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ABSTRACT

A weak Simpson method has order of weak convergence one in general and has order of weak convergence three
under certain additional assumptions. The proposed method has the potential to overcome some of the numerical
instabilities that are often experienced when using explicit Euler method. This work aims to determine the mean-
square stability region of the weak Simpson method for linear stochastic differential equations with multiplicative
noises. In this work, a mean-square stability region of the weak Simpson scheme is identified, and step-sizes for the
numerical method where errors propagation are under control in a well-defined sense are given. The main results are
illustrated with numerical examples.

Keywords: Stochastic differential equation, numerical method, Euler-Maruyama method, mean-square stability,
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1 INTRODUCTION

We developed the Weak Simson Method to construct accurate approximations on fixed time intervals to solutions
of the following system of stochastic differential equations (SDEs)

X(s) = x+
∫ s

0
b(X(r))dr+

M

∑
k=1

∫ s

0
σk(X(r))νk dWk(r), s≥ 0, (0.1)

where x ∈ Rd , M ∈ N is a positive integer, b : Rd → Rd , σk : Rd → R, and for k = 1, . . . ,M, νk ∈ Rd , and Wk(t) are
independent one dimensional Brownian motions. Here for each k, νk represents the direction along which the random
noise Wk enters the system (0.1equation.0.1). Suppose the coefficients b and σ are measurable and are such that
a weak solution to (0.1equation.0.1) exists and is unique in probability law. Typically the coefficients b and σ are
assumed to satisfy the Lipschitz continuity and the linear growth condition; see, for example, [13] or [7]. SDEs have
a wide range of applications in areas such as ecosystem modeling, mathematical finance, and risk management. In
most of the practical applications, we can not find explicit solutions for the underlying SDEs, as with most ordinary
differential equations (ODEs). In such situations, numerical approximation then becomes the one viable approach.

Most stochastic differential equations can not be solved explicitly. However, a great deal of useful qualitative
information can be obtained about the behavior of their solutions. Asymptotic behavior and the impact of small
changes in initial values are of particular interest in applications. We know that if a differential equation is well-
posed, then a solution exists and is unique; moreover, the solution is continuous with respect to the initial value in
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some sense. The concept of stability is an extension of this idea to an infinite time interval ( [9]). In this paper we
shall study mean-square stability of our proposed method in relation to a scalar Itô equation

dX(t) = b(X(t))dt +σ(X(t))dW (t), X(0) = x0 ∈ Rd , (0.2)

where we assume that (0.2equation.0.2) has a steady solution X(t) ≡ 0. In some sense, the stability of a numerical
scheme refers to the conditions under which the impact of an error vanishes asymptotically over time, see, for example,
Bruti-Liberati and Platen (2008). Generally, the notion of numerical stability is challenging to quantify. Nevertheless
various concepts of numerical stability for different schemes have been extensively studied by many authors. Most
of the lit- erature in numerical stability use specially designed test equations, see for instance, Kloeden and Platen
(1992). We systemically analyze the stability properties of our scheme for the given family of test equations.

2 THE WEAK SIMPSON METHOD

Preliminaries

The error criteria to be used depend on the type of application. If one is interested in just generating X(T ) sufficiently
accurately (in the distributional sense), an appropriate error criterion may be

sup
f∈C
|E[ f (X(T ))]−E[ f ((Y (N))]| ,

for a suitable class C of smooth functions, where Y (.) is the simulated path. The accuracy of the sample path
approximation can be measured by a criterion such as[

sup
t∈[,T]
|X(t)−Y(t)|

]
assuming that X(·) and Y (·) can be generated on a common probability space, or, for some suitably chosen p, via an
Lp error criterion such as

E

[∫ T
|X(t)−Y (t)|p

]
dt,

E

[
∑

0≤n≤T
|X(n)−Y (n)|p

]
in continuous and discrete time respectively ( [? ]). We recall the following definition from [9].

Definition 0.1. We say that an approximating process Y converges in the strong sense with order γ ∈ (,∞] if there
exists a finite constant K and a positive constant δ0 such that

E
[
|X(T )−Y (N)|

]
≤ Khγ , N =

T
h
,

for any time discretization stepsize 0 < h < δ0. The strong order of convergence measures the rate at which the “mean
of the error" decays as h→ 0.

In fact this definition generalizes the standard convergence criterion for ordinary differential equation, reducing to
the usual definition when the diffusion coefficient of (0.1equation.0.1) is zero.

Strong convergence allows an accurate approximation to be computed and involves direct simulation of the sample
path and demands the approximation be close to that of the Itô process. The order of convergence of strong approxi-
mation is sometimes less in the stochastic case than in the corresponding deterministic case, see, for example, [9]. It
is also observed in [2] that strong explicit methods, particularly, the widely used Euler-Maruyama method, sometimes
work unreliably and generate large errors for certain step-sizes.

But if the goal is to have a good approximation of the probability distribution of the solution X(t), individual real-
izations are not of primary interest. Weak approximations are used in simulating functionals of the form E[ f (X(T ))],
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where T > 0 and f is some function. For instance, the arbitrage-free price of a European call option is given by
EQ[e−r(T−t)(S(T )−K)+|Ft ], in which Q is the risk-neutral measure, r > 0 is the discounting factor, K is the strike
price, and S(T ) is the price of the underlying asset at time T . For weak approximation, in leu of Definition 0.1thm.0.1
for strong approximation, a less demanding alternative is to measure the rate of decay of the “error of the means".
This leads to the concept of weak convergence order. We recall the following definition for weak convergence from
[9].

Definition 0.2. We say that a time discrete approximation Y converges in the weak sense with order β > 0 if for any
f ∈C2(β+1)(Rd) there exists a finite constant K and a positive constant δ0 such that

|E[ f (X(T ))]−E[ f (Y (N))]| ≤ Khβ , N =
T
h

(0.3)

for any time discretization with maximum step size h ∈ (,δ0).

If the stochastic part of the differential equation is zero and the initial value is deterministic, the definition reduces
to the usual deterministic convergence criterion for ordinary differential equation and also agrees with the strong
convergence criterion.

We state the following standing assumptions throughout the thesis:

(A1) The coefficients of (0.1equation.0.1) satisfy the Lipschitz and linear growth conditions:

|b(x)−b(y)|+
M

∑
k=1
|σk(x)−σk(y)| ≤ κ |x− y| ,

|b(x)|+
M

∑
k=1
|σk(x)| ≤ κ(1+ |x|),

(0.4)

for all k = 1, . . . ,M and x,y ∈ Rd , where κ is a positive constant.

(A2) For each k = 1, . . . ,M, we have infx∈Rd{σk(x)}> 0. In addition, there exists a positive constant λ ∈ (0,1] such
that for any x,ξ ∈ Rd we have

λ |ξ |2 ≤ ξ
T a(x)ξ ≤ λ

−1 |ξ |2 , (0.5)

where ξ T denotes the transpose of ξ and a(x) := ∑
M
k=1 σ2

k (x)νkνT
k .

(A3) For all multi-index α with |α| ≤ 8, we have

|Dα b(x)|+
M

∑
k=1
|Dα

σk(x)| ≤ K(1+ |x|p), for all x ∈ Rd , (0.6)

where K and p are positive numbers.

It is well-known that under Assumption (A1), the stochastic differential equation (0.1equation.0.1) has a unique strong
solution; see, for example, [7, 13] or [17]. Moreover, we have the following moment estimate:

Lemma 0.3 ( [17]). Assume (A1). Let T > 0 be fixed. Then for any positive constant p, we have

E

[
sup

t∈[0,T ]
|Xx(t)|p

]
≤C < ∞, x ∈ Rd×M, (0.7)

where the constant C satisfies C = C(x,T, p) > 0 and Xx denotes the solution to (0.1equation.0.1) with initial
condition x ∈ Rd .

Remark 0.4. We note that Assumptions (A1)–(A3) are slightly weaker then those in [1], where it is assumed that
b,σk,k = 1, . . . ,M are bounded with bounded and continuous partial derivatives up to the sixth order and that
infx∈Rd{σk(x)}> 0 for each k. Also, (0.5equation.0.5) plays an important role in a certain Gaussian tail estimate in
the proof of Lemma ??.
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3 THE ALGORITHM

The weak Simpson method can be summarized as follows. Let T > 0 and Π := {0 = t0 < t1 < ... < tN = T} be a
subdivision of [0,T ]. Let {η(i)

1k ,η
(i)
2k : i ∈N,k ∈ {1,2, . . . ,M}} be a collection of mutually independent normal random

variables with mean zero and variance 1. Fix θ ∈ (0,1) and define

α1 =
5

12θ(1−θ)
and α2 = α1−1 =

5−12θ +12θ 2

12θ(1−θ)
. (0.8)

In this work, we take constant discretization stepsize h = T/N and so ti = ih for i = 0,1, . . . ,N. Let Y0 = X(0) = x0
and, for i = 1,2, . . . ,N, we repeat the following steps:

Step 1.

Y ∗i = Yi−1 +b(Yi−1)θh+
M

∑
k=1

σk(Yi−1)νkη
(i)
1k

√
θh. (0.9)

Step 2.

Yi =Y ∗i +(α1b(Y ∗i )−α2b(Yi−1))(1−θ)h

+
M

∑
k=1

√
[α1σ2

k (Y
∗
i )−α2σ2

k (Yi−1)]+ νk η
(i)
2k

√
(1−θ)h.

(0.10)

We call such an algorithm the weak Simpson method.

4 NUMERICAL MEAN SQUARE STABILITY ANALYSIS FOR THE WEAK SIMPSON
METHOD

The concept weak convergence given in Definition ?? concerns the accuracy of a numerical method over a finite
interval [0,T ] for small step sizes ∆t. However, in many applications the long-term behavior of an SDE is of interest.
The stability of various stochastic processes has been extensively studied by many authors; see for instance [8, 10, 11,
12, 17] and references therein.

In simulations and numerical approximations, roundoff and truncation error, sampling error, random number bias,
etc. are common. The utility of a numerical method depends upon its ability to control the propagation of such errors
in extended time horizon. Concerning the long-time behavior or stability analysis of numerical schemes, the following
two questions are fundamental:

(i) Do the numerical solutions of SDEs preserve stability properties of the original SDEs? And if the answer is
yes,

(ii) for what range of step sizes ∆t so that the numerical solutions are stable in appropriate senses?

These question have received a lot of attention; some recent developments in this line of research can be found in [3,
4, 5, 14, 15] and references therein.

In this work, we are concerned with mean square and almost surely asymptotic stability analysis for the weak
Simpson method (0.9equation.0.9)–(0.10equation.0.10). As in the aforementioned references on numerical stability,
we will focus on the linear test equation

X(t) = X(0)+
∫ t

0
λX(t)dt +

∫ t

0
µX(t)dW (t), t ≥ 0, (0.11)

for real or complex constants λ and µ .
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Linear stability analysis for deterministic case

We start with the deterministic case when µ = 0 and hence (0.11equation.0.11) reduces to

dX(t)
dt

= λX(t), t > 0

X(0) = x 6= 0.
(0.12)

Here λ ∈ C is constant. The solution to (0.12equation.0.12) is X(t) = xeλ t and hence limt→+∞ X(t) = 0 if and only if
λ ∈ C−, where C− denotes the left-half complex plane. This is the stability region for (0.12equation.0.12).

The weak Simpson method (0.9equation.0.9)–(0.10equation.0.10) applied to (0.12equation.0.12) produces the re-
currence

Yn =

(
1+λh+

5
12

λ
2h2
)

Yn−1. (0.13)

Then it follows from (0.13equation.0.13) that

lim
n→+∞

Yn = 0 if and only if
∣∣∣1+λh+

5
12

λ
2h2
∣∣∣< 1 (0.14)

Therefore for a given step size h > 0, the stability region for the weak Simpson method is

Sw = {λ ∈ C :
∣∣∣∣1+λh+

5
12

λ
2h2
∣∣∣∣< 1} (0.15)

It is more common to speak of the region of absolute stability as a region in the complex λh-plane. Setting
z = λh = x+ iy in (0.15equation.0.15) and detailed calculation gives

Sw = {(x,y) ∈ R2 : 25x4 +25y4 +50x2y2 +120x3 +120xy2 +264x2 +24y2 +288x < 0}. (0.16)

The stability domain (0.16equation.0.16) of weak Simpson method for deterministic linear test equation is shown in
Figure 1stability domain for weak-Simpson method (blue shaded region)figure.1.

FIGURE 1. stability domain for weak-Simpson method (blue shaded region)
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Mean square stability analysis

Returning to the SDE (0.11equation.0.11), where we assume that λ and µ are real constants and that X(0) 6= 0, since
the solution is X(t) = X(0)e(λ−

1
2 µ2)t+µW (t), we have

lim
t→+∞

E[|X(t)|2] = 0 if and only if 2λ +µ
2 < 0, (0.17)

and

lim
t→+∞

|X(t)|= 0 with probability 1 if and only if λ − 1
2

µ
2 < 0. (0.18)

It is clear from (0.17equation.0.17) and (0.18equation.0.18) that mean square stability implies asymptotic stability but
not vice versa. Note that if W = {W (t) : 0≤ t <∞} is a Brownian motion, so is the process−W = {−W (t) : 0≤ t <∞}.
Thus we can and will assume without loss of generality in the rest of the subsection that µ > 0. For ease of later
presentation, we denote by

SP = {(λ ,µ) ∈ R : 2λ +µ
2 < 0}

the set of ordered pairs of real parameters (λ ,µ) so that the trivial solution of (0.11equation.0.11) is mean square
stable.

Applying the weak Simpson method to (0.11equation.0.11) produces the following iterative sequence:

Yn =
[
A+Bη

(n)
1

]
Yn−1 +

√
(1−θ)h

[
C+Dη

(n)
1 +E

(
η
(n)
1

)2
]+

η
(n)
2 |Yn−1| , n = 1,2, . . . , (0.19)

where {η(n)
1 ,η

(n)
2 ,n = 1,2, . . .} are mutually independent Gaussian random variables with mean zero and variance

one, and

A := 1+λh+
5

12
λ

2h2,

B := µ
√

θh
(

1+
5

12θ
λh
)
,

C := µ
2 (1+α1λ

2
θ

2h2 +2α1λθh
)

D := 2α1µ
3(λθh+1)

√
θh,

E := α1µ
4
θh > 0.

(0.20)

Apparently C is positive when λ ≥ 0. When λ < 0, it is easy to see that C is positive when 0< h< 1
λθ

(
−1+

√
α2/α1

)
.

The sequence Yn of (0.19equation.0.19) is mean-square stable if limn→∞ E[|Yn|2] = 0 ( [4]). By the construction,
Yn−1,η

(n)
1 and η

(n)
2 are mutually independent. Thus it follows from (0.19equation.0.19) that

E[|Yn|2] = E[|Yn−1|2]
(

A2 +B2 +(1−θ)hE
[[

C+Dη
(n)
1 +E

(
η
(n)
1

)2]+])
. (0.21)

Lemma 0.5. Assume either one of the following is true:

λ ≥ 0, and h > 0; (0.22)

λ < 0, and 0 < h <
1

λθ

(
−1+

√
α2/α1

)
. (0.23)

Then we have

E
[
[C+Dη

(n)
1 +E(η(n)

1 )2]+
]
≤C+E +o(h2). (0.24)
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Proof. Consider the function g(x) := C+Dx+Ex2, x ∈ R. As we observed before, both C and E are positive. By
straightforward computations, g(x)> 0 for x ∈ (−∞,x1)∪ (x2,∞), where

x1 =−
1+
√

α2
α1

+λθh

µ
√

θh
< x2 =

−1+
√

α2
α1
−λθh

µ
√

θh
.

Note from (0.8equation.0.8) that 0 < α2
α1

< 1. Thus −1+
√

α2
α1

< 0 and x2 < 0. Moreover, x2 →−∞ as h ↓ 0. Let

ϕ(x) = 1√
2π

e−
x2
2 , x ∈ R denote the probability density function of a standard normal random variable. Since η

(n)
1 is

normally distributed with mean 0 and variance 1, we compute

E
[
[C+Dη

(n)
1 +E(η(n)

1 )2]+
]
=
∫ x1

−∞

(C+Dx+Ex2)ϕ(x)dx+
∫

∞

x2

(C+Dx+Ex2)ϕ(x)dx

≤C+E
∫

∞

−∞

x2
ϕ(x)dx+D

∫ x1

−∞

xϕ(x)dx+D
∫

∞

x2

xϕ(x)dx

=C+E−D
∫ x2

x1

xϕ(x)dx

=C+E +
D√
2π

[
exp
(
−x2

2
2

)
− exp

(
−x2

1
2

)]
.

The proof will be complete if we can show that

D√
2π

[
exp
(
−x2

2
2

)
− exp

(
−x2

1
2

)]
= o(h2) as h ↓ 0.

To this end, we note from the expression for D in (0.20equation.0.20) and the fact that x1 < x2 < 0 that∣∣∣∣ D√
2πh2

[
exp
(
−x2

2
2

)
− exp

(
−x2

1
2

)]∣∣∣∣≤ K1
e−

x2
2
2

h
3
2
≤ K2

h−
3
2

e
K3
h

→ 0,

as h ↓ 0, where K1,K2, and K3 are positive constants independent of h. This completes the proof of the lemma.

Putting (0.24equation.0.24) into (0.21equation.0.21) and using the expressions for A, . . . ,E in (0.20equation.0.20),
detailed computations reveal that

E[|Yn|2]< E[|Yn−1|2]
(
A2 +B2 +(1−θ)h(C+E +o(h2))

)
= E[|Yn−1|2]

[
1+(2λ +µ

2)h+
1

12
[22λ

2 +20λ µ
2 +5µ

4]h2 +o(h3)

]
.

(0.25)

Furthermore, for the expression inside the brackets of the right-hand side of (0.25equation.0.25), we notice that

22λ
2 +20λ µ

2 +5µ
4 = 22

(
λ +

5
11

µ
2
)2

+
5
11

µ
4 > 0. (0.26)

Next we compute the discriminant

∆ = (2λ +µ
2)2−4

1
12

(22λ
2 +20λ µ

2 +5µ
4) =−10

3

[(
λ +

2
5

µ
2
)2

+
1

25
µ

4
]
< 0.

Therefore it follows that for any h > 0,

1+(2λ +µ
2)h+

1
12

[22λ
2 +20λ µ

2 +5µ
4]h2 > 0.

Putting this observation into (0.25equation.0.25), we obtain a condition for mean square stability of the weak
Simpson method (0.9equation.0.9)–(0.10equation.0.10) for (0.11equation.0.11)

1+(2λ +µ
2)h+

1
12

[22λ
2 +20λ µ

2 +5µ
4]h2 < 1. (0.27)
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Since h > 0, and noting (0.26equation.0.26), we can rewrite equation (0.27equation.0.27) as

0 < h <
−12(2λ +µ2)

22λ 2 +20λ µ2 +5µ4 . (0.28)

Note that when λ ≥ 0, the set of h that satisfies (0.28equation.0.28) is an empty set. On the other hand, when
λ < 0, 2λ +µ2 < 0, and h > 0 satisfies (0.23equation.0.23) and (0.28equation.0.28), then the weak Simpson method
(0.9equation.0.9)–(0.10equation.0.10) is mean-square stable for (0.11equation.0.11). In other words, given (λ ,µ) ∈
SP, the combination of (0.23equation.0.23) and (0.28equation.0.28):

0 < h < min
{

−12(2λ +µ2)

22λ 2 +20λ µ2 +5µ4 ,
1

λθ

(
−1+

√
α2/α1

)}
. (0.29)

gives a sufficient condition for mean-square stability of the weak Simpson method (0.9equation.0.9)–(0.10equation.0.10)
for (0.11equation.0.11).

Conversely, suppose the weak Simpson method with discretization stepsize h > 0 is mean-square stable for
(0.11equation.0.11). Note from (0.21equation.0.21) that

E[|Yn|2]≥ E[|Yn−1|2](A2 +B2) = E[|Yn−1|2](1+(2λ +µ
2
θ)h+O(h2)).

Thus for the weak Simpson method to be mean-square stable, λ ,µ , and θ necessarily satisfy 2λ +µ2θ ≤ 0.

We summarize the above discussion into the following theorem:

Theorem 0.6. The following assertions are true:

(a) Given (λ ,µ) ∈ SP, the weak Simpson method is mean-square stable if the discretization stepsize h satisfies
(0.29equation.0.29). Therefore the mean square stability of the process (0.11equation.0.11) implies the mean
square stability of the weak Simpson method if the discretization stepsize h satisfies (0.29equation.0.29).

(b) Conversely, if the weak Simpson method with discretization stepsize h> 0 is mean-square stable for (0.11equation.0.11),
then the parameters λ and µ of (0.11equation.0.11) satisfies 2λ +µ2θ ≤ 0.

We can visualize the stability region when

−12(2λ +µ2)

22λ 2 +20λ µ2 +5µ4 <
1

λθ

(
−1+

√
α2/α1

)
. (0.30)

It is common in the literature to visualize the region of stability in the xy-plane, in which x = λh and y = µ2h > 0.
Then we using (0.27equation.0.27), we have

SM := {(x,y) ∈ R2 : 22x2 +20xy+5y2 +24x+12y < 0}. (0.31)

Note that since 22x2 +20xy+5y2 = 22(x+ 5
11 y)2 + 5

11 y2 > 0, for any (x,y) ∈ SM , we necessarily have 24x+12y < 0
or y <−2x. See Figure 2Real mean-square stability domain for weak Simpson method (crossed hashing)figure.2 for
the plot of the mean-square stability domain for the weak Simpson method SM .
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FIGURE 2. Real mean-square stability domain for weak Simpson method (crossed hashing)

Example 0.7. Again, we test the mean-square stability over [0,30] with non-random initial value X0 = 1. We take
λ =−2 and µ =

√
2 in (0.11equation.0.11). We have 2λ +µ2 < 0 and hence thanks to (0.17equation.0.17), the trivial

solution of (0.11equation.0.11) is mean-square stable. The left-hand side of (0.30equation.0.30) is equal to 6
7 and the

right-hand side of (0.30equation.0.30) is equal to 0.37. We apply weak Simpson method to simulate 45000 discrete
sample paths of (0.11equation.0.11) for stepsizes h= 1, 1

2 ,
1
4 . The stepsize h= 1

4 satisfy (0.30equation.0.30) but not the
stepsizes h = 1 and h = 1

2 . Therefore the weak Simpson method is mean-square stable for (0.11equation.0.11) when
h = 1

4 . We plot the sample average of Y 2
n against tn := nh with logarithmically scaled y-axis in Figure 3Mean-square

stability testfigure.3. The numerical experiments indicates that weak Simpson method is mean-square stable for h = 1
2

or 1
4 , and unstable for h = 1. These observations are consistent with Theorem 0.6thm.0.6.
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FIGURE 3. Mean-square stability test
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