Technology, Training, and Touch: Finding Balance in the Al Era of Medicine

Bibhuti Nath Mishra¹, MS

¹Department of Orthopedics, Grande International Hospital, Kathmandu, Nepal

Medicine stands on the threshold of transformation because artificial intelligence (AI) has revolutionized how we diagnose, plan, and deliver care. Yet, the real challenge lies beyond algorithms, ensuring that innovation rather strengthens and not replaces the human bond that defines healing.

A rtificial intelligence has moved beyond the realm of the future and is now embedded in everyday clinical practice. From radiographic interpretation to predictive analytics, algorithms now assist clinicians in diagnosing disease, forecasting outcomes, and optimizing treatment pathways. Studies show that AI applications improve diagnostic accuracy, treatment planning, and decision-making across multiple specialties^{1,2}. In orthopedics, AI assisted imaging, robotic assisted arthroplasty, and navigation systems have improved surgical precision, reproducibility, and alignment outcomes³⁻⁶. Machine learning models can predict postoperative complications, prosthesis sizing, and even patient reported outcomes^{7,8,9}. In resource-limited settings such as Nepal, Al powered telemedicine platforms are expanding access to specialist consultations in remote areas, demonstrating that technology can bridge gaps in care.

As technology evolves, so should the medical training. The next generation of physicians must not only use AI but also understand its limitations. A surgeon who depends only on robotic navigation may lose the sense of touch and the instinctive judgment developed through years of hands-on experience. AI enabled simulation and virtual education platforms have transformed learning environments, but they cannot replace bedside mentorship or patient interaction. True medical competence blends data interpretation with empathy and clinical reasoning. It should be

accepted that artificial intelligence may analyze the patient's image, but only human intelligence can understand their pain. Thus, training programs must cultivate digital literacy alongside human sensitivity, ensuring that machines augment, and not erode the clinical judgment.

Although automation is appealing, medicine is still fundamentally a human profession. The healing touch, a reassuring word, a gentle examination or a compassionate presence cannot be replicated by circuitry or code. In resource limited settings like Nepal, where technology often falls short, empathy becomes the most powerful therapeutic tool. Even as algorithms grow more accurate, they lack context and compassion. It is the physician's role to interpret data in light of the patient's values, fears, and experiences. Healing, after all, arises from understanding the person behind the pathology.

With progress comes complexity. Questions of data privacy, accountability, and bias loom large. Many AI tools are trained on datasets from high income countries, raising concerns about their applicability to local populations. Frameworks for AI in medicine emphasize transparency, reproducibility, and fairness^{4,10}. For low and middle-income nations, the challenge lies not only in adopting AI but in ensuring equitable access and local validation. Nepal must build its own datasets, develop culturally relevant models, and establish guidelines to safeguard patient trust. Technology must serve our context and not dictate it.

Journals too are evolving in this Al driven landscape. Automated plagiarism checks, image screening, and statistical verification are becoming standard. However, editorial judgment must remain human and we should encourage studies exploring Al's role in Nepalese healthcare, its integration into medical

DOI: https://doi.org/10.3126/gmj.v5i2.87564

education, and its ethical challenges. As editors, our responsibility extends beyond gate-keeping, we must guide the profession toward ethical and equitable technological adoption.

Artificial intelligence will undoubtedly redefine medicine but it should not redefine what it means to be a doctor. The heart of healing still lies in human connection. As we stand on the threshold of an Al augmented future, our challenge is not to resist technology, but to integrate it wisely.

The balance between Technology, Training, and Touch will determine the quality of tomorrow's medicine. The art of healing will endure not in opposition to technology, but through its wise and compassionate use The machines may enhance our sight, but only humanity can give us vision.

References

- Alhejaily AG. Artificial intelligence in healthcare. Biomed Rep. 2024;22(1):11. https://doi.org/10.3892/br.2024.1889
- Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya Al, Almohareb SN, Aldairem A, Alrashed M, Bin Saleh K, Badreldin HA, Al Yami MS. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC medical education. 2023 Sep 22;23(1):689.https://doi.org/10.1186/ s12909-023-04698-z
- Saha R, Aich S, Tripathy S, Kim H-C. Artificial intelligence is reshaping healthcare amid COVID-19: a review in the context of diagnosis & prognosis. Diagnostics. 2021;11(9):1604. https://doi.org/10.3390/diagnostics11091604
- 4. Crossnohere NL, Elsaid M, Paskett J, Bose-Brill S, Bridges JFP. Guidelines for Artificial

- Intelligence in Medicine: Literature Review and Content Analysis of Frameworks. J Med Internet Res. 2022 Aug 25;24(8):e36823. https://doi.org/10.2196/36823
- Purnomo G, Yeo SJ, Liow MHL. Artificial intelligence in arthroplasty. Arthroplasty. 2021;3:37.https://doi.org/10.1186/s42836-021-00095-3
- 6. Wang Y. Digital orthopedics in the new Al era: from Asia aspect. Arthroplasty. 2023;5:61. https://doi.org/10.1186/s42836-023-00220-4
- 7. Chen H.. Application progress of artificial intelligence and augmented reality in orthopaedic arthroscopy surgery. J Orthop Surg Res. 2023;18:775. https://doi.org/10.1186/s13018-023-04280-9
- 8. Fayed AM, Mansur NSB, de Carvalho KA, Behrens A, D'Hooghe P, de Cesar Netto C.. Artificial intelligence and ChatGPT in orthopaedics and sports medicine. J Exp Orthop. 2023;10:74. https://doi.org/10.1186/s40634-023-00642-8
- Salman LA, Khatkar H, Al-Ani A, Alzobi OZ, Abudalou A, Hatnouly AT, Ahmed G, Hameed S, AlAteeq Aldosari M. Reliability of artificial intelligence in predicting total knee arthroplasty component sizes: a systematic review. Eur J Orthop Surg Traumatol. 2024;34:747–756. https://doi.org/10.1007/s00590-023-03784-8
- Federer SJ, Jones GG. Artificial intelligence in orthopaedics: a scoping review. PLoS One. 2021;16(11):e0260471. https://doi. org/10.1371/journal.pone.0260471