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Abstract

Japan has experienced many large-scale natural disasters such as earthquakes, typhoons
with heavy rain and landslides, tornadoes and so on. Every time we have such serious
damages due to major natural disasters, public utilities such as electricity, gas, and
water have been cut off and stopped. In this paper we take four major earthquakes,
which occurred very recently with serious damages. Using data such as deaths and
missing people, refugees, and refugee camps, water supply suspension and its recovery
and applying various statistical data analyses techniques and mathematical models, we
show our findings and policy suggestions obtained from those analyses. In addition, we
propose a mathematical modeling technique for quantitatively measuring the robust-
ness of the water supply network system. Our approach is based upon the network
flow optimization model and Monte Carlo random generation technique. We illustrate
numerical results obtained from our numerical experiments.

Key words. : Statistical data analysis, earthquakes, mathematical model, water supply
network, network flow optimization model

1 Introduction

Japan has experienced many serious natural disasters including earthquakes, typhoon, floods,
landslides, and so on. Hanshin-Awaji earthquake in January, 1995 has caused 6,400 deaths
and missing people. Then in March, 2011 the Great East Japan Earthquake has caused
16,000 deaths and 2,800 missing people. Still more than 320,000 refugees remain at refugees
camps even now, living far from their home areas where they lived before the incident. East
South Sea earthquake, which is said to occur in the near future, may bring the worst case
of 25,000 deaths and missing people, 960,000 broken houses, and even 50 trillion economic
loss. Every time we have such serious damages due to major natural disaster earthquake,
public utilities such as electricity, gas, and water have been cut off and stopped. Then a lot
of refugees are brought to the refugee camps such as public schools and public halls, then
they have to stay there for a certain or long period. We have investigated the damages and
the recovery processes for the Great East Japan Earthquake (refer to Parwanto and Oyama
[3], [4], [6]], Parwanto, et al. [5].

In this paper we take four major earthquakes Hanshin-Awaji, Niigata-Chubu, Great East
Japan and Kumamoto, which occurred recently with serious damages. Using data such as
deaths and missing people, refugees, and refugee camps, water supply suspension and its
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recovery, and so on, we apply statistical data analysis techniques to investigate those four
major earthquakes in detail with various corresponding mathematical models to derive more
desirable and efficient mitigation policies for preparing natural disasters in Japan.

In the following Section 2 we show the trend of refugees for recent major earthquakes in
Japan. In Section 3 we describe the suspension and recovery processes of social infrastruc-
tures such as electricity, gas, water and communication line. In Section 4 we explain how to
measure the robustness of the water supply system Finally, in Section 5 we give summary
and conclusion of our paper.

2 Trend on refugees for recent major earthquakes in
Japan

We take four major earthquakes, which occurred recently in Japan with serious damages
including a lot of deaths and missing people: Hanshin-Awaji earthquake (1995/01/17) de-
noted by HNSA, Niigata-Chubu earthquake (2004/10/23) denoted by NGTC, Great East
Japan earthquake (2011/03/11) denoted by GEJE, and Kumamoto earthquake denoted by
KMMT, Tables A1 and A2 in the Appendix show the trend of the number refugee camps
and refugees for recent major earthquakes in Japan, respectively. In those Tables “period”
indicate the number of days (D), weeks (W), and months (M), respectively.

Figure 1 indicates the number of refugees for the GEJE, NGTC and HNSA, respectively
while Figure 2 shows the number of refugees camp sites for those major earthquakes. In
Figure 1 GEJE(Whole) indicates the data for the whole area affected by the GEJE, while
GEJE(3 Pref.) shows the data for the three prefectures Iwate, Miyagi and Fukushima. In
these Figures number of refugees and number of refugee camps are shown daily until 1M (1
month), then monthly up to 4M (4 months). We see from Figure 1 that number of refugees
increases in the first 3 days after the incident, then drastically decreases in a few weeks,
then slowly decreases in a few months. Almost similarly, number of refugee camps increases
in the first 5 days, then declining slowly while only GEJE(Whole) shows rather constant
or increasing trend exceptionally in 2 months, thereafter decreases, but still we see around
1,500 refugee camps after 3 months.

Figure 3 indicates the relationship between the number of refugee camps and the number
of refugees for recent major earthquakes mentioned above. In Figure 3 we find that most
earthquakes show similar declining trend for both number of refugees and number of refugees
camps. In Figure 3 we find that the GEJE only shows a different move from others regarding
the decreasing trend of the relationship between the number of refugees camp sites and the
number of refugees until three to four months after the incident. Excluding the GEJE data
in Figure 3 we obtain Figure 4, showing the relationship between those two factors for three
recent major earthquakes HNSA, NGTC and KMMT in Japan. From Figure 4 we see that
the relationship between those two factors can be expressed by some mathematical model
expressed by using a polynomial function. This implies that the declining trend of those
two factors, i.e. number of refugees camps and number of refugees can be more commonly
and more generally expressed by the mathematical model.

Applying a mathematical model to approximate the relationship between number of refugees
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Figure 1: Number of refugees for the GEJE, NGTC and HNSA,

Figure 2: Number of refugees camp sites for the GEJE, NGTC and HNSA,
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Figure 3: Relationship between refugees camp sites and refugees,

Figure 4: Relationship between refugees camp sites and refugees (HNSA, NGTC and
KMMT)
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camp sites and number of refugees for HNSA, NGTC and KMMT shown in Figure 3, we
find that a quadratic function fits best as shown in Figure 5 below, whose mathematical
formula is given as follows.

y = 1.989x2 (1)

where y : number of refugees, x : number of refugee camps.

From the above result we find that the number of refugees increases following a quadratic
function with respect to the number of number of refugee camp sites, not linearly. More
concretely, we can say that the number of refugees increases following the relation

dy

dx
= 3.978x (2)

Namely, almost 4 times with respect to the number of refugee camps. Thus, we can conclude
that the more refugee camps, the more refugees increases following four times the number
of refugee camp sites.

Figure 5: Approximate quadratic function for the relationship between number of refugees
camps and number of refugees

3 Suspension and recovery of social infrastructures

Table 1 indicates the suspended households for various public utilities such as electricity,
gas, water supply and communication lines, and necessary days for recovery for those public
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utilities in Kobe city for the HNSA earthquake which occurred in 1995. We find that
electricity recovers quickest in only 6 days while gas and water supply take almost 3 months,
and communication line in 2 weeks. These trends hold almost similarly to any natural
disasters cases. This means it will be more effective if we could shorten the recovering period
for gas and water supply even a few weeks. In addition we also know that their recovering
trend curves are different by public utilities. Namely, cases for electricity and water supply
show convex form while gas and communication lines show rather concave form, among these
gas sometimes shows convex-to-concave (first convex, then concave afterwards). This means
we need to think about these properties when we try to develop certain natural disaster
mitigation policy.

Table 1: Suspended households for various public utilities, and necessary days for recovery
for public utilities

Public utility Suspension Days for recovery

Electricity 2,600 HH 6
Gas 855.9 HH 84

Water supply 495.3 HH 90
Communication line 101.66 LN 14

HH : Households (Unit : 1,000), LN : (Unit : Lines)

Table A3 indicates the recovering trend for public utilities in the HNSA. In this Table A3
Cities and Towns mean number of those in which the water supply was disrupted. Figure 6
indicate the curve for the recovering trend of electricity corresponding to the data shown in
Table A3. Approximating the actual data shown by the red points, we obtain the function
form as follows, whose approximating curve is given by dotted line in Figure 6.

y = 2.589x(−2.726) (3)

Figure 6: Recovering trend of electricity in the HNSA with its approximation curve

Figure 7 shows the trend of the number of households with disrupted water supply for the
HNSA in which almost 1.3 million households were disrupted their water supply. From
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Figure 7 we find that during the first one month recovering speed was very fast while it
took almost two to three months after the incident until all households could get the water
supply.

Figure 7: Trend of the number of households with disrupted water supply for the HNSA

In HNSA earthquake number of households for which water supply was cut off just after the
incident amounted to 1.265,730 in 10 cities and 7 towns. This corresponds to almost 90% of
the total number of households in those areas, moreover in 5 cities and 4 towns. However,
their recovery has been very quick: 1 town had the water supply on the day of incident; 1 city
and 1 town next day; 2 cities and 4 towns in a week. After a week, percentage of households
with suspended water supply became 45.1%, almost half of the total on the first incident
day. Furthermore, after two weeks, it became 3.2%, which means almost all households were
provided with water supply. In the whole Hyogo prefecture the percentage of households
with suspended water supply was 33.7%. Using those statistical data for households with
suspended water supply, we show various types of mathematical models expressing their
data, relationships and proceeding processes.

4 Measuring robustness of the water supply system

We aim at measuring the robustness of the water supply network system by applying network
flow optimization techniques, investigating the emergent situations, and obtaining efficient
countermeasures strategy for the risk management of the water supply system in Tokyo. We
have applied our approach to measure the robustness of the water supply network system
in Tokyo (refer to Ashida, et al. [1], Fithriyah, et al. [2]).

The network flow optimization approach used in this study is mathematically called multi-
source multi-sink maximum flow model, wherein sources correspond to water intake sites,
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while sinks are demand sites. We formulate the network flow optimization problem maxi-
mizing the total flow, under the conditions that each source node corresponding to water
intake site has upper bound, each edge corresponding to the water pipeline has capacity,
and each sink node has an upper bound of its each water demand. We solve the network
flow optimization problem for each case such that several edges are “broken” randomly, thus
arbitrary number of edges are “disrupted”, thus try to measure quantitatively, indicating
how much of the total demand can be met.

Given an undirected network G = (V,E) consisting of the node set V and edge set E with
|V | = n and |E| = m, respectively, we assume each edge (i, j) ∈ E, i, j ∈ V , has its capacity
uij . We partitioned the node set V into three subsets, denoted by source (S), intermediate
(R), and sink set (T ) sets, respectively, thus V = S ∪ R ∪ T . The network G = (V,E) is
illustrated in Figure 8.

Figure 8: Water supply network

The mathematical formulation of this network flow optimization model can be given as
follows.

minimize Z =
∑

i∈T (
∑

j xji −
∑

j xij)

subject to ≥ −si i ∈ S

∑
j xji −

∑
j xij = 0 i ∈ R,

≤ ti i ∈ T

0 ≤ xijxji ≤ Aijuij , (i, j) ∈ E

(4)

Each xij is the decision variable designating the flow passing through each edge (i, j) from
node i to j. The volume tj indicates the “demand of water” at each sink node j, whilst
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the flow from each source node indicated by si, respectively. The objective function of this
model is to maximize the amount of total flow running into sink nodes. Assuming that each
edge in the network may be broken with equal probability, we measure the reliability of the
network system by computing the maximum flow of this network. In the formulation, we
include random variables Aij : (i, j) ∈ E, with each takes the value of 0 or 1, corresponding
to the case that each edge (i, j) is “broken” or “unbroken” (alive). The capital letter Z is
used here to denote the stochastic maximum flow value, since the realized maximum value
of (1) naturally becomes a random variable, because it depends on the random capacity
Aijuij . Moreover, since we assume each edge is “broken” independently, and the maximum
flow of (4) including the mean value of Z under the condition that the random variables Aij

is satisfying
∑

Aij = m – k, corresponding as the condition that k edges out of m edges are
randomly broken, then the conditional distribution function can be defined by

Fk(z) = P{Z ≤ z|
∑

Aij = m–k}. (5)

which provides the ratios of the networks which maximum flow value is less than or equal to

z to all the

(
m
k

)
networks obtained by deleting k edges randomly from the original network.

Thus, the conditional expected maximum flow of this network can be defined as:

zk = E
[
Z|

∑
Aij = m–k

]
(6)

As a result, the coverage rate or reliability of this network can be computed as the degree
of satisfying the total demand as follows:

rk =
zk∑
i∈T ti

(7)

Therefore, the maximum and minimum of coverage rate (CR) are:

max rk =
max zk∑

i∈T ti
(8)

min rk =
min zk∑

i∈T ti
, (9)

respectively. It is practically impossible to find rk by computing Z for all

(
m
k

)
cases;

instead we consider estimating zk approximately. Therefore, in order to estimate the ap-
proximation of the coverage rate rk iteratively with respect to k (ranging from 0 to m),
we apply Monte Carlo method. Given the conditional distribution function defined by:
Fk(z) = PZ ≤ z|

∑
Aij = m–k, the conditional expected maximum flow of this network

defined as: zk = E[Z|
∑

Aij = m–k], and the reliability of this network computed by:
rk = zk∑

i∈T ti
, thus this research is conducted in three steps (iterating the following steps

10,000 times):

Step 1. Determining the set of k “broken” edges out of m edges obtaining a network

9

Statistical Data Analyses for Investigating Recent Major Earthquakes ...



84

Gk = (Vk, Ek).

Step 2. Solving the network flow optimization problem for the Gk = (Vk, Ek).

Step 3. Calculating the coverage rate (rk).

Figure 9: Illustration for the numerical results.

We solve the above network flow optimization problem for each k, ranging from 0 to m, thus
obtain the estimation of rk . Figure 9 below illustrate the numerical results following the
computational procedure described above. In Figure 9 horizontal coordinate indicates the
edge deletion ratio given by the percentage of the broken edges in the network while the
vertical coordinate shows the maximum flow ratio given by the ratio to the maximum flow
value corresponding to the original network in which no edge is broken yet. Figure 9 also
includes more flow value data such as maximum, minimum, average, median, 5% and 25%,
respectively, upper and lower from the average.

5 Summary and conclusion

In the last four decades, based on the International Disaster Database (EM-DAT), between
1970-1979 and 2000-2012, the number of natural disaster events reported globally increased
significantly from 837 to 4,939 or increased almost six times. Over the whole period of
1970-2012, 40.8% of these natural disasters occurred in Asia. Japan has been experiencing
many serious natural disasters causing huge damages. Based upon the statistical data
analyses regarding those four major earthquakes recently occurred in Japan, we have applied
mathematical modeling techniques to investigate disaster damages and recovery processes.
Refugees and refugee camps analyses would be useful to review and evaluate the declining
trend of refugees and refugee camps. Also public utilities recovering trend could be checked
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and also improved by investigating more details comparing with their mathematical models
recovering process we have proposed.

We have proposed a mathematical modeling technique for quantitatively measuring the
robustness of the water supply network system. Our approach is based upon the network
flow optimization model and Monte Carlo random generation technique. We have illustrated
numerical results obtained from our numerical experiments.

Finally, we believe these approaches would contribute for us to derive effective mitigation
policies for preparing natural disasters in Japan.
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Appendix 

Table A1. Number of refugee camp sites 

Period HNSA NGTC GEJE KMMT 

 1995/1/17 2004/10/23 2011/3/11 2016/4/14 

0 D    352 

1 D  427  505 

    399 

    375 

2 D 984 482 1,280 655 

  481  763 

  458   

3 D 998 486 1,300 859 

  497  723 

  498   

4 D 1,079 470 1,450 638 

  576  632 

5 D 1,097 579 2,150 667 

  603  641 

6 D 1,153 594 2,150 660 

  547  623 

1 W 1,138 536 2,182 658 

  527  650 

8 D 1,127 501 2,200 614 

  482  602 

9 D 1,127 442 2,100 625 

  439  615 

10 D 1,120 367 2,100 591 

  356  600 

11 D 1,088 324 1,800 581 

  328  561 

12 D 1,068 299 1,850 534 

  277  521 

13 D 1,045 265 1,900 506 

    492 

2 W 1,035 239 1,935 469 

  234  474 

15 D 1,037 217 2,080 444 

  214  444 

16 D 1,027 184 2,050 424 
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Period HNSA NGTC GEJE KMMT 

  175  423 

17 D 1,018 187 2,050 409 

  186  412 

18 D 1,019 176 2,050 396 

  176  391 

19 D 1,033 163 2,050 383 

  163  380 

20 D 1,029 153 2,250 376 

  152  375 

3 W 1,003 146 2,214 369 

    371 

22 D 1,003 142 2,300 359 

    360 

23 D 996 140 2,250 356 

    355 

24 D 995 136 2,350 342 

    342 

25 D 989 136 2,400 276 

    265 

26 D 987 132 2,350 258 

    257 

27 D 975 128 2,350 251 

    252 

28 D 970 112 2,300 253 

    251 

29 D 964 104 2,380 244 

    244 

30 D 966 102 2,350 243 

     

1 M 961 94 2,344 238 

2 M 789 0 2,417 124 

3 M 639  1,459 93 

4 M 500  536 50 

5 M 379  334 13 

6 M 332  112 9 

7 M 222  73 1 
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Table A2.  Number of refugees 

Period HNSA NGTC GEJE KMMT 

 1995/1/17 2004/10/23 2011/3/11 2016/4/14 

0 D   20.499 23.233 

1 D  85.667 250 44.449 

    15.176 

    7.262 

2 D 274.78 97.798 374 70.911 

  97.71  91.763 

  98.087   

3 D 282.756 101.958 470 183.882 

  103.172  110.816 

  103.178   

4 D 311.476 86.182 440 104.9 

  89.244  93.874 

5 D 297.313 98.345 435 116.861 

  99.111  95.052 

6 D 316.678 85.067 385 103.38 

  84.063  92.314 

1 W 307.022 77.662 386.739 99.868 

  76.615  89.513 

8 D 291.147 71.407 365 90.97 

  68.847  81.006 

9 D 295.696 59.668 350 78.228 

  59.634  67.136 

10 D 284.575 54.427 322 67.788 

  53.458  59.912 

11 D 274.999 50.351 265 53.457 

  50.819  48.238 

12 D 268.874 46.37 258 47.032 

  43.193  41.119 

13 D 270.686 41.68 245 39.702 

    36.866 

2 W 264.141 34.75 246.19 38.196 

  34.741  33.6 

15 D 260.698 25.51 245 31.735 

  24.56  30.629 

16 D 257.512 18.919 243 26.567 

  18.292  25.894 

17 D 250.067 17.401 180 23.246 

Yuji Kawase & Tatsuo Oyama / IJORN 8 (2019) 75 - 93



89

 

Period HNSA NGTC GEJE KMMT 

  17.101  22.078 

18 D 246.557 14.873 170 20.557 

  14.873  20.002 

19 D 246.871 12.551 170 19.81 

  12.551  19.509 

20 D 239.271 12.147 170 18.762 

  12.143  18.017 

3 W 230.651 11.973 167.919 16.699 

    16.357 

22 D 227.56 11.833 165 15.693 

    15.158 

23 D 226.122 11.188 165 14.775 

    14.33 

24 D 223.919 11.071 165 14.77 

    13.883 

25 D 222.564 10.663 160 12.836 

    11.99 

26 D 222.528 9.31 160 12.523 

    12.009 

27 D 218.724 7.903 155 11.886 

    11.676 

28 D 215.745 7.313 155 11.239 

    10.703 

29 D 213.379 7.1 150 10.843 

    10.477 

30 D 212.515 6.849 150 10.606 

     

1 M 209.828 6.57 147.536 10.312 

2 M    6.211 

3 M    4.592 

4 M 35.28  58.922 1.714 

5 M 22.937  42.744 0.471 

6 M 17.569  27.531 0.164 

7 M 8.491  21.899 0.003 
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Period HNSA NGTC GEJE KMMT 

 1995/1/17 2004/10/23 2011/3/11 2016/4/14 

0 D    352 

1 D  427  505 

    399 

    375 

2 D 984 482 1,280 655 

  481  763 

  458   

3 D 998 486 1,300 859 

  497  723 

  498   

4 D 1,079 470 1,450 638 

  576  632 

5 D 1,097 579 2,150 667 

  603  641 

6 D 1,153 594 2,150 660 

  547  623 

1 W 1,138 536 2,182 658 

  527  650 

8 D 1,127 501 2,200 614 

  482  602 

9 D 1,127 442 2,100 625 

  439  615 

10 D 1,120 367 2,100 591 

  356  600 

11 D 1,088 324 1,800 581 

  328  561 

12 D 1,068 299 1,850 534 

  277  521 

13 D 1,045 265 1,900 506 

    492 

2 W 1,035 239 1,935 469 

  234  474 

15 D 1,037 217 2,080 444 

  214  444 

16 D 1,027 184 2,050 424 

  175  423 

17 D 1,018 187 2,050 409 

  186  412 

Yuji Kawase & Tatsuo Oyama / IJORN 8 (2019) 75 - 93



91

 

Period HNSA NGTC GEJE KMMT 

18 D 1,019 176 2,050 396 

  176  391 

19 D 1,033 163 2,050 383 

  163  380 

20 D 1,029 153 2,250 376 

  152  375 

3 W 1,003 146 2,214 369 

    371 

22 D 1,003 142 2,300 359 

    360 

23 D 996 140 2,250 356 

    355 

24 D 995 136 2,350 342 

    342 

25 D 989 136 2,400 276 

    265 

26 D 987 132 2,350 258 

    257 

27 D 975 128 2,350 251 

    252 

28 D 970 112 2,300 253 

    251 

29 D 964 104 2,380 244 

    244 

30 D 966 102 2,350 243 

     

1 M 961 94 2,344 238 

2 M 789 0 2,417 124 

3 M 639  1,459 93 

4 M 500  536 50 

5 M 379  334 13 

6 M 332  112 9 

7 M 222  73 1 
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Table A3. Recovering trend for public utilities in the HNSA 

Date 
Day 
No. 

 Cities & 
Towns  

Gas 
(1000) 

Electricity 
Telephone 

line 
Date  

Day 
No. 

Cities  
Towns 

Gas 

1995/1/17    2,600,000 101,660 1995/3/20 61 3,520  

1995/1/18    400,000 101,660 1995/3/21 62 2,600  

1995/1/19 1 495,300  120,000 101,660 1995/3/22 63 1,300  

1995/1/20 2 456,300 849.5 80,000 101,660 1995/3/23 64 650  

1995/1/21 3 393,250  40,000 101,660 1995/3/24 65 650 40.95 

1995/1/22 4 384,800  15,000 101,660 1995/3/25 66 650  

1995/1/23 5 373,100 855.9 0 92,160 1995/3/26 67 650  

1995/1/24 6 367,250   92,160 1995/3/27 68 650  

1995/1/25 7 359,450   81,160 1995/3/28 69 650  

1995/1/26 8 347,100   81,160 1995/3/29 70 130  

1995/1/27 9 338,650 834.1  61,660 1995/3/30 71 130  

1995/1/28 10 321,100   48,660 1995/3/31 72 130 20.25 

1995/1/29 11 302,900   31,660 1995/4/1 73 130  

1995/1/30 12 286,650   15,660 1995/4/2 74 130  

1995/1/31 13 267,800   0 1995/4/3 75 130  

1995/2/1 14 253,500    1995/4/4 76 130  

1995/2/2 15 245,700    1995/4/5 77 130  

1995/2/3 16 239,200 737.8   1995/4/6 78 130  

1995/2/4 17 232,700    1995/4/7 79   

1995/2/5 18 216,450    1995/4/8 80   

1995/2/6 19 200,850    1995/4/9 81   

1995/2/7 20 193,050    1995/4/10 82   

1995/2/8 21 182,000    1995/4/11 83   

1995/2/9 22 168,350 644.8   1995/4/12 84   

1995/2/10 23 157,300    1995/4/13 85   

1995/2/11 24 141,500    1995/4/14 86   

1995/2/12 25 141,500    1995/4/15 87   

1995/2/13 26 141,400    1995/4/16 88   

1995/2/14 27 139,100    1995/4/17 89   

1995/2/15 28 139,100    1995/4/18 90   

1995/2/16 29 139,100    1995/4/19 91   

Yuji Kawase & Tatsuo Oyama / IJORN 8 (2019) 75 - 93



93

 

Date 
Day 
No. 

 Cities & 
Towns  

Gas 
(1000) 

Electricity 
Telephone 

line 
Date  

Day 
No. 

Cities  
Towns 

Gas 

1995/2/17 30 138,450 529.9   1995/4/20 92   

1995/2/18 31 135,850    1995/4/21 93   

1995/2/19 32 132,600    1995/4/22 94   

1995/2/20 33 122,850    1995/4/23 95   

1995/2/21 34 106,600    1995/4/24 96   

1995/2/22 35 98,150    1995/4/25 97   

1995/2/23 36 92,300    1995/4/26 98   

1995/2/24 37 83,200 415.1   1995/4/27 99   

1995/2/25 38 77,350    1995/4/28 100   

1995/2/26 39 70,200    1995/4/29 101   

1995/2/27 40 55,250    1995/4/30 102   

1995/2/28 41 55,250    1995/5/1 103   

1995/3/1 42 55,250    1995/5/2 104   

1995/3/2 43 55,250    1995/5/3 105   

1995/3/3 44 55,250 203.1   1995/5/4 106   

1995/3/4 45 55,250    1995/5/5 107   

1995/3/5 46 55,250    1995/5/6 108   

1995/3/6 47 35,750    1995/5/7 109   

1995/3/7 48 35,750    1995/5/8    

1995/3/8 49 35,750    1995/5/9    

1995/3/9 50 23,350    1995/5/10    

1995/3/10 51 21,450    1995/5/11    

1995/3/11 52 20,800    1995/5/12    

1995/3/12 53 18,550    1995/5/13    

1995/3/13 54 13,000    1995/5/14    

1995/3/14 55 10,400    1995/5/15    

1995/3/15 56 8,450    1995/5/16    

1995/3/16 57 7,800    1995/5/17    

1995/3/17 58 7,800 73.359   1995/5/18    
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