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ABSTRACT

We analytically derive a discrete radial Green function for a hydrogenic system in terms of associated Leguerre
polynomials.We investigate the polarizability of the ground-state hydrogen using the so-called length gauge
approximation of electrodynamics.The polarizability is the sum of the polarization matrix elements for the negative
and the positive frequency values.We estimate the contribution of discrete wavefunctions to the static ground state
polarizability.We found that the contribution of continuum states dominates over that of discrete states to the
polarizability by an order of magnitude.
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INTRODUCTION

Electric polarizability of an atom or a molecule is their tendency to have separated positive and negative charge
centers, producing an electric dipole [1]. Polarizability is a scalar quantity for an isotropic medium or a spherical
system, while it is a tensor for an anisotropic medium or a non-spherical system. The polarizability of an atom can be
evaluated quantum electrodynamically with the help of Schrödinger-Coulomb Green function [2,3,4]. Polarizability
helps unearth many fundamental quantum phenomena, such as dispersion between two atoms in long-range
interaction [5,6,7,8], determining magic wavelength in atomic transitions [9,10,11,12], developing three-dimensional
(3D) crystallographic molecular stacking [13]. In addition, polarizability can be a great tool in understanding
cold-atom physics, time-keeping using atomic clocks, and the metrology of atomic frequency standards [14]. One
can also determine a system’s dielectric constant and refractive index using its dipole polarizability [15].

The detailed mathematical derivation is quite involved as it needs to evaluate matrix elements in Schrödinger
Coulomb propagator. The reduced discrete Green function is evaluated as the inverse of Hamiltonian minus energy
eigenvalue sandwiched between the position operators. The polarization matrix elements for any energy state |ϕ〉
reads[5]

Pϕ(ω) =
e2

3

〈
ϕ

∣∣∣∣~r( 1
H−E− h̄ω

)
~r
∣∣∣∣ϕ〉 (1)

where e is the electronic charge,~r is the electron position operator, H is the Schrödinger Hamiltonian, E is the
energy of the reference state |ϕ〉, h̄ = 1.0545718×10−34Js is Planck’s eponymous constant, and ω is the angular
frequency of the transition. The sum of the polarization matrix elements for the negative and the positive frequency
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αϕ(ω) = Pϕ(ω)+Pϕ(−ω) is the dynamical polarizability for the atom for the state |ϕ〉. In this work, we evaluate
the contribution of the discrete wave functions and the continuous wave functions to the ground-state hydrogen atom
polarizability and compare them. This investigation confirms that the continuum contribution is not negligible;
instead, it is the dominating one for the hydrogen atom.

We organize the paper as follows. We first determine the discrete radial green function by solving the eigenvalue
equation corresponding to the radial wavefunctions of hydrogen. We use the fact that the total wave function can be
separated into the radial and angular components, and then the angular components are calculated separately from
the radial components. We first perform the Sturmian decomposition of the Schrödinger Green function to evaluate
the radial component, and then the radial integrations are carried out. Finally, the summation is carried out over the
discrete energy levels. In the next section, we determine the ground state polarizability of hydrogen due to discrete
energy levels and compare it with the polarizability due to the continuous part. Finally, we draw a conclusion and
present concluding remarks.

DISCRETE RADIAL GREEN FUNCTION

To solve a problem involving partial differential equations, Green function formalism provides a very powerful
technique. In what follows, we revisit a derivation of the discrete radial Green function. We begin our derivation with
the completeness relation in discrete representation 〈~r1|~r2〉, which can be written as

〈~r1|1|~r2〉= ∑
n`m
〈~r1|n`m〉〈n`m|~r2〉

= ∑
n`m

ψn`m(r1,θ1,ϕ1)ψ
∗
n`m(r2,θ2,ϕ2)

= ∑
n`m

Rn`(r1)Rn`(r2)Y`m(θ1,ϕ1)Y ∗`m(θ2,ϕ2)

= ∑
n`m

(n− `−1)!
2n(n+ `)!

(
2

na0

)3

exp
(
− r1 + r2

na0

)(
2r1

na0

)`( 2r2

na0

)`

L2`+1
n−`−1

(
2r1

na0

)
L2`+1

n−`−1

(
2r2

na0

)
(2)

where 〈~r|n`m〉= ψn`m(r,θ ,ϕ) is the complete eigenfunction for Schrödinger-Coulomb Hamiltonian; n, `, m are the
principal, orbital, and magnetic quantum numbers; and a0 is the Bohr radius. We have used an ansatz which states
that the total eigenfunctions can be expressed as the product of a radial part and an angular part as

ψn`m(r,θ ,ϕ) =Rn`(r)Y`m(θ ,ϕ) (3)

where the radial wave function Rn`(r) is given by [16]

Rn`(r) =
[
(n− `−1)!
(n+ `)!

]1/2 2`+1

n2
1

a3/2
0

(
r

na0

)`

exp
(
− r

na0

)
L2`+1

n−`−1

(
2r

na0

)
(4)

and the angular part Y`m(θ ,ϕ) is the usual spherical harmonics given by

Y`m(θ ,ϕ) =
[
(2`+1)(`−m)!

4π(`+m)!

]1/2

Pm
` (cos(θ))eimϕ (5)

Here, L2`+1
n−`−1

(
2r

na0

)
and Pm

` (cos(θ)) are respectively the associated Laguerre and the associated Legendre
polynomials. Figure 1Radial functions for n = 1 i.e., R1s(r) and n = 2 i.e., R2s(r) and R2p(r)figure.1 shows radial
functions for n =1, and 2 as an example.
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FIGURE 1. Radial functions for n = 1 i.e., R1s(r) and n = 2 i.e., R2s(r) and R2p(r).

One can express the Green function in terms of position operators, Hamiltonian and energy eigenvalues as[17,18,19]

Gdis(~r1,~r2,E) = 〈~r1|
1

H−E
|~r2〉 (6)

which can be expanded with the help of the spectral decomposition of unity as

= ∑
n`m
〈~r1|n`m〉

1
H−E

〈n`m|~r2〉

= ∑
n`m

ψn`m(r1,θ1,ϕ1)ψ
∗
n`m(r2,θ2,ϕ2)

En−E

= ∑
n`m

1
En−E

(n− `−1)!
2n(n+ `)!

(
2

na0

)3

exp
(
− r1 + r2

na0

)(
2r1

na0

)`( 2r2

na0

)`

×L2`+1
n−`−1

(
2r1

na0

)
L2`+1

n−`−1

(
2r2

na0

)
Y`m(θ1,ϕ1)Y ∗`m(θ2,ϕ2) (7)

Here, En is the energy eigenvalues corresponding to the eigenvalue equation

HRn`(r) =
(
− h̄2

2me

~∇2− α h̄c
r

)
Rn`(r) = EnRn`(r) (8)

Let us rewrite Rn`(r) as
Rn`(r) =Cn` r` exp

(
− r

na0

)
L (9)

where
Cn` =

[
(n− `−1)!
(n+ `)!

]1/2 2`+1

n2
1

a3/2
0

(
1

na0

)`

(10)

is a constant independent of r and L = L2`+1
n−`−1

(
2r

na0

)
.
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With the aid of Eqs. (8equation.0.8) and (9equation.0.9), one can write the eigenvalue equation as

HRn`(r) =
(
− h̄2

2me

~∇2− α h̄c
r

)
Cn` r` exp

(
− r

na0

)
L

=

[
− h̄2

2me

(
∂ 2

∂ r2 +
2
r

∂

∂ r
− `(`+1)

r2

)
− α h̄c

r

]
Cn` r` exp

(
− r

na0

)
L

=− h̄2

2me
Cn`

∂

∂ r

[
`r`−1exp

(
− r

na0

)
L− r`

na0
exp
(
− r

na0

)
L+ r`exp

(
− r

na0

)
∂

∂ r
L

]
− h̄2

2me
Cn`

2
r

[
`r`−1exp

(
− r

na0

)
L− 1

na0
r`exp

(
− r

na0

)
L+ r`exp

(
− r

na0

)
∂

∂ r
L

]
− h̄2

2me
Cn`

[
−`(`+1)

r2 +
2meαc

h̄ r

]
r` exp

(
− r

na0

)
L

=− h̄2

2me
Cn`

[
`(`−1)

r2 L− `

na0r
L+

`

r
∂

∂ r
L− `

na0r
L+

1

(na0)
2 L− 1

na0

∂

∂ r
L

+
`

r
∂

∂ r
L− 1

na0

∂

∂ r
L+

∂ 2

∂ r2 L

]
r` exp

(
− r

na0

)
− h̄2

2me
Cn`

2
r

[
`

r
L− 1

na0
L+

∂

∂ r
L

]
× r`exp

(
− r

na0

)
− h̄2

2me
Cn`

[
−`(`+1)

r2 +
2meαc

h̄ r

]
r` exp

(
− r

na0

)
L

=− h̄2

2me
Cn` r`−1 exp

(
− r

na0

){
r

∂ 2

∂ r2 L+

(
2`+2− 2r

na0

)
∂

∂ r
L+(n− `−1)L

}
− h̄2

2me
Cn`

[
− 2`

na0r
− 2

na0r
+

1

(na0)
2 +

2meαc
h̄ r

− 2n
na0r

+
2`

na0r
+

2
na0r

]

× r` exp
(
− r

na0

)
L (11)

Using the fact that L≡ L2`+1
n−`−1

(
2r

na0

)
satisfies the associated Laguerre differential equation:

r
∂ 2

∂ r2 L+

(
2`+2− 2r

na0

)
∂

∂ r
L+(n− `−1)L = 0 (12)

Eq. (11) can be written as:

HRn`(r) =−
h̄2

2me

[
1

(na0)
2 +

2meαc
h̄ r

− 2
a0r

]
Cn` r` exp

(
− r

na0

)
L

=

[
− h̄2

2men2a2
0
− h̄αc

r
+

h̄2

mea0r

]
Cn` r` exp

(
− r

na0

)
L

=− α2mec2

2n2 Cn` r` exp
(
− r

na0

)
L =−α2mec2

2n2 Rn`(r) (13)
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Here, we have used a0 = h̄/(αmec), where h̄ = 1.0545718×10−34Js is Plank’s eponymous constant,
α = 1/137.035999 is the fine structure constant, me is the mass of an electron, and c is the speed of light in a
vacuum. From Eq. (13equation.0.13), the eigenvalues En can be written as

En =−
α2mec2

2n2 (14)

If we define a new quantum number k such that k = n− `−1, the associated Laguerre polynomials L2`+1
n−`−1

(
2r

na0

)
becomes L2`+1

k

(
2r

(k+`+1)a0

)
and the energy eigenvalues, in this condition, can be written as

Ek` =−
α2mec2

2(k+ `+1)2 (15)

The energy difference En−E in Eq. (6equation.0.6) is thus given by

En−E =− α2mec2

2n2 −
(
−α2mec2

2ν2

)
=

α2mec2

2

(
1

ν2 −
1
n2

)
=

h̄2

2mea2
0

(
n2−ν2

n2ν2

)
(16)

where ν is the principal quantun number associated with the energy E. Substituting the value of the energy
difference En−E from Eq. (16equation.0.16) to Eq. (6equation.0.6), we get

Gdis(~r1,~r2,ν) =
2me

h̄2 ∑
n`m

a2
0n2ν2

n2−ν2
(n− `−1)!
2n(n+ `)!

(
2

na0

)3

exp
(
− r1 + r2

na0

)(
2r1

na0

)`

×
(

2r2

na0

)`

L2`+1
n−`−1

(
2r1

na0

)
L2`+1

n−`−1

(
2r2

na0

)
Y`m(θ1,ϕ1)Y ∗`m(θ2,ϕ2)

=
4me

h̄2 ∑
n`m

ν2

n2−ν2
(n− `−1)!

n(n+ `)!

(
2

na0

)2`+1

exp
(
− r1 + r2

na0

)
(r1r2)

`

×L2`+1
n−`−1

(
2r1

na0

)
L2`+1

n−`−1

(
2r2

na0

)
Y`m(θ1,ϕ1)Y ∗`m(θ2,ϕ2) (17)

The total discrete Green function can be expressed in terms of the discrete radial Green function gdis
` (r1,r2,ν) as[17]

Gdis(~r1,~r2,ν) =∑
n`m

gdis
` (r1,r2,ν)Y`m(θ1,ϕ1)Y ∗`m(θ2,ϕ2) (18)

Comparing Eq.[18] with Eq.[17], we get the discrete radial Green function gdis
` (r1,r2,ν) as

gdis
` (r1,r2,ν) =

4me

h̄2

∞

∑
n=0

ν2

n2−ν2
(n− `−1)!

n(n+ `)!

(
2

na0

)2`+1

exp
(
− r1 + r2

na0

)
(r1r2)

`

×L2`+1
n−`−1

(
2r1

na0

)
L2`+1

n−`−1

(
2r2

na0

)
(19)

The (`=1)-component of the discrete radial Green function gdis
`=1(r1,r2,ν) reads

gdis
`=1(r1,r2,ν) =

4me

h̄2

∞

∑
n=2

ν2

(n2−ν2)n2(n2−1)

(
2

na0

)3

exp
(
− r1 + r2

na0

)
(r1r2)

×L3
n−2

(
2r1

na0

)
L3

n−2

(
2r2

na0

)
(20)

Note that the sum over n starts from 2 not from zero as L3
−2(x) = 0 = L3

−1(x)
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DISCRETE GROUND STATE POLARIZABILITY

The ground state static polarizability due to discrete energy levels is given by[5,17]

α
dis
1S (ω = 0) =2Pdis

1S (ω = 0) = 2
e2

3

〈
1S
∣∣∣∣r1

1
H−E

r2

∣∣∣∣1S
〉

=
2e2

3

∫
∞

0
r2

1 dr1

∫
∞

0
r2

2 dr2 R10(r1)r1 gdis
`=1(r1,r2,ν)R10(r2)r2

=
32me e2

3h̄2a3
0

∫
∞

0
r4

1 dr1

∫
∞

0
r4

2 dr2 exp
(
− r1 + r2

a0

)
∞

∑
n=2

1

n2 (n2−1)2

×
(

2
na0

)3

exp
(
− r1 + r2

na0

)
L3

n−2

(
2r1

na0

)
L3

n−2

(
2r2

na0

)
(21)

Here, we have used the value of gdis
`=1(r1,r2,ν) from Eq. (20equation.0.20) with ν = 1 and substituted the radial part

of the ground state wave function of hydrogen, i.e., R10(r) = 2/
√

a3
0e−r/a0 . One can substitute the other excited

state’s radial functions and evaluate the excited state’s static polarizability in a similar fashion.
Let us use dimensionless variables ρ defined as ρi = 2ri/(na0) and make substitutions in Eq. (21equation.0.21) to get

α
dis
1S (ω = 0) =

32me e2

3 h̄2a3
0

∞

∑
n=2

1

n2 (n2−1)2

(na0

2

)7 ∫ ∞

0
ρ

4
1 dρ1

∫
∞

0
ρ

4
2 dρ2

×exp
(
−ρ1n+ρ2n

2

)
exp
(
−ρ1 +ρ2

2

)
L3

n−2 (ρ1)L3
n−2 (ρ2)

=
a4

0 me e2

12h̄2

∞

∑
n=2

n5

(n2−1)2

∫
∞

0
ρ

4
1 exp

(
− (1+n)ρ1

2

)
L3

n−2 (ρ1)dρ1

×
∫

∞

0
ρ

4
2 exp

(
− (1+n)ρ2

2

)
L3

n−2 (ρ2)dρ2 (22)

Interestingly, the ρ1-integral is identical to the ρ2-integral. Hence, one can write Eq. (22equation.0.22) as

α
dis
1S (ω = 0) =

e2 a2
0

12Eh

∞

∑
n=2

n5

(n2−1)2

[∫
∞

0
u4 e−(1+n)u/2 L3

n−2 (u)du
]2

(23)

Here, we have also used α = h̄/(a0mec), and Eh = α2mec2, where α and Eh are respectively the fine-structure
constant and the Hartree energy. We can evaluate the u-integral in Eq. (23equation.0.23) using the standard integral
identity [20]

∫
∞

0
dρ esρ

ρ
γ Lµ

n (ρ) =
Γ(γ +1)Γ(n+µ +1)

n!Γ(µ +1)
(−s)−(γ+1)

2F1
(
−n,γ +1; µ +1;−1

s

)
(24)
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which yields

∫
∞

0
u4 e−(1+n)u/2 L3

n−2 (u)du =
Γ(5)Γ(n+2)
(n−2)!Γ(4)

(
2

1+n

)5

2F1

(
2−n,5;4;

2
1+n

)
(25)

Substituting the value of the integral in Eq. (23equation.0.23) and simplifying the expression using standard integral
identity [20]

2F1 (−k,a+1;a;z) = (1− z)k (z−1)a+ kz
a(z−1)

(26)

we get

α
dis
1S (ω = 0) =

e2a2
0

Eh

∞

∑
n=2

1024
3

n9

(n−1)6 (n+1)8

(
n−1
n+1

)2n

(27)

which yields

α
dis
1S (ω = 0) =0.362240952

e2a2
0

Eh
(28)

The total ground state dynamical polarizability of a hydrogen atom is the sum of polarization matrix elements
P1s(±ω)

α1S(ω) = ∑
±

P1s(±ω) (29)

where P1s(ω) is given as[11,21]

P1S(ω)≡ P1S(t) =
e2a2

0
Eh

[
2 t2(−3+3t +12t2−12t3−19t4 +19t5 +26t6 +38t7)

3(−1+ t)5 (1+ t)4

− 256 t9

3(−1+ t)5(1+ t)5 2F1

(
1,−t;1− t;

(1− t
1+ t

)2
)]

(30)

where t = (1+2h̄ω/Eh)
−1/2 is a dimensionless energy parameter. One obtains the total ground state static

polarizability α1S(ω = 0) of a hydrogen atom expanding the series for α1S(ω) and substituting ω = 0 or t = 1 and
convinces that it comes out to be

α1S(ω = 0) =
9
2

e2a2
0

Eh
(31)
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FIGURE 2. Comparison of different contributions to the polarizability of the ground state hydrogen. Polarizabilities are plotted
as a function of energy h̄ω . The static polarizabilities are constant with frequency while the dynamical polarizability α(ω) does
vary with the frequency.

For illustrative purposes, the comparison of dynamical polarizability, static polarizability, and the discrete
wavefunction contribution to the polarizability on the ground state hydrogen atom are presented in Fig. 2Comparison
of different contributions to the polarizability of the ground state hydrogen. Polarizabilities are plotted as a function
of energy h̄ω . The static polarizabilities are constant with frequency while the dynamical polarizability α(ω) does
vary with the frequencyfigure.2. The comparison shows that the major contribution in the ground state, static
polarizability comes from the continuum wave functions.

CONCLUSION

Starting from the completeness relation, we derived the total discrete Green function and the radial discrete
Green function in terms of the associated Laguerre polynomial. We obtained an analytical expression for the
polarizability of the ground-state hydrogen atom. The polarizability can be expressed as the sum of the polarization
matrix elements calculated using position operators for frequency’s positive and negative values. The static value of
polarizability is obtained from the dynamic polarizability as a special case of ω = 0 or t = 1. We carried out the
numerical value for the discrete ground state polarizability and found that the contribution of the discrete
wavefunctions is smaller by an order of magnitude compared to the continuum states, revealing that the continuous
wave functions dominate the ground state static polarizability. This is consistent with the result presented in Ref.
[22] for the Stark shift for the ground state of hydrogen.
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