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Abstract 

In this article, a new distribution called Half Cauchy Exponential Geometric Distribution is 
introduced. We have derived some important mathematical properties like hazard function, 
probability density function, survival function, quantiles, the measures of skewness based on 
quartiles and coefficient of kurtosis based on octiles of the new distribution. To estimate the 
parameters of the new distribution, we have applied the three commonly used estimation methods 
namely maximum likelihood estimation (MLE), least-square (LSE) method and Cramer-Von-
Mises (CVM) method. We have used R programming as well as analytical methods for data 
analysis. For the assessment of potentiality of the new distribution, we have considered a real 
dataset and the goodness-of-fit attained by proposed distribution is compared with some 
competing distributions.It is found that the proposed model fits the data very well and more 
flexible as compared to some other models.  

Keywords: Survival function, Maximum lilkelihood Estimation, Quantile function, Hazard 
function. 

Introduction 
Exponential–Geometric distribution proposed by Adamidis and Loukas[A lifetime distribution 
with decreasing failure rate, Statist. Probab.Lett. 39 (1998), pp. 35–42] accommodate unimodal 
hazard function with increasing and decreasing failure rate. This distribution explains that lifetime 
associated with a particular risk is not observable but only the minimum lifetime value among all 
the risks.  Let x be a non-negative continuous random variable denoting the lifetime of a 
component, then the random variable x is said to have an Exponential Geometric (EG) 
distribution [E2G, Francisco Lauzada, Vitor A. A. Marchi and Mari Roman] if its probability 
distribution function is given as 
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where  is shape parameter and   is scale parameter. PDF of above distribution is given as 
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Here we are interested to extend EG distribution using half Cauchy family of distribution. Let X 
is a positive random variable that follows the half-Cauchy distribution with CDF as  
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 The probability density function (PDF) of half Cauchy distribution is   
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The extending family of distribution has developed by Zografas&Balakrishnan, 2009 [2] and 
CDF of family of distribution is  
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Here ( )G x  is the CDF of any baseline distribution and ( )r t  is the PDF of any distribution given 

as  
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The family of half-Cauchy distribution with cumulative distribution function  F x can be 

obtained by using ( )r t   in equation (5)   is expressed as 
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The PDF corresponding to (6) can be expressed as 
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The inspiration of this study is to put forward a more flexible distribution by inserting just one 
extra parameter to the Exponential Geometric distribution to achieve a better fit to the real data. 
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We study the properties of the half Cauchy Exponential Geometric distribution and explore its 
potentiality and applicability.  

The contents of this paper are managed as follows. The new half Cauchy Exponential Geometric 
distribution is introduced and several distributional properties are discussed in Section 2. Three 
mostly used estimation approaches are used to estimate the parameters namely maximum 
likelihood estimation (MLE), least-square estimation (LSE), and Cramer-Von-Mises estimation 
(CVM) methods are presented in Section 3. In Section 4, a real life dataset have been considered 
to investigate the applications and suitability of the proposed distribution. In this section, we have 
calculated the approximate confidence intervals of the ML estimators of the parameters and also 
AIC, AICC, BIC, HQIC are calculated to evaluate the goodness-of-fit of the half Cauchy 
Exponential Geometric distribution. Finally, some concluding remarks are presented.  

 

Half Cauchy Exponential Geometric (HCEG) distribution 

In this section the new distribution named half Cauchy Exponential Geometric distribution is 
defined. Substituting (1) and (2) in (6) and (7) we get the CDF and PDF of HCEG distribution. 
Let X be a non negative random variable following half Cauchy Exponential Geometric 
distribution  ( , , )HCEG     if its CDF can be written as, 
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And PDF corresponding to (8) can be written as, 
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Reliability/survival function: 

The reliability function of ( , , )HCEG    distribution is defined as 
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Hazard rate function (HRF): 

The HRF of ( , , )HCEG     distribution can be defined as, 
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Quantile function: 

The quantile function of ( , , )HCEG     can be expressed as, 

 
1

tan tan
2 21

( ) ln 1 ;   0 1
p p

Q p e e p
 

 
 




       
   

                  

. (12) 

The Random Deviate Generation: 

The random numbers can be drawn from ( , , )HCEG     by 
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Plot of PDF and HRF of ( , , )HCEG    are displayed in Figure 1. 

 
Figure 1:Plots of pdf (left panel) and HRF (right panel) for different values of α and θ for λ=1. 

Skewness and Kurtosis of HCEG distribution: 

Skewness and kurtosis are the measure that describes the nature of distribution 

.Bowely’sskewness of the ( , , )HCEG     distribution based on quartiles has form   
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 Kurtosis of the ( , , )HCEG     distribution based on octiles has form (Moors, 1988). 
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Methodology 

To estimate the parameters of the new distribution, we have applied the three commonly used 
estimation methods namely maximum likelihood estimation (MLE), least-square (LSE) method 
and Cramer-Von-Mises (CVM) method. We have used R programming as well as analytical 
methods for data analysis. 

Maximum Likelihood Estimation (MLE) 

In this section, we have presented the ML estimators (M.L.E.'s) of the HCEG distribution. Let 

 1  , , nx x x   be a random sample of size ‘n’ from ( , , )HCEG     then the log 

likelihood function can be written as, 
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After differentiating (16) with respect to parameters α, λ and θ, we get 
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where H is the Hessian matrix. 

The Newton-Raphson algorithm to maximize the likelihood produces the observed information 
matrix. Therefore, the variance-covariance matrix is given by, 
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Hence from the asymptotic normality of MLEs, approximate 100(1-a) % confidence intervals for 
α, λ and θ can be constructed as, 

/2
ˆ ˆvar( )aZ  , /2

ˆ ˆvar( )aZ  and /2
ˆ ˆvar( )aZ  . 

where /2aZ is the upper percentile of standard normal variate. 

 

Method of Least-Square Estimation (LSE) 
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with respect to α, λ and θ. Differentiating (22) with respect to α, λ and θ we get, 
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Similarly the weighted least square estimators can be obtained by minimizing 
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Hence, the weighted least square estimators of α, λ and θ respectively can be obtained by 
minimizing, 

     
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with respect to α, λ and θ. 

Method of Cramer-Von-Mises estimation (CVME) 

The Cramer-Von-Mises estimators of α, λ and θ are obtained by minimizing the function 
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Differentiating (28) with respect to α, λ and θ we get, 
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By solving = 0, = 0  0
Z Z Z

and
  
  


  

 simultaneously we obtain the CVM estimators. 

 

Application to Real Dataset  
In this section, we have demonstrated the applicability of the ( , , )HCEG     distribution 

using a real dataset. The data represents the remission times (in months) of a random sample of 
128 bladder cancer patients [Lee and Wang (2003)]: 

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11,23.63,0.20,2.23,3.52,4.98,6.97,9.02,13.29,0.40,2.26,3.57, 
5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 
5.17, 7.28, 9.74,14.76,26.31,0.81,2.62,3.82,5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 
10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 
10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 
17.14,79.05,1.35,2.87,5.62,7.87,11.64,17.36,1.40,3.02, 4.34, 5.71, 7.93, 11.79 ,18.10, 1.46, 4.40, 
5.85, 8.26, 11.98, 19.13,1.76,3.25,4.50,6.25,8.37,12.02,2.02,3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 
2.02, 3.36,6.76,12.07,21.73,2.07,3.36, 6.93, 8.65,12.63,22.69. 

By employing the optim () function in R software [R Core Team, 2020] and [Ming Hui, 2019], we 
have calculated the MLEs of HCEG distribution by maximizing the likelihood function (16). We 
have obtained the value of Log-Likelihood is l = -410.2938. In Table 1, we have demonstrated the 
M.L.E.’s with their standard errors (S.E.) for α, λ and θ. 

 

Table 1 

MLE and SE α, θ and λ of HCEG 

Parameter MLE SE 

alpha 35.06397791 44.17386118 

theta 0.02359592   0.03303572   

lambda 0.09566683   0.02741327 

 

In Figure 2 we have plotted the Q-Q plot and P-P plot and it is seen that the HCEG distribution 
fits the data very well.  
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Figure 2: The Q-Q plot (left panel) and P-P plot (right panel) of the HCEG distribution. 

 
In Table 2, we have presented the estimated value of the parameters of HCGZ distribution using 
MLE, LSE and CVE method and their corresponding negative log-likelihood, AIC, BIC and KS 
statistics with p-value.  

 

Table 2 

Estimated parameters, log-likelihood, AIC, BIC and KS statistic 

Method of 
Estimation ̂  ̂  ̂  -LL AIC BIC KS(p-value) 

MLE 35.0640 0.0236 0.0957 -410.2938 826.5877 835.1438 0.0507 (0.8972) 
LSE 33.4331 0.0230 0.0872 -410.4349 826.8698 835.4259 0.0497(0.9094) 
CVE 34.1377 0.0295 0.1104 -410.4263 826.8526 835.4087 0.0449(0.9587) 

In Figure 3, we have plotted the histogram and the density plot (left panel) using different 
methods of estimation MLE, LSE and CVME. Similarly, figure in right panel compares the 
empirical c.d.f. with estimated c.d.f. using different method of estimations. 
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Figure 3: The Histogram & fitted p.d.f. (left panel) and c.d.f. versus estimated c.d.f. (right panel). 

Here, we have illustrated the applicability of HCEG distribution using the same real dataset 
comparing to different models used by different researchers. To compare the potentiality of the 
proposed model, we have considered the following four distributions. 

Generalized Exponential Extension (GEE) distribution: 

The probability density function of GEE introduced by [Lemonte, 2013] having upside down 
bathtub-shaped hazard function distribution with parameters ,   and  is 

          1
11 1 1 1 1 1 0GEEf x x exp x exp x ;x

     
           

 

ExponentiatedWeibull Distribution (EW): 

A new family of distributions, namely the Exponentiated Exponential Distribution was 
introduced by Gupta et al. (1998). Here we have considered the ExponentiatedWeibull Family 
that was introduced by Mudholkar and Srivastava (1993). It has a scale parameter and two shape 
parameters. EW is a generalization of the Exponentiated Exponential Family as well as the 
Weibull Family. EW distribution also has a very nice physical interpretation. 

     1
1( ) exp 1 expEWf x x x x

    


     

Generalized Weibull Extension (GWE): 

Generalized Weibull Extension (GWE) model is very flexible in modeling various types of 
lifetime distribution. It will be denoted by ( , , )GWE    , [Sarhan, A.M. and Apaloo, 

J.(2013)]. 
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Exponentiated Power Lindley distribution (EPL): 

The probability density function of the Exponentiated power Lindley distribution with three 
parameters is given by, 
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, 

where 0  , 0   and 0   are the parameters. This model is very flexible in modeling 

various types of lifetime distribution [Ashour and Eltehiwy (2015)]. 

For the assessment of the fit of the proposed model, we have calculated the Akaike information 
criterion (AIC), Bayesian information criterion (BIC), Corrected Akaike information criterion 
(CAIC), and Hannan-Quinn information criterion (HQIC) and presented in Table 3.  

 

Table 3 

Log-likelihood (LL), AIC, BIC, CAIC and HQIC 

Model LL AIC BIC CAIC HQIC 

HCEG -410.2938 826.5877 835.1438 826.7811 821.5587 

EPL -410.4335 826.8670 835.4231 827.0605 821.8381 

GEE -410.6013 827.2026 835.7587 827.3962 822.1737 

EW -410.6801 827.3603 835.9163 827.5538 822.3313 

GWE -410.8070 827.6137 836.1698 827.8076 822.5851 

Figure 4 shows the plot of Histogram versus the Density function of fitted distributions in left 
panel .In right panel plot of “Empirical distribution function “with the “Estimated distribution 
function “ of HCEG distribution and some selected distributions are presented. 
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Figure 4: The Histogram and the density function of fitted distributions (left panel) and Empirical 
distribution function with estimated distribution function (right panel). 

To compare the goodness-of-fit of the HCEG distribution with other competing distributions, we 
have presented the value of Anderson-Darling (AD) and the Cramer-Von Mises (CVM) statistics 
in Table 4. It is observed that the HCEG distribution has the minimum value of the test statistic 
and higher p-value thus we conclude that the HCEG distribution gets better fit and more 
consistent results than the others taken for comparison. 
 
Table 4 

The goodness-of-fit statistics and their corresponding p-value 

Model AD(p-value) CVM(p-value) 

HCEG 0.24751 (0.9717) 0.033509 (0.9638) 
EPL 0.2391( 0.9708) 0.035986( 0.9532) 
GEE 0.26349 (0.9628) 0.039531 (0.9362) 
EW 0.27021 (0.9587) 0.040287 (0.9324) 

GWE 0.29343(0.9429) 0.044372(0.9102) 
 

Conclusion 
In this study, we have introduced a new distribution named Half Cauchy Exponential Geometric 
Distribution along with some mathematical properties, probability distribution function, survival 
function, hazard function, skewness, kurtosis, random deviate generation and quantile functions 
etc. Also, AIC, BIC, CAIC and HQIC are calculated and have smaller values than the other 
distribution indicating better model. Graphical comparison of empirical distribution functions 
CDF with estimated distribution function EDF and PDF of proposed model shows better with 
comparison to other models taken in consideration. 
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