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Abstract

In this paper, we use the basic SEIR model to study the transmission dynamics of 
COVID-19 in Nepal. Fitting the model with the data of Nepal, we estimated 26% of 
Seroprevalence from 13 March, 2021 and the level of control strategies to reduce 
COVID-19 cases in Nepal. The value of β is approximated 0.0536 for the study period. 
Reduction of β by 25%, 50%, 75%, reduces reported cumulative cases by the end of 
13th March, 2021 by 34.5%, 55.6% and 68.7% respectively.

Introduction

 Corona virus disease first appeared in Wuhan, China in December 2019 (Lin, 
et al., 2020). In a short time, many people become infected and many lost their lives. 
A few months later the virus began to appear in many other countries, eventually 
spreading to all countries in the world. Nepal also becomes a victim of COVID-19 
disease in 2020. The virus was first detected in Nepal on 23 January 2020 when a 
31- years old student, who had returned to Kathmandu from Wuhan on 9 January 
(Shrestha, Shrestha, Khanal , & Kc , 2020). The first case of local transmission was 
confirmed on 4 April  and the first death occurred on 14 May. COVID-19 disease 
began to grow rapidly as well as the number of deaths. Consequently, to prevent the 
transmission of COVID-19  disease, the government of Nepal introduced a nationwide 
lockdown from 24 March 2020. Lockdown did control the disease transmission from 
person to person to some extent but it had affected daily life and  it was ended on 21 
July 2020  (MoHP, 2020). 

  Researchers around the world have studied the spread of COVID-19  through 
compartmental  mathematical modeling  (Ndairou, Nieto, & Torres, 2020)  (Kyrychko, 
Blyuss, & Brovchenko, 2020) (Kim, Kim, & Oh, 2020) (Singh, Bajpai, & Gupta, 
2020). Y. Fang et al. investigated the outbreak of COVID-19 in China (Fang, Nie, & 
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Penny, 2020). S. Tobias et al. studied the impracticality of COVID-19 herd immunity 
strategies in the UK (Brett & Rohani, 2020).  Pandey,  Subedi,  Khanal, Koirala 
(Pandey, Subedee, Khanal, & Koirala, 2020),  Bhuju, Phaijo, and  Gurung (Bhuju, 
Phaijoo, Gurung, 2020) had studied transmission dynamics of COVID-19 in Nepal 
using the SIR model. Adhikari et.al studied the transmission dynamics of COVID-19 
and found some insightful results during the control phase of the first wave (22 March, 
2020 to 21 July, 2020) (Adhikari, Gautam, Pokharel, Uprety, & . Vaidya, 2021)

In this paper, a SEIR model with vital dynamics is taken to study the transmission 
dynamics of COVID-19 in Nepal. At first, we analyzed showing the positivity and 
boundness of solution. We derived the expression of disease-free and endemic 
equilibrium points, and basic reproduction number. Then, we estimate and approximate 
some model parameters taking the data from  17th   September 2020 to 13th March 2021 
which provided that official website of the government of Nepal (MoHP, 2020) and 
then,  we predict the peak of the outbreak, eradicating time of outbreak  without the 
implementation of any control measure.

Method

Data

This work is based on the data taken from 17th September 2020 to 13th March 2021 
published by MOHP, Nepal (MoHp,2020).

Model Formulation

In the model, the total population N (t) is divided into Susceptible, Exposed, 
Infectives, and Recovered and denoted by S(t),  E(t),  I (t) , R(t) respectively. The 
human requirement rate is Λ and natural death rate is µ. The population who become 
exposed leave the Susceptible compartment S and enter in to Exposed compartment E 
at the rate β called transmission rate. Likewise, when the exposed individuals become 
infectious, they move into Infectious compartment I from the Exposed compartment 
E at the rate η, called the rate of becoming infectious. Finally, when the infectious 
individuals become free from disease, they move into Recovered compartment R at 
the recovery rate γ. Those who die due to disease leave the compartment I at the rate 
δ, called mortality rate due to disease. The visualized schematic transfer diagram of 
the SEIR model is below, where the arrow shows the direction of movement between 
the compartments:
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Figure 1: Compartmental diagram of SEIR epidemic model

The system of ordinary differential equations: 

Model Analysis

Positivity and boundedness of solution

For the problems associated with population dynamics, all the state variables 
involved in the model must be positive and bounded at any time.

theorem 3.1: For all non-negative initial value, the solutions of model (1) exist, 
remain non-negative and bounded.

Proof: 

 In order to show positivity of state variables, it is straightforward by the fundamental 
theorem of differential equation for t > 0, we have from the first equation of (1) 
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 Taking limit t → ∞, E(t) ≥ 0 for all t ∈ [0, ∞). Similarly, I(t) ≥ 0 and R(t) ≥ 0. 

 For boundedness: From the model (1), we have, 
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 The solution is, 

 This implies that N(t) is bounded, and hence S(t), E(t), I(t), and R(t) are bounded.

Equilibria analysis

Here, we discuss about the disease-free equilibrium point (DFE) and endemic 
equilibrium point (EE). DFE is the point at which there is no disease in the system and 
all the state variables remains constant whereas EE is the point at which disease persist 
in the population with constant state variables. For both type of equilibrium point the 
common condition is
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 For simplicity, we define λ = I/N. Solving the equilibria equations, we get the 
equilibrium point (S*, E*, I*, R*) as follows. 

 

Basic reproduction number (R0) 

For a simple model, the basic reproduction number (R0) can formulate directly 
or by using specific methods. Here, we calculate R0 by using Next-Generation matrix 
method (Diekmann, Heesterbeak and Roberts, 2010). 

Endemic equilibrium point 

Disease persists in the population at the endemic equilibrium point but the rate 
of change of each compartment is zero. Therefore, I ≠  0 and E ≠ 0. To get endemic 
equilibrium point (EE) substituting 
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in equation (2), we get endemic equilibrium point EE = (S*, E*, I*, R*) = e2 (say) 
as follows:

  
Here, for R0 > 1, it can be seen that β – δ > 0. 

For instance, we have R0 > 1 

  

Thus, for R0 > 1, S* > 0, E*> 0, I* > 0 and R* > 0. Hence, endemic equilibrium point 
(S*, E*, I*, R*) = e2 exist. 

Local stability analysis 

The Jacobean matrix for this system at DFE is given by: 
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where, R0 is basic reproduction number. After solving for λ gives 

  

Where, L = (η + γ + δ + 2µ). Clearly, all the Eigen values are negative except λ4 
and clearly λ4 < 0 if R0 < 1. So, the disease-free equilibrium point is stable if R0 < 1 
otherwise it is unstable.

Data Fitting and Model Validation

Almost all control strategies were lifted from September 17, 2020. We take this as 
initial time t = 0 for our dynamical system model. We fit the model to the cumulative 
data given by the solution, 

   

by using the principle of least square method that minimizes the following sum of 
the squared residuals:

   

where L(tk), and (tk), are the model predicted cumulative cases and those given 
in the available data and φ is the set of parameter to be estimated and n is the number 
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of available data. In our study, all computations were carried out in MATLAB 2020a 
(The Math Works, Inc.) using its various routines, including “ode45” (ODE solver) 
and “fmincon” (minimizer). 

Figure 2: Model fitting with cumulative number of cases of COVID-19 in Nepal

The model shows the quite good agreement with the data. The estimated   state 
variables  and parameters  are listed in the table 1.
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Results and Discussion

Figure 3: Model prediction: (a) Recovered and (b) Seroprevalence.

    (a)                                                             (b)
.

Here, we estimated the recovered number of cases and Seroprevalence of 
COVID-19 in Nepal. We find the total recovered cases (reported and non-reported) 
at the March 13, 2021 are 7040000. We also estimate the Seroprevalence at the 17th 
September, 15th October, 2020 and 13th March 2021 which are 3.7%, 12.39% and 26% 
respectively.

The parameters and their value are given in the table:

table 1: Parameters and their values

Parameter Description Value References
β Transmission Rate 0.0536 per day Estimated
h Rate of becoming infectious 0.192 per day Estimated
g Rate of Recovery 0.0588 per day [Adhikari.et.al,2021]
p Recorded portion 0.0473 Approximated
d Rate of Mortality due to disease 0.004 per day Calculated

State variable Description Value References
S(0) Susceptible 25,000,000 Assumed
E(0) Exposed 100,000 Estimated
I(0) Infectious 1500,000 Estimated
R(0) Recovered 1,000,000 Estimated
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Non-pharmaceutical control of CoVID-19 

The parameter β, the transmission rate is characterized that how fast disease 
transfers from infectious individuals to susceptible individuals. It can be calculated 
by multiplying the transmission risk by the average number of contacts per day. 
Therefore, the value of β can vary by reducing the contact rate by applying various 
types of control strategies such as quarantine, face mask, social distance, lockdown, 
isolation, etc. The value of β is approximated 0.0536 for the study period. Reduction 
of β by 25%, 50%, 75%, reduces reported cumulative cases by the end of 13th March, 
2021 by 34.5%, 55.6% and 68.7% respectively.

Figure 4: Effect of reduction of transmission rate on the size of the epidemic

Vaccination and herd immunity

Herd immunity occurs when a large portion of a community (the herd) becomes 
immune to a disease, making the spread of disease from person to person unlikely.
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As a result, the whole community becomes protected not just those who are 
immune. Often, a percentage of the population must be capable of getting a disease in 
order to spread. This is called a threshold proportion. If the proportion of the immune 
population is greater than this threshold proportion, the spread of the disease will 
decline. This is known as the herd immunity threshold. The herd immunity level is 
achieved either through vaccination or immunity developed through the previous 
infection. It helps to decide what percentages of the population that must be vaccinated 
in order to stop the spreading of disease. Pathogens with higher R0 require a higher 
herd immunity level. The threshold herd immunity level can be calculated as (Fine, 
1993):

Proportion of vaccinated population = p

Remaining susceptible population S(t) = (1 – p)N(t)
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Figure 5: Proportion of people to be vaccinated to generate the Heard Immunity

Currently, the COVID-19 pandemic is almost everywhere in the world. Nepal is 
facing it’s effect of second wave. The estimated number of cases in this second wave 
will depends on the Seroprevalence data of Nepal. In this paper we study the estimated 
Seroprevalence and effect of various level of control strategies on the size of epidemic 
of COVID-19 in Nepal.
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