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Abstract 

In this article, a new distribution called Exponentiated Generalized Exponential Geometric 

Distribution is formulated. We have derived some important mathematical properties like hazard 

function, probability density function, survival function, quantiles, the measures of skewness 

based on quartiles and coefficient of kurtosis based on octiles. To estimate the parameters of the 

new distribution, we have applied the three commonly used estimation methods namely maximum 

likelihood estimation (MLE), least-square (LSE) method and Cramer-Von-Mises (CVM) method. 

We have used R programming as well as analytical methods for data analysis.For model 

validation, we have used different information criteria as Akaike’s information criteria, and 

Bayesian information criteria (BIC) etc. For the assessment of potentiality of the new distribution, 

we have considered a real dataset and the goodness-of-fit attained by proposed distribution is 

compared with some competing distributions. It is found that the proposed model fits the data 

very well and more flexible as compared to some other models.  

Keywords: Goodness of fit, Hazard function, least square Estimation, Survival function. 

Introduction 

Several new classes of models have been introduced grounded in the simple exponential 
distribution, having extremely wide used lifetime distribution for modeling numerous survival 
problems during the recent time. Although there are different ideas and purpose of deriving new 
models, the main idea behind generation of new model is to propose lifetime distributions which 
can accommodate practical as well as theoretical applications for the non-constant hazard 
functions, presenting monotone shapes. The exponential distribution generally does not provide a 
reasonable parametric fit for such practical applications. A lifetime distribution with decreasing 
failure rate explains a variation of the Exponential distribution and the Exponential geometric 
(EG) distribution, with decreasing hazard function (Adamidis and Loukas, 1998). Generalized 
Exponential distributions can accommodate data with increasing and decreasing hazard functions 
(Gupta and Kundu, 1999). A new lifetime distribution is modification of the Exponential 
distribution having decreasing hazard function (Kus,2007). A new lifetime distribution is 
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generalized by including a power parameter deriving new distribution called “A generalization of 
the Exponential-Poisson distribution” (Barreto-Souza and Cribari-Neto, 2009).This distribution 
has increasing, decreasing and uni-modal hazard functions. Another model called the 
complementary exponential power lifetime model describesabout the complementary Exponential 
power distribution developed based on real data in actuarial science, engineering, economics and 
applied scienceby exponentiating the exponential power distribution( Barriga et al.,2011). In 
literature, some familiar distributions have been derived in different areas as: Geometric 
Exponential Poisson G family (Nadarajah et al., 2013), Exponentiated Exponential Poisson G 
family (Ristić& Nadarajah (2014)), Kumaraswamy Poisson- G family (Ramos et al., 2015), 
Exponentiated Generalized-G Poisson family (Aryal& Yousuf, 2017), Poisson Exponential-G 
family (Reyad et al., 2020). 

In this paper, we have proposed a new lifetime distribution extending the exponential geometric 
distribution by compounding the exponentiated exponential distribution. The proposed 
distribution is named as Exponentiated generalized exponential geometric (EGEG). The proposed 
model is four parameter univariate continuous distributions. In Model formulation section, we 
introduce the new EGEG distribution and present some of its properties. In addition, we derive 
the expressions for the hazard rate function, kurtosis, probability density function, quantile 
function and survival function.  Also, in this section we have presented the inferential procedure. 
We discuss some basic properties, In Methods of Parameter Estimation section; we have 
presented the methods of parameter estimation. In Data analysis and application section; we have 
taken a real data set on which proposed model is applied. Here, we have estimated the parameters 
of the model. In Model comparison section, we have fitted the EGEG model and made 
comparison with the fits of several usual lifetime distributions which can prove its relative 
superiority. In final section, Conclusions and comments are included. 

 

Model Formulation 

In recent years, several statisticians have been attracted by new generated families of continuous 
distributions to develop new models. Many of the lifetime testing problems can be solved by the 
exponential distribution.For analysis of life time data, fitting of data by statistical modeling is 
essential. Although in real life, a failure rate is not always fixed, solutions given by exponential 
distribution can be easily justified under assumption of constant failure rate. Since new 
distributions gives better fit to recent complex data, so four parameters Exponentiated 
Generalized Exponential Geometric Distribution (EGEG) has been derived. The exponential 
distribution has been derived in many ways to get new distribution. In literature, many families of 
distributions haves been derived. Alzaatreh et al. (2013), has introduced Beta exponential - X 
family which has following cumulative density function (CDF) and probability density function 
(PDF), 
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Where, I denote incomplete beta function. For 1β = , above CDF and PDF reduces to 

Exponentiated Generalized (EG) class of distribution with CDF and PDF as, 

( ) [1 [1 ( )] ]F x G x
λ α= − −                                            (3) 

{ }1 1, ( ) ( )[1 ( )] [1 1 ( ) ] ]and f x g x G x G x
λ λ ααλ − −= − − −                               (4) 

Here, we have used CDF of Exponential Geometric distribution function G(x) as the base line 
distribution function having CDF and PDF as 
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Substituting the density function g(x) in density function of Exponentiated Exponential X family 
(3), we get a new density function named as Exponentiated Generalized Exponential Geometric 
(EGEG) distribution. The distribution function and density function of proposed model EGEG is 
given as 
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Exponentiated Generalized Exponential Geometric Distribution 

Let, X is non negative continuous random variable such that X~ ( , , , )EGEG α β λ θ  with 

density function  
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where, x > 0, α, β, λ, and θ > 0. α and λ shape parameters. β and θ   are scale parameters. 
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Special Cases: 

Let X denotes the non-negative random variable with pdf given in equation (8). We can define 
some other sub models from proposed model as  

1. For 1, 1 and =1,α λ θ= =  EGEG reduces to Exponential distribution (1) as 

( ) 1 xF x e β−= −  

2. For 1 and 1α λ= =  proposed model reduces to Exponential Geometric distribution (2) as 

1
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3. For 1λ =  , proposed model reduces to Exponentiated Exponential Geometric Distribution 
(3) as, 
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The density plot of the proposed model EGEG at various values of  α   and λ  keeping β =4 

and θ  =0.9 is shown in figure 1. Density plot shows that the curve increases at initial value of X 
and then decreases gradually indicating that the proposed model is unimodal. Here it is clear that 

as values of  and  α λ varies; the shape of the curve varies indicating  and  α λ as the shape 
parameters. The probability density function of EGEG is decreasing for 0<α <1 and unimodal for 
α >0. From density plot it is clear that density plot of EGEG can take different shape. 

 

Figure1. Density plot for different values of α  and λ  at 4 and =0.9β θ=  
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Statistical properties 

Major characteristics of the proposed model EGEG are derived in this section. 

Survival Function 

The survival function is defined as the probability of an event not failing before specified time t. 
Survival function of EGEG is given as 
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               (9) 

 

Hazard function 
The hazard function is the defined as the instant failure rate at a given time t. The 
hazard function h(x) of the proposed model is given as 
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The plot of the hazard rate function for different values of α  and λ  at 4 and =0.9β θ=  is 

given in figure 2. The proposed distribution exhibits monotonically increasing, monotonically 
decreasing upside- down bathtub hazard rate. The model does not contain constant hazard rate. 
The hazard rate function given in equation (10) is decreasing for 0<α <1 and upside bathtub for 
α >0. 
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Figure2. The hazard rate function for 4 and =0.9β θ=  at different values of α and λ . 

Asymptotic properties 

Here are interested to observe the asymptotic properties to check whether the proposed model is 
uni-modal or not. For this we have found the limiting values of density function f(x) in equation 
(8) at x=0 and x=α  That is, for  0x →  
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Similarly for x →∝  
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Since the limiting values of f(x) for  0x →  and for x →∝  are 0 confirms that the proposed 
model EGEG is uni-modal. 

 

Quantile function 
The quantile function is the theoretical aspect of the probability theory.It is used for measuring 
statistical measures likeskewness, kurtosis and median. It is also useful in generating the random 
variables. Quantile function can be used as the alternative function of PDF and CDF. Quantile 
function can be obtained by  

    ( )1( )Q p F p−=  

 
Quantile function for proposed model is as 
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The random Deviation Generation 

Let U be the uniform (0, 1) random variable with c.d.f. ( )F • . Let,
1( )F − •  exist then random 

number deviate can be generated from ( , , , )EGEG α β λ θ   using expression 

( )

( )( ){ }

1/1/

1/1/

11
log   ; 0<u<1

1 1

u
x

u

λ
α

λαβ θ θ

 
− 

= −  
+ − − 

 

                           (12) 

If we put u = 0.5 in (12) then median will be obtained.  
 

Mode 

Mode is the most repetitive value of the given PDF. To find the value of mode, the necessary and 

sufficient condition are;
( )

0
df x

dx
=  and  

2

2

(
0

d f x

dx
<  . By using this necessary and sufficient 

condition; we get, 

 

Solution of equation (13)cannot be found analytically as it is a nonlinear equation. Also, it cannot 
be found numerically by using Newton - Raphson method.  
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Skewness and Kurtosis 

Skewness and kurtosis are the measure that describes the nature of distribution. Bowley's 
skewness takes the form  

(3 / 4) 2 (1 / 2) (1 / 4)

(3 / 4) (1 / 4)k

Q Q Q
S

Q Q

− +
=

−
                                                (14) 

Moors' kurtosis based on Octiles is 

(7 / 8) (5 / 8) (3 / 8) (1 / 8)

(6 / 8) (2 / 8)u

Q Q Q Q
K

Q Q

− + −
=

−
                                 (15) 

where Q (.) is the quantile function. Statistical measure of the proposed model is calculated 
generating 100 random samples from equation (12) taking initial 

values 15.3, 1.99, 0.58  and =0.086α β λ θ= = = . Using the generated 

valuesmedian,mean, mode, standard deviation, skewness and kurtosis are calculated to illustrate 
the characteristics of the proposed model.   

 
Table 1 

Mean, Median, Mode, SD, Skewness and Kurtosis of EGEG 

 

α β λ θ Mean Median Mode SD Skewness Kurtosis 

15.3 1.99 0.58 0.086 1.7352 1.5022 1.0362 0.921134 1.248300 4.60600 

15.4 1.99 0.58 0.086 1.7440 1.5113 1.0459 0.921820 1.246000 4.60040 

15.5 1.99 0.58 0.086 1.7453 1.5127 1.0475 0.921967 1.245590 4.599335 

15.5 2.10 0.58 0.086 1.6539 1.4335 0.9927 0.873673 1.245580 4.599335 

15.5 2.20 0.58 0.086 1.5787 1.3683 0.9475 0.833961 1.245570 4.599335 

15.5 2.30 0.58 0.086 1.5101 1.3088 0.9062 0.797702 1.351448 4.897776 

15.5 2.30 0.59 0.086 1.4694 1.2342 0.7638 0.782006 1.351448 4.619760 

15.5 2.30 0.60 0.086 1.4301 1.2342 0.8424 0.766754 1.261649 4.641028 

15.5 2.30 0.61 0.086 1.3924 1.1989 0.8119 0.751926 1.269955 4.663131 

15.5 2.30 0.62 0.100 1.4153 1.2264 0.8486 0.742366 1.257845 4.635275 

15.5 2.30 0.62 0.120 1.4880 1.3013 0.9279 0.747586 1.235625 4.582250 

15.5 2.30 0.62 0.160 1.5502 1.3652 0.9952 0.751478 1.218953 4.543713 

15.5 2.30 0.62 0.160 1.6050 1.4210 1.0530 0.754495 1.205960 4.514437 

15.5 2.30 0.62 0.180 1.6529 1.4702 1.1048 0.756904 1.195539 4.491443 
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Here, values of standard deviation are increasing as values of ,α  and θ are increasing and 

values of λ and β  are decreasing. Also, different values of mean, median and mode show that 

the curve is not symmetrical and is not normal i.e., model is uni-modal with lack of symmetry and 
non-normal. 

 

Some useful Expansion 

Using the generalized binomial series, following distribution is derived. For | | 1, 0,z n< >  we 

have 
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For an exponential function, the power series expansion is given as; 
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Using the above expansions, the pdf and c.d.f. of the EGEG can be expressed as 
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Moments 

Moments are the quantitative measurements of the distribution in the form of function that 

describes the characteristics of the probability distributions. The 
thr  raw moment 

'
rµ  of the 

proposed distribution ~ ( , , , )X EGEG α β λ θ is given as  

0
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r E X x f x dxµ
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When r =1 then mean of the EGEG will be as 
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Similarly, when r=2 then the second order raw moment of EGEG will be as 
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Variance of the proposed model can be obtained by using relation ' ' 2
2 1( ) ( )Var X µ µ= − .  The 

lower incomplete moments ( )
s

tϕ  is given by 
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Methods of Parameter Estimation 

Parameters of the new distribution are estimated by applying the three commonly used estimation 
method namely Cramer-Von-Mises (CVM), Least-square (LSE) methods and Maximum 

likelihood estimators (MLE). 

 
Maximum Likelihood Estimation (MLE) 

In this section, we have presented the ML estimators (MLE's) of the EGEG distribution. Let 
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After differentiating (16) with respect to parameters α, β, λ and θ, we get 
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i i

i i

i i

x xn
x x

i x x
i

e e
x e e

e e

λ λ
β β

β β

β β

θ θ
α λθ θ

θ θ

− −
− −

−
− −

− −
=

    
    + − − − −
    − − − −     

∑  
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( ){ }
( ){ }

1
1

1 1

2 1 1 (1 )
1 1

        

i

i i i i

i

xn n
x x x x

x
i i

n e
e e e e

e

β
β β β β

β

θ
θ

θ θ θ

−
− −

− − − −

−
= =

 ∂
 = − − − + −

∂  − − 
∑ ∑

l

  

( ) ( )
( ){ } ( ){ }

1 1

1

1 1 1
1 1 1 1

i i

i i

i i

x xn
x x

x x
i

e e
e e

e e

λ λ
β β

β β

β β

θ θ
λ α

θ θ

− −
− −

− −

− −
=

    
    − − − −
    − − − −     

∑

 

( ){ }
( )

( ){ }

1

1 1

ln 1 1
1 1 1 1

                

i i

i i

x xn n

x x
i i

n e e

e e

λ
β β

β β

θ θ
λ α

λ λ θ θ

−

− −

− −
= =

    ∂     = + − − −
 ∂    − − − −     

∑ ∑
l

 

( ){ } ( ){ }
l n

1 1 1 1

i i

i i

x x

x x

e e

e e

β β

β β

θ θ

θ θ

− −

− −

   
   
   − − − −   

 

By setting 0
α β λ θ

∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂

l l l l
 and solving them for α, β, λ and θ we get the ML 

estimators of the ( , , , )EGEG α β λ θ distribution. But normally, it is not possible to solve non-

linear equations (16) so with the aid of suitable computer software one can solve them easily. Let 

( , , , )α β λ θΘ =  denote the parameter vector of ( , , , )EGEG α β λ θ  and the MLE of Θ  

as  ˆ ˆ ˆˆ( , , , )α β λ θΘ = , then the asymptotic normality results in, ( ) ( )( )
1

3 0,N I
− Θ − Θ → Θ

 
 

where ( )I Θ  is the Fisher’s information matrix given by, 

( )

2 2 2 2

2

2 2 2 2

2

2 2 2 2

2

2 2 2

l l l l
E E E E

l l l l
E E E E

I
l l l l

E E E E

l l
E E E

α β α λ α θα

β α β λ β θβ

λ α λ β λ θλ

θ α θ β

       ∂ ∂ ∂ ∂
       

∂ ∂ ∂ ∂ ∂ ∂∂       

       ∂ ∂ ∂ ∂
       

∂ ∂ ∂ ∂ ∂ ∂∂       
Θ = −

       ∂ ∂ ∂ ∂
       

∂ ∂ ∂ ∂ ∂ ∂∂       

   ∂ ∂ ∂
   

∂ ∂ ∂ ∂   

2

2

l l
E

θ λ θ

 
 
 
 
 
 
 
 
 
 
    ∂
    

∂ ∂ ∂    
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In practice, we don’t know Θ  hence it is useless that the MLE has an asymptotic 

variance ( )( )
1

I
−

Θ . Hence,by plugging in the estimated value of the parameters, we approximate 

the asymptotic variance. An estimate of the information matrix ( )I Θ  given by the observed 

fisher information matrix ( )O Θ  as  



2 2 2 2

2

2 2 2 2

2

2 2 2 2

2

2 2 2 2

( )

l l l l

l l l l

O
l l l l

l l l

α β α λ α θα

β α β λ β θβ

λ α λ β λ θλ

θ α θ β θ λ

       ∂ ∂ ∂ ∂
       

∂ ∂ ∂ ∂ ∂ ∂∂       

       ∂ ∂ ∂ ∂
       

∂ ∂ ∂ ∂ ∂ ∂∂       
Θ = −

       ∂ ∂ ∂ ∂
       

∂ ∂ ∂ ∂ ∂ ∂∂       

     ∂ ∂ ∂ ∂
     

∂ ∂ ∂ ∂ ∂ ∂     
( )

( )
( )

ˆ ˆˆ , , , ,

|

2

|

H

l

α β λ θ

θ

Θ = Θ

 
 
 
 
 
 

= − Θ 
 
 
 
  
  

∂  

 

where H is the Hessian matrix. 

We use the Newton-Raphson algorithm to maximize the likelihood estimator which produces the 
observed information matrix. Therefore, the variance-covariance matrix is given by, 

( )
( )

1

|

ˆ ˆ ˆˆ ˆ ˆ ˆvar( ) cov( , ) cov( , ) cov( , )

ˆ ˆ ˆ ˆ ˆ ˆˆcov( , ) var( ) cov( , ) cov( , )

ˆ ˆ ˆ ˆ ˆ ˆˆcov( , ) cov( , ) var( ) cov( , )

ˆ ˆ ˆ ˆ ˆ ˆˆcov( , ) cov( , ) cov( , ) var( )

H

α α β α λ α θ

β α β β λ β θ

λ α λ β λ λ θ

θ α θ β θ λ θ

Θ=Θ

−

 
 
  

− Θ =   
   

 
 

       (17) 

Hence from the asymptotic normality of MLEs, approximate 100(1-a) % confidence intervals for 
α, λ and θ can be constructed as, 

/2
ˆ ˆvar( )aZα α± , /2

ˆ ˆvar( ),
a

Zβ β± /2
ˆ ˆvar( )

a
Zλ λ±  and /2

ˆ ˆvar( )
a

Zθ θ± . 

where /2a
Z is the upper percentile of standard normal variate 

 

Method of Least-Square Estimation (LSE) 

The LSE of the unknown parameters α, λ and θ of ( , , , )EGEG α β λ θ  distribution can be 

obtained by using the principle of optimization. Here, we have estimated parameters by 
minimizing  
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( )
2

( )
1

; , , , ( )
1

n

i

i

i
A x F X

n
α β λ θ

=

 
= − + 
∑    (18) 

with respect to unknown parameters α, β, λ and θ. 

 

Suppose ( )iF X  denotes the CDF of the ordered random variables 
( ) ( ) ( )1 2 nX  X   X< < …<  where 

{ }1 2, ,  ,
n

X X X…  is a random sample of size n taken from a distribution function F(.). The least-

square estimators of α,λ and θ say ˆ ˆ ˆˆ , , ,   andα β λ θ  respectively, can be obtained by 

minimizing 

( )
( )

( ) ( ){ }

2

1

; , , , 1 ;  0, ( , , ) 0
11 1

i

i

xn

x
i

e i
A x x

ne

αλ

β

β

θ
α β λ θ α λ θ

θ

−

−
=

      
= − − > >   

+ − −      

∑  (19) 

with respect to α, β, λ and θ. 

Differentiating (19) with respect to α, λ and θ we get, 

 

( )

( ) ( ){ }
( )

( ) ( ){ }1

2 1 1
11 1 1 1

                                                   

i i

i i

x xn

x x
i

A e i e

ne e

α αλ λ

β β

β β

θ θ

α θ θ

− −

− −
=

           ∂    
= − − −       

∂ + − − − −              

∑  

( )

( ) ( ){ }
   ln 1

1 1

i

i

x

x

e

e

λ

β

β

θ

θ

−

−

  
  

−   
− −    

 

( )

( ) ( ){ }
( )

( ) ( ){ }
2

1

2 1
11 1 1 1

                    

i i

i
i

x xn

x x
i

A e i xe

ne e

αλ

β β

β β

θ
αθλ

β θ θ

− −

− −
=

     ∂  
= − −   

∂ + − −   − −    

∑
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( )

( ) ( ){ }
( )

( ) ( ){ }

1 1

  1
1 1 1 1

i i

i i

x x

x x

e e

e e

αλ λ

β β

β β

θ θ

θ θ

− −

− −

− −

    
    

−     
− − − −        

 ( )

( ) ( ){ }
( )

( ) ( ){ }

1

1

2 1 1
11 1 1 1

                            

i i

i i

x xn

x x
i

A e i e

ne e

α αλ λ

β β

β β

θ θ
α

λ θ θ

−

− −

− −
=

           ∂    
= − − − −       

∂ + − − − −              

∑  

( )

( ) ( ){ }
( )

( ) ( ){ }
 ln

1 1 1 1

i i

i i

x x

x x

e e

e e

λ

β β

β β

θ θ

θ θ

− −

− −

   
   
   

− − − −   
   

 ( )

( ) ( ){ }
( )

( ) ( ){ }

1

1

2 1 1
11 1 1 1

                      

i i

i i

x xn

x x
i

A e i e

ne e

α αλ λ

β β

β β

θ θ
αλ

θ θ θ

−

− −

− −
=

           ∂    
= − − − −       

∂ + − − − −              

∑

 

( )

( ) ( ){ }
( ) ( )

( ) ( ){ }

1

2

(1 )
 

1 1 1 1

i i i

i
i

x x x

x x

e e e

e e

λ

β β β

β β

θ

θ θ

−

− − −

− −

 
− 

 
− −  − − 

 

 
In similar manner, we can estimate the weighted least square estimators by minimizing 

( )
( )

( ) ( ){ }

2

1

; , , , 1
11 1

i

i

xn

i x
i

e i
D X w

ne

αλ

β

β

θ
α β λ θ

θ

−

−
=

      
= − −   

+ − −      

∑  

with respect to α, β, λ and θ. The weights wi are computed as

( )

( ) ( )
( )

2
1 21

( ) 1i

i

n n
w

Var X i n i

+ +
= =

− +
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Hence, the weighted least square estimators of α, β, λ and θ respectively can be obtained by 
minimizing, 

( )
( ) ( )

( )

( )

( ) ( ){ }

2

2

1

1 2
; , , , 1

1 11 1

i

i

xn

x
i

n n e i
D X

i n i ne

αλ

β

β

θ
α β λ θ

θ

−

−
=

    + +   
= − −   

− + + − −      

∑  (20) 

 

Method of Cramer – Von-Mises estimation (CVME) 

The Cramer-Von-Mises estimators of α, β, λ and θ are obtained by minimizing the function 

( ) ( )
2

:
1

1 2 1
; , , , | , , ,

12 2

n

i n

i

i
Z X F x

n n
α β λ θ α β λ θ

=

− 
= + −  

∑  

( )

( ) ( ){ }

2

1

1 2 1
1

12 21 1

i

i

xn

x
i

e i

n ne

αλ

β

β

θ

θ

−

−
=

      − 
= + − −   

 − −      

∑  (21) 

Differentiating (21) with respect to α, λ and θ we get, 

( )

( ) ( ){ }
( )

( ) ( ){ }1

2 1
2 1 1

21 1 1 1

                                                      

i i

i i

x xn

x x
i

Z e i e

ne e

α αλ λ

β β

β β

θ θ

α θ θ

− −

− −
=

           ∂ −   
= − − −       

∂  − − − −              

∑  
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( ) ( ){ }
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1 1

i

i

x

x

e

e

λ

β

β

θ

θ

−

−

  
  

−   
− −    

 ( )

( ) ( ){ }
( )

( ) ( ){ }
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1

2 1
2 1

21 1 1 1

                     

i i
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i

x xn

x x
i

Z e i xe

ne e

αλ

β β

β β

θ
αθλ

β θ θ

− −

− −
=

     ∂ − 
= − −   

∂  − −   − −    

∑  
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1 1 1 1
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e e

αλ λ

β β

β β

θ θ

θ θ

− −

− −

− −

    
    
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2 1 1
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i
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β β

β β
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α

λ θ θ
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           ∂ −   
= − − − −       

∂  − − − −              

∑
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λ

β β
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θ θ

θ θ
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   
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A e i e
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α αλ λ

β β

β β

θ θ
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θ θ θ

−

− −

− −
=

           ∂ −   
= − − − −       

∂  − − − −              

∑
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( ) ( ){ }
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1

2

(1 )
  

1 1 1 1

i i i

i
i

x x x

x x

e e e

e e

λ

β β β

β β

θ
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By solving = 0, = 0, = 0  0
Z Z Z Z

and
α β λ θ

∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂
 simultaneously we obtain the CVM 

estimators. 

 

Data analysis and application 
This section represents the analysis of real data set to verify the proposed model. The data set is 
data purposed by Hinkley (1997) given as 

0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,1.43, 3.37, 2.20, 3, 3.09, 1.51, 2.10, 0.52,1.62,1.31, 0.32, 
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05 
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Exploratory data Analysis 
The objective of data analysis is to obtain requiredinformation from the data set used. The 
exploratory data analysis has been included in the modern statistical data analysis tools. 
Exploratory data analysis is a group of methods to display and to summarize the data: 

i. Displaying the data in graph which shows overall patterns and unusual observations 
(Boxplot, Histogram, Density curve e.t.c.) 

ii. Computing descriptive statistics which summarize specific aspects of the data (Center, 
Spread, Skewnessand Kurtosis e.t.c.) 

We have applied basic EDA techniques for above dataset and the results are presented in table 2.  

     

Table 2 

Summary statistics 

Min. 1st Qu. Median Mean 3rd Qu. SD Skewness Kurtosis Max. 

0.320 0.915 1.470 1.675 2.087 1.000616 1.086682 4.206884 4.750 

 

The Boxplot and Total Time Test (TTT) plot of above data are displayed in figure 3. To check 
whether or not our particular model can be applied to adata set, Total Time Test (TTT) plot has 
been used.Since, the TTT plot of the data is concave which indicates that increasing the hazard 
rate shape of the proposed distribution. 

 
 

 
 

Figure 3: Boxplot (left panel) and TTT plot (right panel) for EGEG 
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In Figure 4, we have plotted the Q-Q plot and P-P plot and it is observed that the EGEG 
distribution fits the data very well.  

 

Figure 4: Q-Q plot (left panel) and P-P plot (right panel) of EGEG 

 

Parameter estimation 

By employing the optima () function in R software (R Core Team, 2020) and (Ming Hui, 2019), 
we have calculated the MLEs of EGEG distribution by maximizing the likelihood function (16). 
We have obtained the value of Log-Likelihood is l = -85.205. In Table 3 we have demonstrated 
the MLE’s with their standard errors (SE) for α, β, λ and θ. 

 

Table 3: 
Maximum likelihood estimator and Standard Error 

 

Parameters MLE Standard Error 

α 15.3245 61.495855 
β 2.04140 1.9875511 
λ 0.57719 0.4707032 
θ 0.08461 0.5245281 

 
In Table 4 we have presented the estimated value of the parameters of EGEG distribution using 
MLE, LSE and CVE method and their corresponding negative log-likelihood, AIC,BIC and KS 

statistics with p-value.  
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Table 4 
Estimated parameters, log-likelihood, AIC, BIC and KS statistic 

 

Methods α̂  β̂
 

λ̂  θ̂  
LL AIC BIC KS(p-value) 

MLE 15.3245 2.0414 0.5772 0.0846 -37.973 83.946 89.551 0.9987 (0.069585) 

LSE 12.9210 3.31511 0.3600 0.0165 -39.836 87.672 93.276 0.3257 (0.173720) 

CVE 15.9035 3.3301 0.3644 0.0244 -38.162 84.322 89.927 0.9999 (0.060332) 

 

Figure 5 is the histogram and density plot curve for different method of the estimation. It also 
compares the empirical cumulative distribution curve and the fitted distribution function curves 
using different methods of estimation is Density curves fit well for proposed model EGEG. 

 
Figure 5: Histogram vs density plot (left panel) and ecdf vs fitted cdf (right panel) of EGEG 

 
Parameters of the proposed model EGEG along with the different alternative models named Half 
Logistic Nadarajah Haghighi (HLNHE) Distribution (Joshi & Kumar, 2020), Generalized 
Inverted Generalized Exponential (GIGE) (Oguntunde et al.,2014), A weighted Inverted 
Exponential Distribution (WIED) (Hussian, 2013), Exponentiated Inverted Weibull Distribution 
(EIWD) (Flaih et al., 2012) and Logistic Inverse exponential (LIE) (Chaudhary and Kumar,2020) 
are tabulate in table 5. 
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(i). Half Logistic Nadarajah Haghighi (HLNHE) Distribution 
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(ii). A Weighted Inverted Exponential Distribution (WIED) 
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(iii). Exponentiated Inverted Weibull Distribution (EIWD) 
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(iv). Generalized Inverted Generalized Exponential (GIGE)  
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(v). Logistic inverse Exponential (LIE) distribution 
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Table 5 

Estimated parameter values of different models 
Models α̂  β̂

 
λ̂  

θ̂  
γ̂

 

EGEG 15.3245 
(61.4959) 

2.0414 
(1.9876) 

0.5772(0.4707) 0.0846(0.5245)  

WIED 2.6782 
(17.6573) 

 2.2221(0.4330)   

EIWD  1.5496 
(0.2026) 

 1.02520(0.1978)  

HLNHE 26.818 
(18.2724) 

1.5258 
(0.2273) 

0.003611(0.0013)   

GIGE 3.3196 (1.0657)  9.8260 (96.5594)  0.22614(2.2220) 

LIE 1.8792 (0.2906)  0.94534(0.1102)   
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Model Comparison 
Here, Akaike's information criteria(AIC),Bayesian information criteria(BIC),Corrected Akaike's 
information criteria, Hannan-Quinn Information Criteria(HQIC),log-likelihood values, KS values 
along with p-values are calculated and tabulated in table 6. Model having lowest value of AIC, 
BIC, CIAC and HQIC is considered as the best model among the models taken in consideration. 
Here proposed model EGEG has least values so our model is better as compared to the above 
models. 

 

Table 6 

 AIC, BIC, CIAC, HQIC, Ks values (p-values) of different models 
 

Models AIC BIC CAIC HQIC -LL 

EGEG 83.94566 89.55045 85.54566 80.84217 37.9728 
WIED 85.66180 88.46419 86.10624 84.11006 40.8309 

EIWD 87.83400 90.63639 88.27844 86.28226 41.9170 

HLNHE 84.65766 88.86125 85.58074 82.33004 39.12883 

GIGE 85.31920 89.52279 86.24228 82.99158 39.65960 

LIE 86.11962 90.32321 87.04270 83.79200 40.05981 

 
The Histogram versus the density function of fitted distributions and Empirical distribution 
function versus estimated distribution function of EGEG distribution and some selected 
distributions are presented in Figure 5. From the graph, it is clear that the proposed model IEOLE 
fits better than the other considered models. 

 
Figure 6: Histogram vs fitted pdf (left panel) and ecdf vs cdf of different models. 
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It is found that the proposed model EGEG has a good fit of theoretical distribution versus 
empirical distribution in both plots. 

One sample Kolmogorov - Smirnov test is applied for the validation. The K-S test (D = 0.06958, 
p-value = 0.9987) is not statistically significant which suggest that it fits well with the theoretical 
distribution versus empirical distribution (p-value = 0.9987). Empirical distribution function and 
fitted distribution functions are shown in figure 6. It is clear that the proposed model provides the 
satisfactory fit to the given data.  

We also compared the empirical distribution CDF with the estimated cumulative distribution 
function CDF of proposed model along with other models. Here we compared the estimated pdf 
of the proposed model EGEG with estimated pdf of other models on same set of the data. The 
proposed model gives the better fit in both the density fit and empirical cumulative distribution 
function than other models. 

 

Conclusion 

This paper named as Exponentiated Generalized Exponential Geometric Distribution (EGEG) is 
based on the Exponentiated Generalized (EG) class of distribution and Exponential Geometric 
distribution. This distribution contains four parameters and is uni-model, positively skewed and 
leptokurtic. Hazard rate function is inverted bathtub with decreasing order. Here we have included 
explicit expression for hazard rate function, likelihood function, quantile function and survival 
function. Parameters of new distribution EGEG are estimated by using maximum likelihood 
estimate and then confidence intervals for all parameters are determined. Here we have compared 
the PDF and CDF of proposed model with other five models. Proposed model (EGEG) is also 
compared with other models through different criteria like K-S, Anderson Darling and Cramer’s 
von Mises test, P-P plot and Q-Q plot showing that proposed model has great flexibility than 
models taken in comparison. We found that the proposed model is more suitable for real lifetime 
data analysis and modeling.  
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