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 Variations of Initial Shape of Deflection of a Stretched String
Dr. Puskar R. Pokhrel1∗

Abstract

 In this paper, One-dimensional wave equation is formulated by applying the 
Newton’s second law of motion. Employing the one dimensional wave equation, speeds 
of decay of vibration deflection distribution in initially triangular shape of a string 
stretched at both ends are analyzed. Eigenfunction and the corresponding Eigenvalues 
with the various inclination of initial position of the string are found. The frequencies 
of the vibrations are analyzed from the Eigenvalues and Eigenfunction with different 
mass of the string. The initially triangular shape string is varied   for analyzing the 
deflection of the string. The deflection of a string distribution with different initial 
triangular shape positions of the string is analyzed. Finite difference method is applied 
to find the deflection distribution numerically. Deflections of the string with the 
different mass and tension forces in the different time interval are observed. 

 Keywords:  eigenvalues, eigenfunctions, mathematical modelling, tension 
forces 

Introduction

 The wave phenomena of a stretched string problem represent a physical problem 
that examines a solution to a classical problem in wave propagation. The stretched 
string results have applications in the study of the vibration of vocal chords and 
stringed musical instruments such as the guitar, violin and others. The mathematical 
modelling of the stretched string results  have also been applied in the study of 
dynamics of transmission lines and the dynamics of strings in the manufacture of 
fibbers and textiles.  Several research activities are carried out in the past decades. 
French (1971) developed the concept of vibrations and waves confined to mechanical 
system. Parmley et al. (1995)  presented the theoretical models for random string 
mass chain and compared with experimental results. Bolwell (1999) observed the 
solution of Rayleigh’s equations for a loaded flexible string. Lagrange examined 
the non-harmonic vibrations of a string with a variable density. Chen et al. (2004) 
obtained the closed-form solutions for the amplitude of the vibration. Gough (2000) 
elaborated the physics of a vibrating string excited by a hard narrow hammer. Li-
qun (2004)  investigated the steady-state transverse vibration of an axially moving 
string. There was a strong debate on the possibility of a slope discontinuity for a 
plucked string. Wang et al. (2005) adopted the Hamiltonian dynamics to solve the 
Eigenvalue problem for transverse vibrations of axially moving strings. Santos et al. 
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(2006)  discussed the normal frequencies in the case of uniform elastic function and 
mass density.  A physical or other problem is translated into a mathematical model as 
differential equations (Kreyszig, 2006; Weaver et al., 1990).  These different points of 
view can be considered as one of the first written evidences on the difficulties to be 
surmounted to arrive at the mathematical definition of function, a very familiar concept 
nowadays in science. Helmholtz used a string loaded at the middle point to determine 
the exact frequency at which the impulses fuse into a continuous tone (Kreyszig, 2006; 
Tohyama, 2011). Pokhrel and Lamsal (2020) observed that the variation of maximum 
deflection by applying the different external forces. Pokhrel  et al. (2021) observed the 
vibration of string  of mass spring due to the variation of opposition forces. Viet et al. 
(2020)  developed a dynamic model to study the free vibration of a beam.
 In this paper, the model equation of vibrating of a   string is presented with 
fixed at both ends. The frequencies of the vibrations are analyzed with different 
Eigenfunctions and Eigenvalues. Effects of the Eigenfunction and the corresponding 
Eigenvalues on the deflection of the string with different initially triangular shape of 
the string are observed. we also analyze the deflection distribution of the string with 
different initial triangular shape positions of the string are analyzed, it is used finite 
difference method to find the deflection distribution numerically.  The variation of the 
deflection of the string with the different mass and tension forces in the different time 
interval are found.

  Formulation of Model Equations

 Let A tightly elastic string is stretched between two fixed end points O and A   of 
length OA = l. Taking O as the origin, OA as x- axis.  When the string vibrates each 
point of the string makes small vibration on perpendicular to x- axis.  Let P(x, u) and 
Q(x + D x, u + Du )  be two neighbouring point on the string. Consider the motion of 
the element PQ of the string, and T1 and T2 be the tensions at the points P and Q, where 
the tangents makes angles y and  y +D y with  x-axis as shown in Fig.  1.1.

Figure 1.1: Vibrating of string stretched in length l m.
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There is no motion in horizontal direction, because the point of the string moves 
vertically. Thus, the components of tensions in the horizontal must be constant, i.e,

                             T2 cos(y + Dy)  =  T1  cosy     = T (constant),

 and the vertical components of the force acting  on this element is

                          T2 sin(y + Dy)  =  T1  sin y.

The tangential angles at P and Q is

 tan (y + D y) - tan y  = T ( u x ( x + D x, t ) - u x ( x, t) ) @ T D x D 2u  / D x 2 . 

Let w is the weight per unit length, so that w D x be the weight of element Dx, 
then mass of the element is m = (w D x) /g per unit length of the string, then Newton's 
second law of motion states that acceleration of these forces is equal to mass ( r Dx ) 
of the portion D acceleration (D 2u /D t 2 ) (Chen et al. 2004, G´omez et al. 2007) gives 

 T D x D 2u  / D x 2 =   w D x
g  ∂2u

∂ t2 
.

 T2 sin (y +Dy) - T1siny =   
w D x2

g . 
∂2u
∂ t2   ...(1)

Dividing both sides of (1) by T2 cos(y + Dy) = T1 cosy = T, we get 

 tan (y + D y) - tan y =   wDx2

t g
 ∂2u

∂ t2 .
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Tangential angles at Q and P are written as 

 ...(2)
Dividing both sides of (2) by Dχand taking limit Dχ→ 0 on both sides of (2), 

we get 

Here, w is weight, T is tension force, and g is gravity of a string of length l. 
Denoting (T g / w) = c2, the model equation of vibrating of a string is 

 This is one-dimensional wave equation. This is a hyperbolic partial differential 
equation and the solution of this equation is a function of x and t. So, u(x, t) gives the 
displacements distribution at x at time t.

A tightly stretched uniform sting is considered with length l , w as its weight per 
unit length, T is tension force, and g is the magnitude of the acceleration due to gravity. 
If the string is subjected to displace by straightening up it at the mid-point (x = l/2), 
the displacement distribution u(x, t) for x ∈ [0, l ] t ∈ [0, t0] is governed by the wave 
equation (Chen et al., 2004; G´omez et al., 2007):

                 ...(3)
 with boundary conditions 
  u(0, t) = 0, u(l, t ) = 0, for all t,   ...(4)
and initial condition 

= 0 for all t.  ...(5)
Eigenfunction (Kreyszig, 2006) of this model is obtained as

 Corresponding to Eigenvalues λn = cn p / l of the model (3), 

where An =  for n = 1, 2,3, ....
The analytical solution (Pokhrel et al., 2021) for (3) is



 103

Humanities and Social Sciences Journal, Volume 13, Number 2, 2022

cos(λn t).  ...(6)

Results and Discussion

Time evolution of  Eigenfunction with corresponding Eigenvalue

 The tension forces along the string T = 0.005 N, gravity g = 9.8 m 2 / s, weight 
of string w = 0.025 kg, length of the string l = 10 cm, and the initial constant factor is 
k = 1/5. So, c2 = (T g /w ) = (0.005 × 9.8 ) /0.025 = 1.96 m4s2. Hence, the associated 
Eigenvalue (wave length) λ1 = 1.4 ×1×π= 4.3982 m / s . The maximum Eigenfunctions 
are 0.5674 m, 0.4972 m, 0.4136 m and 0.3040 m at time t = 0.0 s, 0.8 s, 1.2 s and 1.6 s 
. Figure 1.2 shows that Eigenfunction is slowly decreasing from higher to lower during 
the interval 0 ≤ x ≤ 7 m in different time.

Figure 1.2:  The vibration of frequency for  wave length ƛ1  = 4.3982 m / s .
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Figure 1.3:  The vibration of  frequency  for  wave length λ3  = 13.1947 m / s .

The tension forces along the string T = 0.005 N, gravity g = 9.8 m 2 / s, weight 
of string w = 0.025 Kg, length of the string l = 10 cm, and the initial constant factor 
is k = 1/5. So, c2 = (T g /w ) = (0.005 × 9.8 ) /0.025 = 1.96 m4s2. Hence, the associated 
Eigenvalues λ3 = 1.4 × 3 ×π = 13.1947 m/s. 

In this Eigenvalue, the maximum Eigenfunctions 0.0630 m 0.0586 m, 0.0460 
m and 0.0268 m at time t = 0.00 s, 0.20 s, 0..40 s and 0.66 s respectively, and the 
minimum Eigenfunctions are -0.0630 m, - 0.0586 m, - 0.0460 m and - 0.0268 m. 
Figure 1.3 shows that Eigenfunctions have minimum values at 1.2 m and 5.8 m, and 
maximum values at 3.5 m in 0 ≤ x ≤ 7 m in different time. 

The tension forces along the string T = 0.005 N, gravity g = 9.8 m2 / s, weight of 
string w = 0.025 Kg, length of the string l = 7 m, and the initial constant factor is k = 1/5. 
So, c2 = (T g /w ) = (0.005 × 9.8 ) /0.025 = 1.96 m4s2. Hence, the associated Eigenvalues 
λ5 = 1.4 × 5 ×π= 21.9911 m/s. In this Eigenvalue, the maximum Eigenfunctions are 
0.0227m, 0.0199 m, 0.0165 m, 0.0122 m at time t = 0.00 s, 0.16 s, 0.24 s and 0.32 s 
respectively, and the minimum Eigenfunctions are - 0.0227m, - 0.0199 m, - 0.0165 m 
and -0.0122 m. Figure 1.4 shows that Eigenfunctions have minimum values at 2.1 m 
and 4.9 m, and maximum values at 0.8 m, 3.5 m, and 6.4 m in the interval 0 ≤ x ≤ 7 m 
at different time.
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Figure 1.4:  The vibration of frequency for wave length λ5  = 21.9911 m / s .

Figure 1.5:  The vibration of frequency for wave length λ7  = 30.7876 m/s .

The tension forces along the string T = 0.005 N, gravity g = 9.8 m2 / s, weight 
of string w = 0.025 Kg, length of the string l = 10 cm, and the initial constant factor 
is k = 1/5. So, c2 = (T g /w) = (0.005 × 9.8) /0.025 = 1.96 m4s2. Hence, the associated 
Eigenvalues λ7 =1.4 ×7 ×π= 30.7876 m/s. 

In this Eigenvalue, the maximum Eigenfunctions are 0.0116 0.0105 m, 0.0081 
m, 0.0048 m at time t = 0.00 s, 0.10 s, 0.18 s and 0.26 s respectively, and the minimum 
Eigenfunctions are - 0.0116 m, - 0.0105 m, -0.0081 m, and -0.0048 m. Figure 1.5 
shows that Eigenfunctions have minimum values at 0.5 m, 2.5 m, 4.5m, 6.5m, and 
maximum values at 1.5 m, 3.5 m, 5.5 m in the interval 0 ≤ x ≤ 7 m at different time.
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Variation of Deflection of rod with different parameter values
The tension forces along the string T = 0.005 N, gravity g = 9.8 m2 / s, weight of 

strings are w = 0.025 kg, 0.0125 kg, 0.0063 kg, 0.0031 kg, length of the string l = 10 
cm, and the initial constant factor is k = 1/5. The maximum deflections are 0.6268 m, 
0.5933 m, 0.5372 m, 0.4694 m at time t = 0.30 s by varying the weights of the string 
w = 0.025 kg, 0.0125 kg, 0.0063 kg, 0.0031 kg. Figure 1.6 shows that deflection has 
maximum at 3.5 m with weight w = 0.0250kg at time 0.30 s in the interval 0 ≤ × ≤7 
m. 

The tension forces along the string are T = 0.005 N, 0.010 N, 0.020 N, 0.040 N, 
gravity g = 9.8 m 2 / s, weight of string   w = 0.025 kg, length of the string l =  7 m, and 
the initial constant factor is k = 1/5.  If the  various tension forces  are applied in the  
string at the same  period of time  t = 0.30 s, the  maximum deflections  are  0.6268 m,    
0.5933m, 0.5372  m  0.4694 m at time t = 0.30 s by varying the  tension  forces of the 
string w = 0.005 N, 0.010 N,  0.020  N,  0.040 N. Figure 1.7 shows that deflection has 
maximum value at 3.5 m with tension force  T =  0.005 N  at time 0.30 s in the interval 
0 ≤ x  ≤ 7 m. 

Figure 1.6:  Deflection of   the string with various weights  at  t  =  0.3 s .
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Figure 1.7:  The deflection of   the string with various tension forces at  t  =  0.3 s.

 
 

Figure 1.8: The deflection of the string with various initial slopes at t = 0.3 s . 

Figure 1.8: The deflection of the string with various initial slopes at t = 0.3 s .

 The tension forces along the string are T = 0.005 N,  gravity g = 9.8 m 2 / s, 
weight of string   w = 0.025 kg, length of the string l = 10 cm, and the  inclinations of 
initial positions of the sting are  11.31 ° and 168.69 °,  30° and 150°,  45 ° and 135 °, 
and  60 ° and 120°. The constant factors are  k  = 0.2, 1.0, 0.57774, 1.7321.
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 In the case of   increasing  the  initial inclination angle of  the string as 11.31°, 
30 °, 45  ° and 60°, the  maximum deflections  are   0.6268 m,    1.8096 m,    3.1340 m, 
and    5.4284 m at  the same period of time t = 0.30 s.  Figure 1.8 shows that deflection 
has maximum value at 3.5 m with constant spring k = 1.731 at time t = 0.30 s in the 
interval 0 ≤ x ≤ 7 m.

Conclusion

 I presented the model equation of vibrating of a   string with fixed at both 
ends. I analyzed the frequencies of the vibrations with different Eigenfunctions and 
Eigenvalues. I observed that the effects of the Eigen function and the corresponding 
Eigenvalues on the deflection of the string with different initially triangular shape of 
the string. I also analyzed the deflection distribution of the string with different initial 
triangular shape positions of the string. I found that the variation of the deflection of 
the string with the different mass and tension forces in the different time interval.   
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