, we have used three callback functions for the 

following purposes in our model:  

1. Checkpoint saving: To prevent the unexpected halt of model training and continue from the same point where 

we stopped training, we have used Model Checkpoint callback which periodically stores the temporary values of all 

the parameters as checkpoints.  

2. Early item stopping: If the model does not improve significantly over the training period, we can stop the 

training process automatically by using the early stopping function.  

3.TensorBoard: We have used the Tensor Board callback function to record logs during the training process so that it 

can be used for visualizing the model.  

   

           3.4.9. Adam Optimizer  

The optimization function can drastically reduce the training time for a model. So, optimization is heavily used in 

neural network implementation. For our model, we have used ADAM optimizer. It is an adaptive learning rate 

optimization algorithm that is known for its fast convergence and good performance on a wide range of deep learning 

tasks.  

ADAM optimizer combines the advantages of two other optimization algorithms, namely, gradient descent and 

RMSprop. It uses a first-order momentum term that calculates the exponential moving average of the gradient and a 

second-order momentum term that calculates the exponential moving average of the squared gradient.  

The learning rate for ADAM was set at 0.001 For the Adam optimizer, the following equation is used for the 

calculation (Mohammed, 2020):  

    (Equation 2)  

                  3.4.10.    Loss Function  

In machine learning, a loss function is a mathematical function that calculates the difference between the predicted 

output and the actual output for a given input. The loss function is used to determine the quality of the model’s 

predictions and is used as a measure of how well the model is performing during training.  
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We have implemented Categorical cross-entropy as our loss function. Categorical cross-entropy is a loss function 

used in machine learning for multi-class classification problems. It is commonly used when the predicted output is a 

probability distribution over multiple class.  

The categorical cross-entropy loss function measures the dissimilarity between the predicted probability distribution 

and the actual probability distribution of the classes. It calculates the sum of the negative logarithm of the predicted 

probability of the correct class, weighted by the true probability of that class. For categorical cross entropy(Chansung, 

2018),  

  L = −1/N ∗ (X)N
i (X)M

j ti,j ∗ log(yi,j) (Equation 3)  

                 3.4.11. Activation function  

In machine learning, an activation function is a mathematical function that is applied to the output of a neural network 

layer. The activation function helps to introduce non-linearity into the model, which is important for the model’s 

ability to learn complex patterns in the data.  

Our model has ’ReLU’ as an activation function in the hidden layers and ’softmax’ in the output layer.  

The ReLU (Rectified Linear Unit) activation function is commonly used in the hidden layers of a neural network 

because it is computationally efficient and addresses the vanishing gradient problem. ReLU is a simple function that 

sets the output to zero if the input is negative and returns the input if it is positive. This makes the ReLU function 

very fast to compute and allows for faster training of deep neural networks.  

In addition, ReLU is known to address the vanishing gradient problem, which occurs when the gradients become too 

small to effectively update the weights during backpropagation. The ReLU function avoids this problem by returning 

non-zero gradients for positive input values, which ensures that the gradients do not become too small during 

backpropagation.  

On the other hand, the softmax function is commonly used in the output layer of a neural network for multi-class 

classification problems. The softmax function maps the output of the last layer to a probability distribution over the 

different classes. It is a generalization of the logistic function used in binary classification problems.  

The softmax function is used in the output layer because it can handle multiple classes and returns the probability of 

each class given the input data. This makes it useful for classification problems where the output is a probability 

distribution over multiple class. For ReLU activation (Chansung, 2018),  

 f(x) = max(0,x)  (Equation 4)  

For softmax activation,  

 softmax(zi) = exp(zi)/f(X)j(expj))  (Equation 5) 

4. Implementation 

We employed various software tools and libraries to investigate the performance of different Convolutional Neural 

Network (CNN) architectures for image classification using the CIFAR-10 dataset. Python served as the programming 

language, and we harnessed the power of TensorFlow and Keras to construct and train our neural networks. 
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Additionally, we had access to a local machine equipped with a 4GB NVIDIA 1650Ti GPU, which accelerated our 

training processes.  

To enhance the quality and consistency of our dataset, we applied essential data preprocessing steps. This involved 

employing data augmentation techniques such as re-scaling, shear range, zoom range, horizontal flip, and 

normalization. To streamline this process and ensure data consistency, we made use of Kera’s Image Data Generator 

utility function.  

Our model architectures were carefully designed to explore variations in complexity, ranging from the basic 

Architecture 1 with convolutional and fully connected layers to the more complex Architecture 5, which integrated 

batch normalization and dropout layers. Training employed the ADAM optimizer with a learning rate of 0.001, 

utilizing Categorical Cross Entropy as the loss function. To monitor and potentially halt training, when necessary, 

Early Stopping callbacks were implemented, Finally, we used Tensor Board to record training logs for visualization 

and analysis. 

Throughout the implementation, we faced challenges related to overfitting, prompting the inclusion of dropout layers 

to address this issue. Tuning hyperparameters like the learning rate and the number of training epochs played a vital 

role in optimizing our models. 

 

5. Results and Analysis  

5.1. Experimental setups  

We have trained five CNN architectures for image classification in our paper. The model was trained on a 

local machine where it was provided with 16.00GB of RAM and a 4GB NVIDIA 1650Ti GPU. We ran 

experiments over 5 types of models and the best was chosen. Our experimental setups of five architectures 

are tabularized below:  

Architecture 1: With Convolutional layers and fully connected layers  

Table 1:  Architecture1 configuration table   

Particulars  Specifications  

Total Convolutional Layers  6  

Kernel Size  3x3  

Total Maxpooling2D layers  3  

Optimizer  ADAM (Learning rate = 0.001)  

Loss Function  Categorical Cross Entropy  

Epoch  38  

  

Architecture 2:  With Convolutional layers and Batch Normalization layers   
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Table 2: Architecture2 configuration table  

Particulars  Specifications  

Total Convolutional Layers  6  

Kernel Size  3x3  

Batch Normalization Layers  3  

Total Maxpooling2D layers  3  

Optimizer  ADAM (Learning rate = 0.001)  

Loss Function  Categorical Cross Entropy  

Epoch  30  

  

Architecture 3: With Convolutional layers and a single dropout layer   

Table 3: Architecture3 configuration table  

Particulars  System Specification  

Total Convolutional Layers  6  

Kernel Size  3x3  

Dropout Layer  0.5  

Total Maxpooling2D layers  3  

Optimizer  ADAM (Learning rate = 0.001)  

Loss Function  Categorical Cross Entropy  

Epoch  45  

    

 

Architecture 4: With Convolutional layers and two dropout layers   

Table 4: Architecture4 configuration table  

Particulars  System Specification  

Total Convolutional Layers  6  

Kernel Size  3x3  

Dropout Layers  0.5+0.5  

Total Maxpooling2D layers  3  

Optimizer  ADAM (Learning rate = 0.001)  

Loss Function  Categorical Cross Entropy  

Epoch  33  
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Architecture 5: With Convolutional layers, a Batch Normalization layer, and two dropout layers   

Table 5: Architecture5 configuration table  

Particulars  System Specification  

Total Convolutional Layers  6  

Kernel Size  3x3  

Dropout Layers  0.5+0.5  

Total Maxpooling2D layers  3  

Total Maxpooling2D layers  3  

Optimizer  ADAM (Learning rate = 0.001)  

Loss Function  Categorical Cross Entropy  

Epoch  45  

     

 

The evaluation metrics that we observed based on the evaluation of our results are:  

• Training loss  

• Training accuracy  

• Validation loss  

• Validation accuracy  

  

5.2. Experimental results  

5.2.1. Architecture 1  

For our first setup, we have only used Convolutional layers and Fully Connected Layers. We can see the training 

accuracy graph increases smoothly until the 30th epoch, after which it begins to show downward spikes recovering 

immediately. The validation curve follows the training curve but the high fluctuations.  

  

Fig 3: Training accuracy vs. Validation accuracy vs. Epoch  

As per the loss function, we can see the minimum validation loss at 0.834 at the 37th epoch. The validation loss tends 

to decrease with high fluctuations until the 15 epochs after which it tends to increase in a parabolic arc manner. The 

training loss gradually decreases until the 35 epochs after which it begins to show high spikes of loss eventually 

settling with the validation loss at the very end of the training.  

46



International Journal on Engineering Technology (InJET)       Volume 1, issue no. 1, Nov 2023 
 

 
 

  

Fig 4: Training loss vs. Validation loss vs. epoch   

5.2.2. Architecture 2  

For architecture2, we have introduced batch normalization layers. The training accuracy curve increases smoothly 

until the end of training. However, the validation accuracy of the model increases sharply until the 7th epoch after 

which it begins to settle down around a baseline while showing downward spikes randomly.  

  

Fig 5: Training accuracy vs. Validation accuracy vs. Epoch  

As per the loss function, the training loss decreases smoothly until the end of the training, but the validation curve 

shows random large spikes. This setup executes until the 30th epoch after which it is stopped by the callback function.  

  

Fig 6: Training loss vs. Validation loss vs. Epoch  

5.2.3. Architecture 3  

In our architecture3, we have included a single dropout layer of value 0.5 in the fully connected layer before the output layer. We 

can see a smooth training accuracy curve throughout the training process. Regarding the validation accuracy curve, we can see the 

curve following the training accuracy curve closely, but it shows fluctuations.   
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Fig 7: Training accuracy vs. Validation accuracy vs. Epoch  

For the loss graph, we can see an insignificant drop in the loss of both training and validation. The training loss decreases gradually 

but the validation loss curves show high peaks after 20 epochs.  

  

Fig 8: Training loss vs. Validation loss vs. Epoch  

5.2.4. Architecture 4  

In our architecture4, we have included double dropout layers of value 0.5 each in the fully connected layer. We can see a gradual 

increase in the training and validation accuracy of the model. Both curves maintain similar values throughout the training session. 

However, we can see the validation accuracy curve showing some fluctuations in the results.  

  

Fig 9: Training accuracy vs. Validation accuracy vs. Epoch  

For the loss graph. We can see no drop in the loss of both training and validation. The loss for both curves is way beyond the 

limitations of the graph. We can state that this is due to adding double dropout layers as the dropout layers cause an increase in the 

loss of the model. A similar curve was seen in the single dropout layer setup but with a lower training and validation loss. But the 

training stops after 35 epochs only due to the triggering of an early Stopping callback.  
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Fig 10: Training loss vs. Validation loss vs. Epoch  

5.2.5. Architecture 5  

In our architecture5, we have included batch normalization with double dropout layers. We can see an exponential increase in both 

the training and validation accuracy of the model concerning the number of epochs. However, after 10 epochs of training the 

training accuracy increases smoothly but fluctuations are seen on the validation accuracy curve. Also, the validation accuracy 

graph is shifted down from that of the training accuracy graph.  

  

Fig 11: Training accuracy vs. Validation accuracy vs. Epoch  

For the loss graph. We can see an exponential drop in training and validation loss concerning the number of epochs. However, after 

10 epochs only the training loss continues to decrease but the validation loss maintains a baseline but shows high fluctuations 

around that baseline.  

  

Fig 12: Training loss vs. Validation loss vs. Epoch  

This model continues to train to 45 epochs generating a validation accuracy of 87.34% and a validation loss of 0.5089.  

5.3. Comparative Analysis of all Architectures  

Comparing all setups’ training and validation graphs side-by-side we can see that architecture5 has the largest validation accuracy. 

Comparing all setups’ training and validation graph side-by-side we can see that architecture2 and 5 have almost similar validation 

losses.  
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Fig 13: Accuracy graph comparative analysis of all architectures  

  

  

Fig 14: Loss graph comparative analysis of all architectures  

5.4. Summary of our architectures  

Table 6: Summary of all architectures  

  

  setup 1  setup 2  setup 3  setup 4  setup 5  

  Train accuracy  0.747  0.9609  0.77  0.6791  0.9464  

Val accuracy  0.766  0.8608  0.781  0.6954  0.8734  

  Train loss  0.803  0.1243  0.7424  0.9965  0.1869  

  Val loss  0.8342  0.524  0.7391  0.9149  0.5089  

  Epochs  38  30  45  33  45  

    

 6. Discussion  

The discussion section provides a platform for a deeper understanding of the significance and implications of our 

findings. We observed compelling trends in the training and validation metrics across our various model architectures. 

Architecture 5, which incorporated both batch normalization and dropout layers, emerged as the standout performer, 

achieving the highest validation accuracy. This highlights the practical significance of well-designed model 

configurations. 
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Furthermore, fluctuations in the validation metrics of some architectures underscore the critical role of regularization 

techniques, such as dropout layers, in mitigating overfitting. These findings have practical implications for image 

classification tasks, particularly on the CIFAR-10 dataset. The choice of architecture can significantly impact both 

accuracy and training time, necessitating a thoughtful selection based on specific task requirements. Our study aligns 

with existing literature on techniques like batch normalization and dropout layers in deep learning models. It adds the 

importance of careful model design and regularization techniques in achieving optimal results. 

Finally, our findings in this paper include batch normalization layers contributing to smoother training by normalizing 

layer outputs, reducing internal covariate shifts, and often leading to smoother training curves. Dropout layers can be 

used for regularization and model size reduction but require careful tuning to avoid over-regularization. Their effects 

can sometimes lead to lower accuracy and higher loss due to the reduction in trainable parameters. Combining both 

techniques (batch normalization and dropout) can sometimes yield models that strike a balance between stability and 

regularization, as seen in Architecture 5. To enhance the analysis, it is essential to consider dataset-specific factors 

and conduct rigorous evaluations on a separate test dataset to ensure the generalizability of the observed trends to 

unseen data. 

7. Conclusion  

Analyzing all the architectures that we performed in our paper. The validation accuracy and validation loss of 

architecture2 and architecture5 are very near to each other and that of architecture 1, architecture 3, and architecture 

4 have much less accuracy. Despite the validation accuracy, the validation loss of Architecture 5 is less in comparison 

to the validation loss of Architecture 2. So, our choice of Architecture 5 as the preferred model is underpinned by its 

superior performance and efficiency, considering both accuracy and loss metrics. Our findings underscore the 

importance of thoughtful model design and regularization techniques in achieving optimal results for image 

classification tasks.  
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